电力谐波的产生原因及其抑制方法

合集下载

谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些谐波的抑制方法谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

关于“谐波的产生和危害有哪些谐波的抑制方法”的详细说明。

1.谐波的产生和危害有哪些1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

2.谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。

3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。

4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。

2.谐波的抑制方法(一)降低谐波源的谐波含量在谐波源上采取治理措施,从源头上最大限度地避免谐波的产生。

这就需要在设计、制造和使用谐波源设备时,要注意谐波对供电系统及其供用电设备的影响,采取切实可行的治理措施。

用电业务管理部门要严格把关,对于没有采取治理措施的谐波源用户,要禁止其入网运行。

(二)在谐波源处吸收谐波电流这种方法是对已有谐波进行有效抑制的方法,也是目前电力系统使用最为广泛地抑制谐波的方法。

其主要方法有以下几种:1.无源滤波器无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。

这种方法由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,是目前采用的抑制谐波及无功补偿的主要手段。

2.有源滤波器有源滤波器即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。

3.防止并联电容器组对谐波的放大在电网中并联电容器组起改善功率因数和调节电压的作用。

电力谐波的产生原因及抑制方法

电力谐波的产生原因及抑制方法

电力谐波的产生原因及抑制方法电力谐波是指电力系统中产生的非正弦波形,它由于交流电系统中的非线性负载、电力线上的电容器和电感器等因素引起。

电力谐波在电力系统中的存在可能会导致设备的故障、能源浪费和电网负载能力的下降。

因此,对电力谐波的产生进行有效的抑制是非常重要的。

1.非线性负载:非线性负载是电力谐波的主要源头。

非线性负载通常包括电力电子设备,如电视、计算机、UPS电源、逆变器、风力发电机等。

这些设备的工作原理会产生非线性电流,进而导致电网中谐波的产生。

2.电容器和电感器:电容器和电感器也会对电力谐波的产生做出贡献。

在电力系统中,电容器和电感器常用于无功补偿和电能储存。

然而,由于电容器和电感器的等效电路具有谐振特性,它们会对电力谐波起到放大的作用。

3.电网接地方式:电网的接地方式也会影响电力谐波的产生。

当电网采用不完全中性接地时,地线电流会导致电子设备的谐波污染。

抑制电力谐波的方法有多种,下面将介绍几种常见的方法:1.优化电力系统设计:对于新建的电力系统,可以采用谐波抑制措施进行设计。

例如,将非线性负载远离主要的电源和敏感设备,减少非线性负载对谐波的干扰。

2.增加电力系统的容量:增加系统容量可以降低电力谐波对设备的影响。

通过增加设备的容量,可以减少设备的负载率,从而降低了负载谐波。

3.应用谐波滤波器:谐波滤波器是目前应用最广泛的抑制电力谐波的方法之一、谐波滤波器可将电力谐波从电网中滤除,从而减少对设备的影响。

4.提高设备的抗谐波能力:可以通过改善设备的设计或增加额外的抗谐波装置,使得设备能够更好地抵抗电力谐波的干扰。

5.加强监测和管理:及时监测电力谐波的产生和影响程度,对于谐波超标的情况进行调整和管理。

可以采用在线监测系统对电力谐波进行实时监测,并根据监测结果采取适当的措施。

综上所述,电力谐波的产生原因主要是非线性负载、电容器和电感器以及电网接地方式等因素的综合作用。

为了有效抑制电力谐波,需要采用适当的方法,包括优化电力系统设计、增加系统容量、应用谐波滤波器、提高设备的抗谐波能力以及加强监测和管理等。

电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。

谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。

谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。

常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。

谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。

2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。

