电力系统中谐波分析和抑制手段
电力系统谐波监测与抑制技术研究

电力系统谐波监测与抑制技术研究随着电力系统的快速发展和电子设备的广泛应用,电力质量问题日益突出。
其中,谐波是造成电力系统质量下降的一个重要因素。
谐波会导致电网设备的破坏、电力损耗的增加以及对用户设备的干扰等问题。
因此,电力系统谐波监测与抑制技术的研究和应用对提高电力系统的可靠性和质量至关重要。
一、谐波监测技术谐波监测是对电力系统中谐波分量进行实时监测和分析的过程。
通过谐波监测,可以了解电力系统中谐波的水平、频率和相位等信息,为进一步的谐波抑制提供依据。
1. 传统谐波监测技术传统的谐波监测技术通常采用数字示波器或功率分析仪等设备。
这些设备可以通过采集电流和电压波形,计算谐波的幅值和相位差等参数,并通过显示和记录的方式反映出谐波的情况。
然而,传统的谐波监测技术受到监测点有限、成本高昂以及数据处理复杂等限制。
2. 基于智能传感器的谐波监测技术近年来,随着传感器技术的发展,基于智能传感器的谐波监测技术得到了广泛应用。
这些智能传感器可以直接安装在电网设备上,实时采集电流和电压的波形数据,并通过无线通信传输给监测系统。
利用智能传感器,可以实现对电力系统多个监测点的谐波监测,提高监测的覆盖面和准确性。
二、谐波抑制技术谐波抑制技术是为了减少电力系统中谐波分量的水平,保持电力质量的稳定性和可靠性。
根据谐波抑制技术的原理和应用范围不同,可以分为有源谐波抑制和无源谐波抑制技术。
1. 有源谐波抑制技术有源谐波抑制技术是通过在电力系统中添加特定的电子器件,实时监测和控制电流和电压的波形,从而在电力系统中产生与谐波相反的波形,以抑制谐波。
有源谐波抑制技术具有响应速度快、抑制效果好等特点,但其设备成本高、容量有限等问题也需要解决。
2. 无源谐波抑制技术无源谐波抑制技术是通过改进电力系统的电网结构和设备设计,减少谐波的产生和传输,从而达到谐波抑制的目的。
无源谐波抑制技术可以通过限制谐波源的接入、加装滤波器和隔离变压器等设备来实现。
电力谐波的产生原因及抑制方法

电力谐波的产生原因及抑制方法电力谐波是指电力系统中产生的非正弦波形,它由于交流电系统中的非线性负载、电力线上的电容器和电感器等因素引起。
电力谐波在电力系统中的存在可能会导致设备的故障、能源浪费和电网负载能力的下降。
因此,对电力谐波的产生进行有效的抑制是非常重要的。
1.非线性负载:非线性负载是电力谐波的主要源头。
非线性负载通常包括电力电子设备,如电视、计算机、UPS电源、逆变器、风力发电机等。
这些设备的工作原理会产生非线性电流,进而导致电网中谐波的产生。
2.电容器和电感器:电容器和电感器也会对电力谐波的产生做出贡献。
在电力系统中,电容器和电感器常用于无功补偿和电能储存。
然而,由于电容器和电感器的等效电路具有谐振特性,它们会对电力谐波起到放大的作用。
3.电网接地方式:电网的接地方式也会影响电力谐波的产生。
当电网采用不完全中性接地时,地线电流会导致电子设备的谐波污染。
抑制电力谐波的方法有多种,下面将介绍几种常见的方法:1.优化电力系统设计:对于新建的电力系统,可以采用谐波抑制措施进行设计。
例如,将非线性负载远离主要的电源和敏感设备,减少非线性负载对谐波的干扰。
2.增加电力系统的容量:增加系统容量可以降低电力谐波对设备的影响。
通过增加设备的容量,可以减少设备的负载率,从而降低了负载谐波。
3.应用谐波滤波器:谐波滤波器是目前应用最广泛的抑制电力谐波的方法之一、谐波滤波器可将电力谐波从电网中滤除,从而减少对设备的影响。
4.提高设备的抗谐波能力:可以通过改善设备的设计或增加额外的抗谐波装置,使得设备能够更好地抵抗电力谐波的干扰。
