热电材料研究进展

合集下载

高温热电材料的制备与性能研究

高温热电材料的制备与性能研究

高温热电材料的制备与性能研究热电材料是一种特殊的功能材料,可以实现热能转化为电能或者电能转化为热能。

随着现代科技的发展,对高效能源利用的需求不断增加,高温热电材料的研究变得尤为重要。

本文将探讨高温热电材料的制备方法和性能研究进展。

一、高温热电材料的制备方法目前,制备高温热电材料的方法主要包括传统固相反应法、高温固相烧结法、溶胶-凝胶法、化学气相沉积法和物理热蒸发法等。

传统固相反应法是最基础也是最常用的一种制备方法,通过混合适量的反应物并在高温下进行反应,制得热电材料。

这种方法制备的材料质量较高,但工艺复杂,需要高温环境,生产成本较高。

高温固相烧结法是在传统固相反应法的基础上发展的一种制备方法,通过一系列的高温烧结处理得到热电材料。

烧结过程中,材料微观结构发生改变,晶粒尺寸增大,形成多孔结构,提高了材料的电导率和热导率。

溶胶-凝胶法是通过溶胶的形成和凝胶化反应制备材料,具有低温制备、陶瓷纤维和薄膜材料制备的优势。

但这种方法的难点在于控制凝胶化和烧结过程,以防止材料结构变化和晶粒长大。

化学气相沉积法是利用气相反应将粉末沉积在衬底上形成薄膜,具有制备薄膜材料的优势。

针对高温热电材料,这种方法可以实现薄膜的高温稳定性和热电性能的优化。

物理热蒸发法是将材料蒸发并沉积到衬底上形成薄膜,也是制备高温热电材料薄膜的一种方法。

这种方法具有较高的控制性,可以得到厚度均匀的薄膜。

二、高温热电材料的性能研究进展高温热电材料的性能研究主要包括电导率、热导率、热电力和功率因子等方面。

电导率是衡量材料导电性能的指标,高温热电材料要求具有较高的电导率。

研究人员通过控制材料的晶格结构、微观组分和掺杂等手段,改善材料的导电性能。

热导率是衡量材料导热性能的指标,高温热电材料需要具有较低的热导率。

通过减小材料的晶粒尺寸、掺杂或者调整材料的晶格结构,可以有效地降低材料的热导率。

热电力是衡量材料将热能转化为电能的能力,高温热电材料需要具有较高的热电力。

热电材料的热电性能研究与应用

热电材料的热电性能研究与应用

热电材料的热电性能研究与应用随着科技的不断进步,热电材料作为一种新型新兴材料,开始被广泛研究和应用。

热电材料的热电性能是热电材料最重要的性能指标之一,对于热电材料的研究和应用具有非常重要的意义。

本文将围绕热电材料的热电性能展开论述,主要内容包括热电材料的基础知识、热电材料的分类、热电材料的热电性能及其测试方法、热电材料的应用研究进展和未来发展趋势。

一、热电材料的基础知识所谓热电效应,是指在两个不同材料之间,当其中一种材料处在温差场中,就会产生电压,这种现象就是热电效应。

热电材料是一类具备热电效应的材料,其中最常见的是热电元件。

热电元件是将两种不同材料连接在一起,形成一个电路的元件。

热电材料的应用领域很广泛,包括热能转换、温度检测、温度控制等方面。

二、热电材料的分类根据热电材料的性质、成分和应用,可以将其分为多种不同的类型。

其中最常见的有:1. 半导体热电材料:半导体热电材料是目前最常见的一种热电材料。

这种材料的基本结构是一个p型半导体和一个n型半导体相连,两个半导体的接触面就是电极。

半导体热电材料的工作原理是在温差条件下,由于p型半导体和n型半导体结构不同,会出现电子在两个半导体之间的漂移现象,进而产生热电效应。

2. 金属热电材料:金属热电材料是指由金属和合金组成的热电材料。

这种材料的热电效应主要是由于金属中的自由电子和热运动产生的电荷移动引起的。

金属热电材料的优点是工作温度高、热电性能优越、稳定性好等。

3. 聚合物热电材料:聚合物热电材料是近年来新兴的一种热电材料。

这种材料的优点是柔性好、制备过程简单、成本低等。