3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。

为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。

它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。

2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。

3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。

4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。

5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。

综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。

通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。

电力电子变换器中的谐波扰动分析与抑制方法

电力电子变换器中的谐波扰动分析与抑制方法

电力电子变换器中的谐波扰动分析与抑制方法电力电子变换器是现代电力系统中的重要设备,其功能是将电能转换为特定形式的电能输出。

然而,电力电子变换器在工作过程中会产生谐波扰动,影响系统的稳定性和电能质量。

因此,对谐波扰动进行分析与抑制是电力电子变换器研究领域的重要课题。

首先,我们需要了解电力电子变换器中的谐波扰动来源。

谐波扰动主要来自于电力电子器件的非线性特性以及负载的非线性特性。

电力电子器件在开关过程中具有非线性特性,会产生高频谐波信号。

负载的非线性特性会导致电流形状畸变,进而产生低频谐波信号。

为了准确分析电力电子变换器中的谐波扰动,我们可以采取以下方法。

1. 测量与监测:通过使用谐波分析仪等专业设备对电力电子变换器进行测量与监测,可以获取变换器输出端的谐波水平。

通过分析谐波频谱,我们可以确定谐波的频率和幅度,进而确定谐波来源和抑制方法。

2. 模拟仿真:利用电力电子变换器的数学模型进行仿真,可以方便地分析谐波扰动的波形和谐波分布。

通过调整变换器的工作参数,比如拓扑结构、开关频率等,可以探索谐波扰动的变化规律,并优化系统设计。

分析了电力电子变换器中谐波扰动的来源后,下面我们来探讨如何抑制谐波扰动。

1. 滤波器设计:在电力电子变换器的输出端添加谐波滤波器是一种常见的抑制谐波扰动的方法。

谐波滤波器通过选择合适的滤波器频率,将谐波信号滤除,保证输出电能的质量。

常见的谐波滤波器包括被动滤波器和有源滤波器,根据实际情况选择适合的滤波器类型。

2. 控制策略优化:电力电子变换器的控制策略对谐波扰动的抑制有重要影响。

我们可以通过优化开关拓扑和调整控制参数来改善系统的谐波性能。

例如,采用多电平逆变器、多电平调制技术和谐波抑制PWM技术等,可以有效地减小谐波幅值。

3. 使用异步串联电源:将一个电力电子变换器与一个异步串联电源连接起来,可以使变换器的输出与电源之间达成电力共享,减小谐波扰动。

异步串联电源通过控制电流的相位和幅值,将其与变换器的输出相互补偿,从而实现谐波抑制。

浅谈电力系统谐波检测及抑制方法

浅谈电力系统谐波检测及抑制方法

浅谈电力系统谐波检测及抑制方法摘要:本文主要阐述了电力系统谐波的产生原因和危害,介绍了谐波检测的方法,包括传统方法和新兴方法,以及谐波抑制的方法,包括被动滤波和主动滤波等。

同时,针对电力系统谐波的特点,提出了一些优化措施,以期对电力系统谐波的检测和抑制产生积极的影响。

关键词:电力系统、谐波、检测、抑制正文:一、谐波的产生原因及危害谐波是指频率为基波频率整数倍的交流电信号,是电力系统中极其普遍的现象。

谐波的产生原因主要有以下几种:1、非线性负载的存在:如励磁系统、变频器、UPS等等。

2、电力电子器件的存在:如开关电容器等等。

3、线路谐振所产生的回波:如高压输电线和变压器中的谐振回波。

4、供电系统中的电弧、火花放电等。

大量的谐波会对电力系统产生不可避免的危害,包括:1、阻碍电能传输:谐波会引起交流系统内的电压和电流失去同步,从而无法有效地传输电能。

2、损坏电力设备:谐波会使电力设备的温度升高,引起设备故障或烧坏。

3、引起电力波动:谐波会使电力质量发生变化,从而引起电力波动。

4、对用电设备的干扰:谐波会对用电设备产生干扰,使其工作出现异常。

二、谐波的检测方法为了准确地检测和分析电力系统中的谐波,需要采用适当的谐波检测方法。

目前常见的谐波检测方法包括:1、传统的谐波检测方法:包括单相检测法、三相检测法等,主要是通过对线路中的电压和电流进行采样,并对谐波进行滤波和分析。

2、新兴的谐波检测方法:如快速小波变换法(FWT)、矢量变量法(VSA)等,较为有效地解决了传统方法中的一些问题,例如不容易出现失灵、可实现频率矩阵多恒定、不依赖预处理等。