5.加强监测和管理:及时监测电力谐波的产生和影响程度,对于谐波超标的情况进行调整和管理。
可以采用在线监测系统对电力谐波进行实时监测,并根据监测结果采取适当的措施。
综上所述,电力谐波的产生原因主要是非线性负载、电容器和电感器以及电网接地方式等因素的综合作用。
为了有效抑制电力谐波,需要采用适当的方法,包括优化电力系统设计、增加系统容量、应用谐波滤波器、提高设备的抗谐波能力以及加强监测和管理等。
电力系统中的谐波及其抑制措施

电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。
谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。
谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。
常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。
谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。
2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。
3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。
为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。
它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。
2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。
3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。
4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。
5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。
综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。
通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。
浅谈电力系统谐波检测及抑制方法

浅谈电力系统谐波检测及抑制方法摘要:本文主要阐述了电力系统谐波的产生原因和危害,介绍了谐波检测的方法,包括传统方法和新兴方法,以及谐波抑制的方法,包括被动滤波和主动滤波等。
同时,针对电力系统谐波的特点,提出了一些优化措施,以期对电力系统谐波的检测和抑制产生积极的影响。
关键词:电力系统、谐波、检测、抑制正文:一、谐波的产生原因及危害谐波是指频率为基波频率整数倍的交流电信号,是电力系统中极其普遍的现象。
谐波的产生原因主要有以下几种:1、非线性负载的存在:如励磁系统、变频器、UPS等等。
2、电力电子器件的存在:如开关电容器等等。
3、线路谐振所产生的回波:如高压输电线和变压器中的谐振回波。
4、供电系统中的电弧、火花放电等。
大量的谐波会对电力系统产生不可避免的危害,包括:1、阻碍电能传输:谐波会引起交流系统内的电压和电流失去同步,从而无法有效地传输电能。
2、损坏电力设备:谐波会使电力设备的温度升高,引起设备故障或烧坏。
3、引起电力波动:谐波会使电力质量发生变化,从而引起电力波动。
4、对用电设备的干扰:谐波会对用电设备产生干扰,使其工作出现异常。
二、谐波的检测方法为了准确地检测和分析电力系统中的谐波,需要采用适当的谐波检测方法。