聚合物热电材料常用于温度监测、人体温度检测等领域。

三、热电材料的热电性能及其测试方法热电材料的热电性能是热电材料的重要指标之一,也是评价热电材料优劣的关键。

热电材料的热电性能指标主要包括热电势、热电伏特系数、热电导率和热电功率因子等。

热电材料的热电性能与材料的类型、成分、结构等因素密切相关。

热电材料的研究进展论文

热电材料的研究进展论文

热电材料的研究进展论文热电材料的研究进展张燃郭睿曹达友摘要:随着能源危机和环境污染的日益严重~热电材料引起了人民越来越多的重视。

本文叙述了热电材料的优点~介绍了几种热电材料的研究概况。

关键词:热电材料,研究进展,热电效应1. 前言由于在能量转化和固态制冷方面具有潜在的应用前景~热电材料在过去的十年间被广泛地研究[1—6]。

热电材料是一种通过其热电效应实现热能和电能之间相互转换的功能材料。

利用热电效应的热电转换装置已成功应用于许多领域~而这种成功应用只有建立在具有良好热电性能材料的基础上。

热电材料的热电转换2效率通常用无量纲热电优值ZT来表征~其定义式为:ZT=ST/ρλ=PFT/λ~式中S 是热电势~也叫Seebeck系数~T是绝对温度~ρ是电阻率~λ是热导率~PF为功率因子。

从式中可以看出~材料要有高的热电转换效率~这种材料应该具有高的ZT值~也就是要具有高的热电势~低的电阻率和低的热导率。

在理论上~ZT值并没有上限。

但是对于同一种材料而言~S、ρ和λ这三个参数并不是互相独立的而是相互关联制约的~它们均是载流子浓度的函数~这也就是说一般情况下它们不能同时被改善。

2. 热电材料研究概况随着能源危机和环境污染的日益严重~热电材料引起了人民越来越多的重视。

近半个世纪以来~人们对热电材料进行了广泛深入的探讨~开发出很多种类的热电材料。

现在比较成熟的热电材料有BiTe~PbTe~SiGe等体系。

近十几23年来~人们又不断发现一些新的材料体系。

2.1 BiTe基热电材料 23BiTe及其固溶体是研究最早也是最成熟的热电材料~目前大多数电制冷元23件都是采用这类材料。

BiTe的Seebeck系数大而热导率较低~其室温热电优值23Z,1~曾经被公认为是最好的温热电材料[7,8]。

自60年代至今~ZT=1一直被人们看作热电材料的性能极限~保持了40年之久。

直到最近几年~几种新型热电材料出现之后~这一极限才被突破。

电热材料和热电材料的研究现状与发展

电热材料和热电材料的研究现状与发展

专业:金属材料工程学号:1040602209姓名:郝小虎电热材料和热电材料的研究现状与发展一热电材料的研究现状与发展1传统热电材料的研究现状从实用的角度来看,只有那些无量纲优值接近1的材料才被视为热电材料。

目前已被广泛应用的主要有3种:适用于普冷温区制冷的BizTea类材料,适用于中温区温差发电的PbTe类材料,适用于高温区温差发电的SiGe合金。

1.1Bi-Te系列BiZTea化学稳定性较好,是目前ZT值最高的半导体热电体材料。

一般而言,Pb,Cd,Sn等杂质的掺杂可形成P型材料,而过剩的Te或掺人I,Br,Al,Se,Li等元素以及卤化物掩I,CuI,CuBr,BiI3,SbI3则使材料成为n型。

在室温下,P型BizTea晶体的Seebeck系数。

最大值约为260pV/K,n型BitTea晶体的a值随电导率的增加而降低,并达到极小值-270t,V/K161,Bi2Te。

材料具有多能谷结构,通常情况下,其能带形状随温度变化很小,但当载流子浓度很高时,等能面的形状将随载流子的浓度而发生变化。

室温下它的禁带宽度为0.13eV,并随温度的升高而减少。

1.2P1rTe系列PbTe的化学键属于金属键类型,具有NaCl型晶体结构,属面心立方点阵,其熔点较高(1095K),禁带宽度较大(约0.3eV),是化学稳定性较好的大分子量化合物。