三、谐波的抑制方法为了有效地抑制电力系统中的谐波,需要采用相应的谐波抑制方法。

目前常见的谐波抑制方法包括:1、被动滤波:即采用滤波器等被动电路来消除谐波,其优点是结构简单,可靠性高,成本低廉,常常应用于对谐波要求不高的场合。

2、主动滤波:即通过电网与电源之间的电流、电压、功率等进行控制,进而消除谐波,其优点是能够发挥较好的动态响应能力,比被动滤波性能更好。

电力谐波的抑制技术

电力谐波的抑制技术

电力谐波的抑制技术电力谐波是在电网中存在着的非正弦波形式的电力信号,它会对电网的功率质量、电能计量、电力设备的正常运行以及附近设备的干扰造成不良影响。

电力谐波的抑制成为了电力系统中必须要解决的问题,相关的技术和方法也逐渐成熟。

一、电力谐波的形成原因1. 非线性负载非线性负载是引起电力谐波的主要原因之一。

在非线性负载中,如电弧炉、变频器、电视机和计算机等,其负载和电源输出的像非线性电阻一样。

当其被电源供给的电压频率和幅值发生变化时,负载对电源装置的电流反应与电压不同,使波形发生畸变,进而产生电力谐波。

2. 电容的接入在某些情况下,电容的接入也会导致电力谐波的形成。

电容在低频环节呈现开路状态,在高频环节则呈现短路状态,当由非线性负载产生的高频电路中有电容接入时,就容易让高频电流通过电容引起振荡。

3. 变压器的短路变化电力谐波还可能在变压器的短路变化中产生。

这种情况的出现主要原因是变压器中的铁芯会在高频过程中表现出饱和特性,在短时间内可能会发生短路变化,从而导致电力谐波进入电网。

二、电力谐波的危害1. 对供电电网造成不良影响处于同一电网中的所有电气设备都会受到电力谐波的影响,而高电压、畸变电流和漏电等谐波会引起线路的损坏和故障,降低供电可靠性。

2. 影响设备正常运行电力谐波对设备的正常运行造成了干扰,降低了设备的工作效率,而且在计量和监测等环节中,由于电力谐波的带宽较高,这可能会影响计量和监测的准确性。

3. 整体经济成本增加由于电力谐波的存在,设备的寿命可能会缩短,这将导致维护和更换成本的增加。

供电可靠性差会引起生产停顿,可能会产生很多损失。

为了消除电力谐波的危害,人们研究和发展了多种电力谐波抑制技术。

1. 滤波器滤波器的设计是以限制或消除电力谐波为目的。

这种电力谐波抑制技术非常成熟,并且被广泛应用。

滤波器一般包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

低通滤波器是最常见的一种滤波器,它可以挡掉高频电流和电压波动。

变电站谐波形成原因与消除方法

变电站谐波形成原因与消除方法

变电站谐波形成原因与消除方法摘要:谐波会降低电能质量,影响电力系统安全运行,因此谐波的治理一直成为国内外研究的热点。

文章对谐波的危害、形成原因及分析方法进行了阐述,并对治理和消除谐波的措施进行了探讨。

关键词:变电站;谐波;原因;消除方法一、谐波形成原因分析1、正弦供电电压加在非线性负荷上谐波产生的根本原因是在正弦供电电压加在非线性负荷上,它产生的电流不再是完全的正弦波形。

同时因系统阻抗的存在,该电流产生的电压降也是非正弦的,这样就会引起负荷端的电压畸变。

2、变压器的影响在变电站中,变压器是一个谐波源,由于变压器的磁性材料大都工作在非线性或接近非线性的区域,这种情况下即使加入正弦电压,励磁电流也是非正弦的,因而电流中不可避免含有谐波成分,并以3次谐波为主。

同样的道理,假如变压器励磁电流波形是正弦的,但电压也是非正弦的。

类似的情况还包括电抗器等感性设备。

3、其他非线设备的影响变电站负载中若含有电弧炉、旋转电机、晶闸管控制设备等大量的非线性设备,则会引入谐波成分。

旋转电机的线圈是嵌入线槽内的,由于线槽不可能做成完全正弦分布,所以产生的磁动势必然畸变。

家用电器、水银灯、荧光灯等也是谐波源,虽然就单体来说谐波量不大,但数量大,分布广,也会对电力系统产生较明显的影响。

随着整流器、开关电源、晶闸管控制系统等电力电子设备广泛应用,它们产生的谐波成分同样不容小视。

2.2.4 其他原因另外,如果发电质量不高,即发电设备的谐波成分未受到有效抑制,注入电网后也是不可忽视的谐波源。

二、谐波的危害谐波对电网的污染主要表现在以下方面:1、使旋转电机、变压器等电气设备由于过大的谐波电流而产生附加损耗,从而引起过热,使绝缘介质老化加速,导致绝缘损坏。