目前常见的谐波检测方法包括:1、传统的谐波检测方法:包括单相检测法、三相检测法等,主要是通过对线路中的电压和电流进行采样,并对谐波进行滤波和分析。
2、新兴的谐波检测方法:如快速小波变换法(FWT)、矢量变量法(VSA)等,较为有效地解决了传统方法中的一些问题,例如不容易出现失灵、可实现频率矩阵多恒定、不依赖预处理等。
三、谐波的抑制方法为了有效地抑制电力系统中的谐波,需要采用相应的谐波抑制方法。
目前常见的谐波抑制方法包括:1、被动滤波:即采用滤波器等被动电路来消除谐波,其优点是结构简单,可靠性高,成本低廉,常常应用于对谐波要求不高的场合。
2、主动滤波:即通过电网与电源之间的电流、电压、功率等进行控制,进而消除谐波,其优点是能够发挥较好的动态响应能力,比被动滤波性能更好。
电力系统中的谐波分析与抑制技术研究

电力系统中的谐波分析与抑制技术研究随着电力系统的发展,电气设备的广泛应用和高效能力的需求,电力系统中的谐波问题日益凸显。
谐波是由于非线性元件如电子器件、变频调速器、照明灯具、电动机等在电力系统中的工作状态非正常运行,从而导致基波电流、电压失真,引起的一种频率与基波频率不同的交流电信号。
谐波不仅降低了电力系统能效,还会影响电力设备的工作寿命。
因此,通过谐波分析和抑制技术研究,可以有效提高电力系统的可靠性和能效。
一、谐波分析电力系统中的谐波主要包括电流谐波和电压谐波,它们在电力系统中的传输会产生一系列不利影响。
电流谐波不仅会导致电力变压器铁芯、线圈、绝缘材料等元件中出现高次谐波电流、高温、电弧、电晕等现象,还会引起母线和设备的铜损。
电压谐波则会导致相关设备的故障、损坏,影响电力系统的安全运行。
因此,准确分析谐波特性成为保证电力系统正常运行的重要前提。
谐波分析通过测量和处理电流、电压、功率等参数,对电力系统中的谐波进行分析,了解系统中的谐波含量和频率范围等,为后续的抑制措施提供数据支持。
二、谐波抑制技术为了降低电力系统中谐波的影响,采用一系列设备和技术手段进行谐波抑制,主要包括以下方面。
1.使用线性负载线性负载包括电阻、电感、电容等。
与电子器件、变频调速器等非线性负载相比,线性负载的特性更加稳定,不会产生谐波。
因此,在谐波控制上力求使用线性负载,降低谐波产生的可能性。
2.谐波滤波器谐波滤波器通常由谐波滤波器电抗器和谐波滤波器电容器组成。
谐波滤波器能在电力系统中消除谐波,其原理是将谐波信号通过电感器、电容器等高阻抗元件滤除掉,同时保留基波信号传输到目标设备,以达到谐波抑制的效果。
3.多网侧变压器传输多网侧变压器传输是通过连接两个及以上变电站,在电网多个侧面进行谐波抑制。
多网侧变压器传输中,正、负序谐波和零序谐波会在不同的变压器侧面互相抵消,从而降低电力系统中谐波的含量。
4.使用非线性抑制器非线性抑制器与电力系统中的非线性元件相似,但其特性更加稳定。
电力系统中的谐波分析与抑制方法研究

电力系统中的谐波分析与抑制方法研究摘要:随着电力系统中非线性负载的普及和不断增长,谐波问题已成为电力系统中一个重要的研究领域。
谐波不仅对电力传输和配电系统的稳定性和可靠性产生负面影响,还对系统中的设备和消费者造成了潜在的危害。
因此,对谐波问题进行深入研究,并采取有效的抑制方法是必要的。
本文将详细分析电力系统中的谐波问题,并介绍相应的谐波分析与抑制方法。
1. 引言电力系统中的谐波问题源自电力负载设备的非线性特性、瞬时扰动和其他外部干扰。
谐波可以导致电力系统中的电流和电压波形失真,对系统稳定性、功率质量和设备寿命产生不利影响。
因此,对谐波进行准确的分析和抑制,对电力系统的可靠性和稳定性至关重要。
2. 谐波分析方法谐波分析是在电力系统中检测和评估谐波的能力。