通常被用作300-900K范围内的温差发电材料,其Seebeck系数的最大值处于600-800K范围内。

PbTe材料的热电优值的极大值随掺杂浓度的增高向高温区偏移。

PbTe的固溶体合金,如PbTe和PbSe形成的固溶体合金使热电性能有很大提高,这可能是由于合金中的晶格存在短程无序,增加了短波声子的散射,使晶格热导率明显下降,故使其低温区的优值增加。

但在高温区,其ZT值没有得到很好的提高,这是由于形成PbTe-PbSe合金后,材料的禁带明显变窄,导致少数载流子的影响增加,结果没能引起高温区ZT值的提高[71。

热电材料的研究现状及发展趋势.doc

热电材料的研究现状及发展趋势.doc

热电材料的研究现状及发展趋势摘要热电材料能够直接将电能和热能进行互相转化。

由它制成的温差发电器不需要使用任何传动部件,工作时无噪音、无排弃物;和太阳能、风能、水能等二次能源的应用一样,对环境没有污染,是一种性能优越,具有广泛应用前景的环境友好型材料。

本文系统阐述了传统热电材料和新型热电材料的研究现状,介绍了各系列热电材料的热电性能及适用范围等,指明了英今后的发展方向。

关键词热电材料,温差发电,温差发电机,Seebeck系数,掺杂1引言在以原油价格暴涨为标志的“能源危机”之后,世界上又相继出现以臭氧层破坏和温室气体效应为首的“地球危机”和“全球变暖危机”。

各国科学家都在致力于寻求高效、无污染的新的能量转化利用方式,以达到合理有效利用工农业余热及废热、汽车废气、地热、太阳能以及海洋温差等能量的目的[1〜3]。

于是,从上个世纪九十年代以来,能源转换材料(热电材料)的研究成为材料科学的一个研究热点。

热电材料又叫温差电材料,具有交叉耦合的热电输送性质;是一类具有热效应和电效应相互转换作用的新型功能材料,利用热电材料这种性质,可将热能与电能进行直接相互转化[4〜6]。

用不同组成的N型和P型半导体,通过电气连接可组成温差发电器件和半导体制冷装置。

与传统发电机和制冷设备相比,半导体温差发电器和制冷器具有结构简单、不需要使用传动部件、工作时无噪音、无排弃物,和太阳能、风能、水能等二次能源的应用一样,对环境没有污染,并且这种材料性能可靠,使用寿命长, 是一种具有广泛应用前景的环境友好材料[7〜10] o2热电材料的理论基础19世纪德国科学家Thomas Seebeck观察到,当两种不同的金属构成一闭合回路,若在两接合点存在有温度差时,则回路中将产生电流,此种效应被命名为Sccbeck Effect,这也成为了温差发电技术的基础。

2. 1热电材料的三个效应热电材料的研究是一个古老的话题,早在1822-1823年,塞贝克(Seebeck)就曾在《普鲁士科学院报》屮描述了一个当时他这样断定的现象:在彼此接合的不同导体中,由于温度差的影响,就会出现自由磁子。