并联电容器的容抗随谐波次数增大而减小,因而使电容器过电流发热导致绝缘击穿的故障增多。

2、谐波电压每半周可能有多个过零点,产生过零噪扰,使相位控制设备的正常工作因控制信号紊乱而受到干扰,如电子计算机误动作、电子设备误触发、电子元件测试无法进行、晶体管整流型距离保护、变压器及母线复合电压保护误动或拒动等。

电力系统中的谐波与电磁干扰分析

电力系统中的谐波与电磁干扰分析

电力系统中的谐波与电磁干扰分析导言:电力系统是现代社会运转的重要基础设施之一,但在其运行过程中,常常会面临谐波和电磁干扰的问题。

谐波是指电力系统中出现的频率是基波频率的整数倍的电压或电流成分,而电磁干扰则是指电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。

本文将深入分析电力系统中的谐波和电磁干扰的原因、危害以及相应的解决方法。

一、谐波的形成和危害1. 谐波的形成谐波是由于非线性负荷在电力系统中的存在引起的。

非线性负荷如电子电器、电感、电容等设备,在工作时会产生非线性电流,在电源电压的作用下,会将谐波电流注入电力系统中。

这些谐波电流会使电力系统中的电流波形变成失真的非正弦波形。

2. 谐波的危害谐波对电力系统和设备都会造成一定的危害。

首先,谐波会引起电力系统中的电流和电压的失真,导致电能质量下降。

其次,谐波会引发电力系统中的共振问题,进而损坏电容器、互感器等设备。

此外,谐波还会导致电力系统中的电机运行不稳定,降低设备的寿命,甚至引起设备的故障和损坏。

因此,谐波问题应引起足够的重视。

二、电磁干扰的产生和危害1. 电磁干扰的产生电磁干扰是电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。

电力系统中各种设备和传输线路中的电流和电压会产生电磁场,这些电磁场以无线电波的形式辐射出去,与其他设备和系统产生相互作用,引起电磁干扰问题。

2. 电磁干扰的危害电磁干扰会带来许多危害。

首先,电磁干扰会影响通信系统的正常运行,导致通信中断、信息传递错误等问题。

其次,电磁干扰会影响其他电子设备的正常工作,引起设备的故障和损坏。

此外,电磁干扰还可能对人体健康造成一定的影响,引起生理和心理方面的问题。

三、谐波和电磁干扰的解决方法为了解决电力系统中的谐波和电磁干扰问题,可以采取以下方法:1. 谐波的解决方法(1)降低非线性负荷的影响:通过选用低谐波电器设备、采用滤波电容器等措施来减少非线性负荷对电力系统的谐波注入。

(2)滤波器的应用:在电力系统中安装合适的谐波滤波器,可以过滤掉谐波成分,减少谐波的产生和传播。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力谐波的产生原因及其抑制方法
随着工业的快速发展,在电力系统中,非线性负荷大量增加。

这样的非线性负荷在电网中产生的干扰越来越严重,也越来越复杂化,使得电网的供电质量越来越差,对同一电网的其他用电设备和小型用户的影响越来越大。

在电力系统中,谐波污染与电磁干扰、功率因数降低成为了三大公害。

一、谐波产生的原因
谐波是指一个电气量的正弦波分量.其频率为基波频率的整数倍,不同频率的谐波对不同的电气设备会有不同的影响。

谐波主要由谐波电流源产生,当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。

由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源。

二、谐波源的种类
在电力系统中产生谐波的主要谐波源有两种。

1.含有半导体等非线性电气元件的用电设备。

比如工业中常见的各种整流电气装置、大容量变频器、大型交直流变换装置以及其他的电力、电子装置。

2.含有电弧和铁磁材料等的非线性材料的用电设备,比如电弧炉、变压器、发电机组等电气设备。

三、谐波的危害
1.使供电线路和用电设备的热损耗增加。

(1) 谐波对线路的影响
对供电线路来说,由于集肤效应和邻近效应,线路电阻随着频率的增加会很快增加,在线路中会有很大的电能浪费。

另外,在电力系统中,由于中性线电流都很小,所以其线径一般都很细,当大量的谐波电流流过中性线时,会在其上产生大量的热量,不仅会破坏绝缘,严重时还会造成短路,甚至引起火灾。