常用的谐波分析方法包括频谱分析、时域分析和矢量分析。
频谱分析是基于傅里叶变换理论,将信号从时域转换为频域,通过频谱图可以直观地观察到谐波的频率和幅值信息。
时域分析是通过观察波形数据的振幅和频率变化,确定谐波的存在和程度。
矢量分析是通过矢量图形和相量法进行谐波分析,可以更清晰地显示不同谐波成分之间的相位差。
3. 谐波抑制方法为了解决电力系统中的谐波问题,采取一定的抑制方法非常必要。
以下是几种常用的谐波抑制方法:(1) 被动滤波器被动滤波器是应用最广泛的谐波抑制方法之一。
它通过将谐波电流引入并与谐波电压相消,从而减小谐波的影响。
被动滤波器按照谐波频率进行选择,并根据谐波电流和电压的幅值和相位关系进行设计。
(2) 有源滤波器有源滤波器是一种主动干预的谐波抑制方法。
它通过检测谐波电流和电压,并使用控制算法来产生相应的逆谐波电流,从而抵消谐波电流。
有源滤波器具有较高的抑制效果和灵活性,但也存在成本较高和复杂性较大的问题。
(3) 直流回路抑制器直流回路抑制器是一种适用于直流输电系统的谐波抑制方法。
它通过在直流回路中加入谐波抑制器,将谐波电流从直流回路引导到地。
电力系统中电流谐波的分析与治理

电力系统中电流谐波的分析与治理在当今的电力系统中,电流谐波问题日益凸显,对电力设备的正常运行、电能质量以及整个电力系统的稳定性都产生了不可忽视的影响。
因此,深入分析电流谐波的产生原因、特性,并采取有效的治理措施显得尤为重要。
一、电流谐波的产生电流谐波的产生源头较为多样。
电力电子设备的广泛应用是其中的主要因素之一。
例如,变频器、整流器、逆变器等在工作时,会将交流电源转换为直流电源或对交流电源进行变频控制,由于其开关动作的非线性特性,导致电流发生畸变,从而产生谐波。
非线性负载也是谐波的重要来源。
像电弧炉、电焊机等设备,其工作电流随时间变化呈现出非线性特征,使得输入的正弦电流发生扭曲,进而产生谐波电流。
此外,变压器的铁芯饱和也会引起电流谐波。
当变压器铁芯中的磁通密度超过饱和点时,励磁电流会出现明显的非线性增长,产生谐波分量。
二、电流谐波的特性电流谐波具有一些显著的特性。
首先是频率特性,谐波的频率通常是基波频率的整数倍。
例如,5 次谐波的频率是基波频率的 5 倍。
其次是幅值特性。
不同次数的谐波幅值大小不尽相同,一般来说,低次谐波的幅值相对较大,对电力系统的影响也更为显著。
电流谐波还具有相位特性。
各次谐波的相位关系较为复杂,会对电力系统中的功率传输和电能质量产生影响。
三、电流谐波的危害电流谐波给电力系统带来了诸多危害。
它会增加电力设备的损耗,如变压器、电动机等,导致设备发热加剧,降低其使用寿命。
对输电线路来说,谐波电流会引起线路的额外损耗,降低输电效率,同时可能引发谐振,导致过电压,威胁线路的安全运行。
在电能质量方面,谐波会导致电压波形畸变,影响供电的稳定性和可靠性,可能引起电气设备误动作,影响精密仪器和电子设备的正常工作。
四、电流谐波的分析方法为了有效地治理电流谐波,首先需要对其进行准确的分析。
常见的分析方法包括傅里叶变换、快速傅里叶变换(FFT)等。
傅里叶变换能够将时域中的电流信号转换为频域信号,从而清晰地展示出各次谐波的频率和幅值。
电力系统谐波基本分析方法抑制方法

电力系统谐波基本分析方法抑制方法電力系統諧波----基本原理、分析方法、抑制方法【摘要】变频器在工业生产中无可比拟的优越性,使越来越多的系统和装置采用变频器驱动方案,而且采用变频器驱动电动机系统因其节能效果明显,调节方便维护简单,网络化等优点,而被越来越多应用,但它非线性,冲击性用电工作方式,带来干扰问题亦倍受关注。