热电转换材料及其器件的研究进展

热电转换材料及其器件的研究进展

热电转换材料及其器件的研究进展近年来,随着能源问题的日益严峻,热电转换技术备受关注,尤其是热电转换材料及其器件。

热电转换器件是一种能将热能转换成电能或反转的器件,其具有良好的环保性能,无需额外的燃料消耗,被广泛应用于温度测量、热控制和能量回收等领域。

而热电转换材料则是组成热电转换器件的重要组成部分,其主要功能是将热能转化为电能或反转。

目前,热电转换材料的研究进展非常迅速,造就了许多新型热电材料,其中包括热电发电材料、热电制冷材料、复合热电材料等。

1. 热电发电材料热电发电材料的核心是热电效应,通过材料内的电子和热子的运动相互耦合来产生电荷载流子,从而将热能转化为电能。

当前,常温热电发电材料的发展相对成熟,已经经历了几十年的发展历程。

目前,常用的热电材料主要包括铋基化合物、硫化物、氧化物、硒化物和磷化物等。

这些材料均具有良好的热电性能,但是其转换效率、稳定性和成本等方面还有待提高。

此外,新型热电材料——拓扑绝缘体被广泛研究。

拓扑绝缘体的电导率仅存在于材料表面,而材料内部具有绝缘性,可有效地阻止漏电现象的发生。

同时,拓扑绝缘体还具有高的热电效应系数,因此在热电转换领域具有广阔的发展前景。

2. 热电制冷材料热电制冷材料是将电能转化为热能,从而达到制冷的目的。

热电制冷材料的研究始于20世纪60年代,其核心是材料的热电效应,常用材料主要包括硒化铋和硫化铅等。

但是,传统的热电制冷材料存在制冷效果不明显、耐久性差等问题,无法实现大规模商业化应用。

因此,目前热电制冷材料的研究主要集中在提高效率和稳定性方面。

其中,一些新型材料,如FeSb2和CoSb3等,具有良好的热电性能,被认为是热电制冷材料的候选材料之一。

3. 复合热电材料复合热电材料是由两个或多个热电材料复合而成,其具有良好的热电性能和热稳定性,是热电转换领域的新热点。

复合热电材料的研究始于20世纪90年代,其主要特点是将多个材料复合在一起,形成新的结构,从而提高热电性能。

热电制冷材料的研究进展与应用

热电制冷材料的研究进展与应用

热电制冷材料的研究进展与应用随着全球气温不断上升,人类对于环境友好型制冷系统的需求越来越迫切。

采用Peltier效应制冷技术的热电制冷器具有低噪音、高效率、易于控制等优点,成为目前最受关注的新型制冷技术之一。

因此,热电制冷材料的研究和应用一直是热点和难点之一。

本文将重点介绍热电制冷材料的研究进展和应用。

一、热电制冷材料研究进展1. 单晶热电材料单晶热电材料是应用最广泛的一种热电材料。

它的热电性能主要取决于其离子晶体结构的电子运动能力。

目前,Bi2Te3和PbTe等材料是最主流的单晶热电材料。

Bi2Te3具有较高的热电性能,耐腐蚀性好,但其制备成本高,半导体材料纯度和结晶质量要求高;PbTe具有较高的热电性能,易于生产,但其稳定性差,并且受到国际环保法律法规的限制。