而当谐波频率与网络谐振频率相近或相同时,会在线路中产生很高的谐振电压。

严重时会使电力系统或用电设备的绝缘击穿,造成恶性事故。

(2) 对电力变压器的影响
谐波电琏的存在增加了电力变压器的磁滞损耗、涡流损耗及铜损,对带有不对称负荷的变压器来说,会大大增加励磁电流的谐波分量。

(3)对电力电容器的影响
由于电容器对谐波的阻抗很小,谐波电流叠加到基波电流上,会使电力电容器中流过的电流有很大的增加,使电力电容器的温升增高,引起电容器过负荷甚至爆炸。

同时,谐波还可能与电容器一起在电网中形成谐振,并又施加到电网中。

(4)对电机的影响
谐波会使电机的附加损耗增加,也会产生机械震动,产生甚至引起谐波过电压.使得电机绝缘损坏。

2.对继电保护和自动装置的影响
对于电磁式继电器来说,电力谐波常会引起继电保护以及自动装置的误动作或拒动,造成整个保护系统的可靠性降低.容易引起系统故障或使系统故障扩大。

3.对通信线路产生干扰。

在电力线路上流过幅度较大的奇次低频谐波电流时,通过电磁耦合,会在邻近电力线路
的通信线路中产生干扰电压。

干扰通信线路的正常工作,使通话清晰度降低,甚至会引起通信线路的破坏。

4.对用电设备的影响
电力谐波会使电视机、计算机的显示亮度发生波动,图像或图形发生畸变,甚至会使机器内部元件损坏,导致机器无法使用或系统无法运行。

5.对产品质量的影响
当一定频率的谐波对用电设备有影响时,会使设备工作不稳定,导致产品质量下降。

严重时会产生批次性产品报废。

6.谐波对计量仪表的影响
谐波的存在会使计量仪表的指示产生误差,甚至会导致计量设备无法工作。

四、谐波的抑制方法
1.改善供电系统
对于供电系统来说,谐波的产生不可避免,但通过加大供电系统短路容量、提高供电系统的电压等级、加大供电设备的容量、尽可能保持三相负载平衡等措施都可以提高电网抗谐波的能力。

2.降低谐波源的谐波含量
在线路中对谐波源采取措施,最大限度地避免谐波的产生,这种方法能够提高电网质量,可在很大程度上避免谐波造成的影响。

(1)采取脉宽调制(PWM)法
采用脉宽调制(PWM)技术,在所需要的频率周期内,将直流电压调制成等幅不等宽的系列交流电压脉冲,这种方法可以大大抑制谐波的产生。

(2)增加整流器线路中的脉动数整流器件是电网中的主要谐波源,对于整流器件来说,增加整流脉动数,可以使波形平滑,谐波的产生量减少。

3.在谐波源处吸收谐波电流
这是目前应用最广泛的谐波抑制方法。

主要有以下几种:
(1)采用无源滤波器加以抑制
无源滤波器安装在电力电子设备的交流侧,由L、R、C元件构成谐振回路,当谐振回路的谐振频率与某一谐波频率相同或相近时,即可阻止该频率的谐波进入电网。

(2)采用有源滤波器加以抑制
利用可控的功率半导体器件,向电网中输入与原有的谐波电流幅度相等相位相反的电流,使电网中的总谐波电流趋向于零,达到实时补偿谐波的目的。

(3) 通过加装静止无功补偿装置加以抑制
在谐波源处并联加装静止无功补偿装置,可以有效减少波动的谐波量,同时,也可以抑制电压波动、电压闪变,还可以补偿功率因数。

(4)防止电容器组对谐波的放大在电网中并联电容器组起改善功率因数和调节电压的作用,当谐波存在时,在一定的参数下电容器组会对谐波起到放大作用,危及电容器本身和附近其他电气设备的安全,可以采取串联电抗器或将电容器组的某一支路改为滤波器的方法来限制对谐波的放大,也可以通过限制电容器组的投入容量来避免电容器对谐波的放大。

相关文档
最新文档