一台变频器来讲,它输入端和输出端都会产生高次谐波,输入端谐波会输入电源线对公用电网产生影响。
本文从变频器产生的谐波原理、谐波测试分析方法,谐波的抑制方法方面进行探讨。
【关键词】电力系统,变频器,谐波分析,谐波抑制。
【引言】谐波存在于电力系统已经很多年了,但是,近年来,随着技术的发展成熟,越来越多的设备系统为提高可靠性和效率广泛采用电力电子变频器,而且电力公司为降低设备所需的额定值以及线路损耗和电压降落,强制要求电力用户提高其自身的功率因数,而电力用户及工厂端改善功率因数的方法是使用功率因数补偿器—电容模组,这两种情况的出现,使得电力系统的谐波问题变得更加严重。
电力用户和工厂端普遍使用的变速传动和电力电子设备是产生这一现象的根源,而这些设备与功率因数校正电容模组之间的相互作用导致了电压和电流的放大效应;半导体电子工业的迅猛发展也导致了大批精密设备的诞生,与过去粗笨的设备相比,这些设备对电力公司供给的电能质量更加敏感,但同时也导致交流电流和电压稳态波形的畸变。
而为了得到可靠清洁的电力能源,人们必须面对电流和电压畸变的问题,而电流和电压的畸变的主要形式是谐波畸变。
【正文】1、变频器谐波产生从结构来看,变频器可分为间接变频和直接变频两大类。
间接变频将工频电流整流器变成直流,然后再由逆变器将直流变换成可控频率交流。
直接变频器则将工频交流变换成可控频率交流,没有中间直流环节。
它每相都是一个两组晶闸管整流装置反并联可逆线路。
正反两组按一定周期相互切换,负荷上就获了交变输出电压,幅值决定于各整流装置控制角,频率决定于两组整流装置切换频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王 世 刚
( 深圳供 电局 , 东 深圳 5 8 0 ) 广 10 0
摘 要 : 波是 电力 系统 的一 大公 害。文 章介 绍 了谐波 的相 关定 义、谐 波 的产 生以及 谐波 所 带来 的危 害 ,对谐 谐 波的检 测 方法进 行 了分析 ,并结 合具体 的 案例重 点介 绍 了谐 波抑 制的 方法 。 关键 词 : 电力 系统 ;谐波 分析 ; 谐波抑 制 中图 分类 号 : M7 4 T 1 文献 标识 码 : A 文章 编号 : 0 9 27 2 1 ) 9 02 - 2 10 - 34( 0 1 1- 14 0
离正弦 电流。 ( )非线性负载 ,如各种变流器、整流 2
设 备 、P M 频 器 、交 直 流 换流 设 备等 电力 电子设 备 。 W变 ( ) 非线 性 设备 的谐 波 源 ,如 交 流 电 弧炉 、 日光 灯 、 3
准对公用 电网中各个等级 的电压 的限用值 、电流 的允 许 值 等 都 做 了相 应 的规 定 , 并 以 附录 的形 式 给 出 了测
量 谐 波 的方 法 和 数 据 处 理 及 测 量 仪 器 都 作 了相 应 的规 定 。这 个 规 定 给 我 国相 关 人 员进 行 谐 波 检 测 分 析 、谐
铁磁谐振设备和变压器等。
波污染 的抑制提供 了理论依据和大致思路 。
二 、谐 波 的危 害
在 供 电系 统 中 ,供 电主要 是通 过 正 弦波 的方 式 ,这 样可 以给 电力 系统 的分 析和 设计 带 来很 大便 利 ,还 可 以 最佳 地运 作 相应 的 系统 和设 备 ,但 是在 这里 面却 常 常有 谐波 的存在 ,造 成 电力 系统 中 电压 和 电流 的波形 发 生畸 变 。谐波 产 生的危 害主 要表 现在 以下两个 方面 : 1 线 路 的稳 固 和 安全 运 行 受 到 影 响 。 例如 , . 在 供 电系 统 中 ,谐 波 会 造 成 电磁 式 、感 应 式 和 晶 体 管 等 继 电 器 产 生 误 、 拒 动 。 谐 波 会 造 成 输 电 线