2. 纳米热电材料与传统单晶热电材料相比,纳米热电材料具有更好的热电性能。

其中,纳米粒子尺寸的改变是影响热电性能的关键因素之一。

纳米材料具有更大的比表面积和更多的电子界面,因此可以增加载流子数量和提高电子迁移率,从而提高热电效率。

研究表明,在一定的纳米尺寸范围内,纳米粒子的尺寸越小,其热电性能越优秀。

3. 多功能复合材料多功能复合材料是由多种不同材料复合而成的一种材料。

与单晶热电材料相比,多功能复合材料的热电性能更优秀,应用更广泛。

例如,FeSb2/CuSb2复合材料具有优异的热电性能和机械性能,具有很高的应用潜力。

二、热电制冷材料的应用1. 热电制冷器热电制冷器是一种新型的制冷器,具有小体积、低噪音、高能效等特点。

热电制冷器的工作原理是利用Peltier效应,将热电材料加热一侧冷却一侧,从而实现制冷。

这种制冷器目前广泛应用于车载冷藏、光电子器件、計算機制冷装置和航空航天等领域。

2. 热电发电热电发电是将废热转化为电能的一种新型发电方式。

采用热电发电技术可以将冶金、工业制造、石化等领域产生的大量废热转换成电能,从而提高能源利用率。

目前,热电发电技术已经应用于太阳能光伏、风力发电、空气能热泵等领域。

热电材料的研究现状及展望

热电材料的研究现状及展望

热电材料的研究现状及展望热电材料的研究现状及展望热电材料是一类具有特殊性质的材料,可以将热能转化为电能,或者将电能转化为热能。

这种材料不仅在能源领域有着广泛的应用,也在环境保护和电子器件等领域起着重要作用。

热电材料的研究与发展一直是科学家们的重要任务之一。

本文将对热电材料的研究现状及其未来的展望进行探讨。

1. 热电材料的定义与原理介绍1.1 什么是热电材料热电材料是指能够实现热电效应的材料,即通过热梯度产生电压差或通过电压差产生热梯度的材料。

热电效应是指材料在温度差异作用下出现的电与热之间的相互转化现象。

1.2 热电效应的原理热电效应源于材料内部的电荷载流子在温度差异作用下发生迁移。

具体来说,在温度梯度作用下,电荷载流子会从高温区域向低温区域迁移,产生电势差;而在电场作用下,电荷载流子会发生迁移,产生热流。

这样,热电材料就可以实现热能到电能或电能到热能的转化。

2. 热电材料的研究现状目前,热电材料的研究主要集中在以下几个方面:2.1 热电材料的性能优化热电材料的性能优化是热电材料研究的重要方向之一。

研究人员通过合理设计材料结构、调节组分比例以及改变材料微观结构等手段,不断提高热电材料的热电性能,包括提高热电转化效率和热电耦合系数等。

2.2 可持续能源利用随着全球对能源的需求不断增长,人们对可持续能源的需求也越来越迫切。

热电材料作为一种可实现热能与电能转换的材料,具有广阔的应用前景。

研究人员正在探索利用热电材料来转化废热、太阳能、生物热等可再生能源为电能的方法,以实现能源的有效利用。

2.3 热电材料的多功能应用热电材料不仅可以用于能源领域,还可以在其他领域发挥重要作用。

在环境保护领域,热电材料可以用于制备具有抗菌、防污染等特性的材料;在电子器件领域,热电材料可以用于制备高效的热电能量转换器件等。

3. 热电材料研究的展望针对热电材料的研究,未来有以下几个发展方向:3.1 纳米材料的应用纳米材料具有较大的比表面积和较短的电子或热子传输路径,因此很适合用来制备高性能的热电材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究重点—如何优化ZT值?
影响因素
化学组成
显微结构
优化途径
通过成分设计与调控,优化载流 子浓度,并使ZT峰值与工作温度 相匹配
通过调节颗粒的尺度、形貌、定 向分布,提高载流子迁移率并增 强声子散射,从而提高σ/κ
主要研究思路
< 50nm
低维结构
晶内第二相 晶界第二相
纳米复合结构
三维笼状 2.0
二维层状
特殊原子基团
特殊结构
湿化学法
高能球磨
原位析出
1.5
50-60%
1.4-1.6
ZT
1.0
0.8-1.0
块体材料中引入纳米结构
0.5
性能显著提升!
0.0
conventional
nanostructure
Science (2004); Science (2008); Adv. Mater. (2009-2011); Chem. Mater. (2009-2011); Nano Letter (2009-2011)
PbTe体系适用于 500~900 K的中 温,热电优值最 大可达0.8,可用 于温差发电。
Bi2Te3/Sb2Te3适用于 低温,在室温附近热 电优值达到1(相应的 热电转换效率约为7~8 %),被公认为是最 好的热电材料,目前 大多数热电制冷元件 都是使用这类材料。
热电材料研究和应用的瓶颈
热电优值
热电材料研究进展
研 究 生:孙 言 指导老师:蒋 俊
2011-10-27
报告内容
现实意义 基本概念 研究现状 预期目标
Ⅰ.热电材料研究的现实意义
1.能源短缺、环境污染、温室效应
2. 应用 (1):热电制冷
针对半导体热电制冷器件,在我市慈溪、余姚等地区有 很大的产业集群,如饮水机、小冰箱、酒柜等