14 2 o 中 新 术 阁高 蛙 21. 0 o 1 7
目前,谐波检测和分析 的方法主要有 : ( )带阻 1 滤波法 。它是 设计一个低 阻滤波器 ,对基波 分量进行 过 滤 ,最 终获 取 总 的谐 波 电 流量 。但 是这 种 方法 一 般 精度低 ,很少采用 。 ( )带通选频和F T 2 F 变换法。其 采用 多个 窄带 滤波器进行 带通选频 ,逐个 分出谐 波分 量 ,再利用F T F 变换检测谐波。 ( )小波变换等。 3
质量。
得 电力系统污染 问题也越来越严重 。而谐波降低 电能 的 生 产 、 传 输 和 利 用 的 效 率 、 降低 系 统 容 量 、加 速
设 备 绝 缘 老 化 甚 至 损 坏 设 备 、危 害 生 产 的 安 全 与 稳 定 等 ,成 为 最 直 接 、最 巨大 的 电力 污 染 之 一 ,而 且 谐 波
2 .直 接影 响 人 们 的 生活 。例 如 ,谐 波 会 导 致 继 电 保 护 和 自动 装 置 的误 动 作 , 并会 使 电气 测 量 仪表 计 量 不 准 确 。谐 波 可 能会 造 成 电量 的计 算方 面 存 在 误 差 ,
还会干扰通信和 电子设备等 。这使得对谐波 的分析和
表 面 的 磁 感 应 强 度 分 布 偏 离 正 弦 波 ,所 产 生 的 电流 偏
于谐波相 关工作 的研 究大致 起源于 2 世 纪8 年 代 。 0 O
我 国 国家 技 术 监 督 局 于 9 年 颁 布 了 国家 标 准 《 能质 3 电 量— — 公 用 电网 谐 波 》 ( B T 4 4 — 9 3 。该 标 G / 1 5 9 1 9 )
实 的主 要 来源 ,是 当非线 性 负 荷 被 施 加 以正 弦基 波 电压 时 , 由于 施 加 的 电压 波 形 与
设备所 吸收的 电流不一样 因而电压、电流就会 发生 畸变 现 象 , 同 时 因 为 负荷 和 电 网 是连 在 一起 的 , 因 此
抑 制 引起 了人们 的广泛 关注 和 高度 重视 。
一
由于谐波 的存在 ,使相应 的用户 因向系统送 谐波 功率 而 少计 量,而 有些用 户因用 了无用 的谐波 功率而多付 费 。谐 波 产 生 的 电流 会 干 扰 通 话 的质 量 , 引起 电 话 的 误响等 ,影响人们生活的质 量 。谐 波对造 成那些敏感 的用 电设 备不稳 定地 工作 ,从 而减 低 了产 品的合 格 率.严重地甚至会导致生产大批量地报废产 品。
近些年来,随着电子 电力等高新技术的大力发展 ,
非 线 性 负 荷 与 非 线 性 电力 电子 变 换 器 的广 泛 应 用 ,使
路 、变 压器 、 电动机和 发 电机等 设备 过热 和增 大它 们 的噪 声 ,降低 设备 工作 的效 率和 使用 率 。谐波还 会 损坏 电 网设备 和 电容器 等 。谐 波 严重影 响 电 网的
谐 波 电流 会 流进 电网里 面 , 电网的 质量 受 到影 响 。
三 、谐 波的分 析
由于谐波 导致的各种各样 的事故和故 障的几率一 直在升高 ,谐波 已成为 电力系统的一大公害 。我 国对
电力系统中的谐波源主要有 以下几类 : ( )电源 1 自身产 生的谐波 。因为发 电机制造的 问题 ,使得 电枢
因此 ,在谐 波 发生 前对 其 进行 分析 和 抑制 ,具有 重
大 的现 实意 义 。
、
谐 波 的 相 关 概 述
谐波 是指 电流 中所含 有 的频 率 为基 波 的整 数倍 的 电
量 ,一 般 来 说 是 指 对 周 期 性 的非 正 弦 电量 进 行 傅 里 叶
级数分解 ,其余大于基波频率 的电流产生 的电量 ,其