Heat Source +
N-type element P-type element
Heat Sink
热电器件模型
Cerami
ーc plate
热电器件实物图
热电性能评价
优异热电性能: ➢ Seebeck系数大 ➢ 电导率高 ➢ 热导率低
Ⅲ.热电材料的研究现状
热电材料的研究进展
ZT
Seebeck现象
目标 ZT值: ≥2.0
效率h :≥20%
日本: 通产省和科学技术振兴机构(JST)
—— 热电材料与工业余热发电技术
—— 高效热电材料与太阳能热电转换技术
欧盟:从第六框架计划(FP6)开始,将热电材料列入“可再生能源技术”
予以重点支持
ZT 值:
≥2.0
转换效率h : ≥ 20%
热电材料科学技术 重大突破
Dr. Jeffrey Snyder a Faculty at
Caltech.
国内研究
陈立东教授 上海硅酸盐研究所
唐新峰教授 武汉理工大学
赵新兵教授 浙江大学
Ⅳ.我们的研究
Bi-Te基热电材料
Bi2Te3的优势
重金属,分子量大,seebeck系数较大 层状结构,各向异性,电导与热导比值相对较大 层状结构,层间有利于实施掺杂改性
利用燃烧热、地热、体 表温差等热源,为野外 作业、偏远山区、小型 电器、植入式医疗器械 等提供电能
Ⅱ.热电材料及热电效应
1. 什么是热电材料
热电材料(也称温差电材料, thermoelectric materials)是一种利 用固体内部载流子运动,实现热 能和电能直接相互转换的功能材 料。
☆ 什么是热电效应
热电效应是电流引起的可逆热 效应和温差引起的电效应的总称, 包括Seebeck效应、Peltier效应和 Thomson效应。
热电器件工作原理
热电发电
Heat Source PN
热电制冷
Active Cooling PN
Heat Sink
Heat Rejection
I
(a) Power Generation Mode
• Venkatasubramanian, et,al. Nature (London) 413, 597 (2001).
学术上受到前所未有的关注
高效热电材料与器件的研发既是相关产业发展需求, 也是热电材料科学技术自身发展的重大需求
政府的关注和支持
美国:未来5年研究开发计划 能源部(DOE ) 宇航局(NASA ) 国防部(DOD)
2.0
主要是金属
1.0
0.5 1834
Ioffe提出半导体 热电理论
Bi2Te3、PbTe SiGe
AgPb18SbTe20 NaCoO2、
Zn4Sb 方钴矿
量子点、
量子线、 超晶格等
低维热电材料
1821 1855 1949
1990 1997
2004
(年)
• Chen G, et al. International Materials Reviews, 2003, 48(1):1-22.
Equipments in NIMTE
ZEM-3
PPMS-9
Sealing
Melting Furnace
ZM Furnace
HP Furnace
敬请指导!
Seebeck效应
I
(b) Cooling Mode
Peltier效应
Cronin B V. Semiconductors are cool. Nature. 2001, 413: 577~578
绿色能源: 1. 体积小 2. 重量轻 3. 结构简单 4. 坚固耐用 5. 无需运动部件 6. 无磨损 7. 无噪音 8. 无污染
α:seebeck系数 σ:电导率(与载流子浓度和迁移率有关) κ:热导率(包括声子热导和电子热导)
随着载流子浓度增加, σ和κ均增加,α却减小
合适的载流子浓度, 尽量降低热导率
改善热电性能的途径
σ = neμ μ= eτ/ m*
k= ke+kL
增强声子散射, 降低晶格热导率
掺杂:改变费米能级的位置,优化电输运性能; 点缺陷(原子质量波动),增强声子散射
应用(2):热电发电
美国、德国、日本、
韩国等汽车公司 ( GM、 BMW、 HONDA、大众、现 代等)正在开展相关 研发工作,可节省油 耗5%光光伏太阳能辅助系统
利用高聚光太阳能在基板上产生的热能发电, 提高转换率;国家“973”计划、日本能源开发 机构NEDO、美国DOE等均有所部署
相关新 能 源 技 术
主要的材料体系
金属 硅化 复杂 物 氧化 物 Skutte rudite
SiGe 体系
PbTe 体系 Bi2Te3 /Sb2Te 3体系
高温 中温
低温
SiGe体系多用于900 K以上,这 类具有金刚石结构的材料的晶 格热导率很高,因而热电优值 很低,目前只是在卫星和空间 站的温差发电系统比较常用。
低维材料:量子限域效应(超晶格等) 晶界散射:引入纳米结构(球磨、水热等)
国外研究 Professors of MIT
Dr Gang Chen
Dr Mildred Dresselhaus
国外研究
Mercouri Kanatzidis From Northwest University
Dr Z. F. Ren professor of physics at Boston College
相关文档
最新文档