热传导方程向后差分格式的MATLAB程序
一维热传导MATLAB模拟

昆明学院2015届毕业设计(论文)设计(论文)题目一维热传导问题的数值解法及其MATLAB模拟子课题题目无姓名伍有超学号************所属系物理科学与技术系专业年级2011级物理学2班指导教师王荣丽2015 年 5 月摘要本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。
从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。
通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。
关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟AbstractIn this paper, the method of variable separation and finite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems.Keywords: One-dimensional heat conduction; method of variable separation;finite difference method; numerical method; MATLAB simulation目录第一章绪论 (1)1.1热传导的概念 (1)1.2热质的运动和传递 (1)第二章一维热传导问题的两种数值解法 (3)2.1一维热传导问题的初值问题 (3)2.2一维热传导问题的分离变量法 (4)2.3一维热传导问题的有限差分法 (6)第三章一维有界杆热传导问题的MATLAB模拟 (9)3.1一维有界杆热传导问题 (9)3.2分离变量法的MATLAB模拟 (9)3.3有限差分法的MATLAB模拟 (12)第四章总结与展望 (18)参考文献 (19)谢辞 (20)第一章绪论1.1热传导的概念由于温度分布不均匀,热量从介质中温度高的地方流向温度低的地方称为热传导。
导热方程求解matlab

使用差分方法求解下面的热传导方程2(,)4(,)0100.2t xx T x t T x t x t =<<<<初值条件:2(,0)44T x x x =-边值条件:(0,)0(1,)0T t T t ==使用差分公式1,,1,222(,)2(,)(,)2(,)()i j i j i j i j i j i j xx i j T x h t T x t T x h t T T T T x t O h h h -+--++-+=+≈,1,(,)(,)(,)()i j i j i j i jt i j T x t k T x t T T T x t O k k k ++--=+≈上面两式带入原热传导方程,1,1,,1,22i j i ji j i j i jT T T T T k h +-+--+= 令224k r h=,化简上式的 ,1,1,1,(12)()i j i j i j i j T r T r T T +-+=-++ix jt j编程MATLAB 程序,运行结果如下x t Tfunction mypdesolutionc=1;xspan=[0 1];tspan=[0 0.2];ngrid=[100 10];f=@(x)4*x-4*x.^2;g1=@(t)0;g2=@(t)0;[T,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid);[x,t]=meshgrid(x,t);mesh(x,t,T);xlabel('x')ylabel('t')zlabel('T')function [U,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid)% 热传导方程:% Ut(x,t)=c^2*Uxx(x,t) a<x<b ts<t<tf% 初值条件:% u(x,0)=f(x)% 边值条件:% u(a,t)=g1(t)% u(b,t)=g2(t)%% 参数说明% c:方程中的系数% f:初值条件% g1,g2:边值条件% xspan=[a,b]:x的取值范围% tspan=[ts,tf]:t的取值范围% ngrid=[n,m]:网格数量,m为x网格点数量,n为t的网格点数量% U:方程的数值解% x,t:x和t的网格点n=ngrid(1);m=ngrid(2);h=range(xspan)/(m-1);x=linspace(xspan(1),xspan(2),m);k=range(tspan)/(n-1);t=linspace(tspan(1),tspan(2),n);r=c^2*k/h^2;if r>0.5error('为了保证算法的收敛,请增大步长h或减小步长k!')ends=1-2*r;U=zeros(ngrid);% 边界条件U(:,1)=g1(t);U(:,m)=g2(t);% 初值条件U(1,:)=f(x);% 差分计算for j=2:nfor i=2:m-1U(j,i)=s*U(j-1,i)+r*(U(j-1,i-1)+U(j-1,i+1));endend。
热传导模型方程matlab

热传导模型方程引言热传导模型方程是描述热传导过程的数学模型,它在物理学、工程学等领域中有着广泛的应用。
该方程可以用来求解物体内部的温度分布以及热量的传输过程。
本文将重点介绍热传导模型方程在Matlab中的实现方法及应用。
热传导模型方程热传导模型方程是一种偏微分方程,用于描述物体内部温度分布随时间的变化。
它的一般形式如下:∂u/∂t = κ∇²u其中,u是温度分布函数,t是时间,κ是热传导率,∇²是拉普拉斯算子。
离散化处理为了在计算机中求解热传导模型方程,我们需要对其进行离散化处理。
通常,我们将物体分成若干个小区域,每个小区域的温度可以看作是一个离散节点。
然后,我们利用数值差分方法将偏微分方程转化为差分方程。
最常用的数值差分方法是有限差分法,其中最简单的方法是二阶中心差分法。
二阶中心差分法二阶中心差分法是一种常用的数值差分方法,它能够较为准确地近似热传导模型方程。
该方法利用了节点的前后两个时间步长的温度值和空间步长的温度梯度。
具体来说,对于一个二维网格,节点(i, j)的二阶中心差分近似可以表示为:(∂u/∂t)(i, j) ≈ (u(i+1, j) - 2u(i, j) + u(i-1, j))/(Δx²) + (u(i, j+1) - 2u(i, j) + u(i, j-1))/(Δy²)其中,Δx和Δy分别是空间步长。
Matlab实现在Matlab中,我们可以通过编写代码来求解热传导模型方程。
下面是实现该方程的一个示例代码:% 定义初始条件和边界条件N = 50; % 网格节点数L = 1; % 系统尺寸T = 1; % 总时间dx = L/N;dt = dx^2/4;x = linspace(0, L, N+1);y = linspace(0, L, N+1);[X, Y] = meshgrid(x, y);u = sin(pi*X).*sin(pi*Y); % 初始温度分布% 迭代求解热传导模型方程for t = 0:dt:Tu_new = u + dt*(del2(u)/dx^2);u = u_new;end% 可视化温度分布surf(X, Y, u)xlabel('x')ylabel('y')zlabel('Temperature')在上面的代码中,我们首先定义了初始条件和边界条件,然后利用循环迭代的方式求解热传导模型方程。
一维热传导MATLAB模拟

一维热传导MATLAB模拟昆明学院2015届毕业设计(论文)设计(论文)题目一维热传导问题的数值解法及其MATLAB模拟子课题题目无姓名伍有超学号 2所属系物理科学与技术系专业年级 2011级物理学2班指导教师王荣丽2015 年 5 月摘要本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。
从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。
通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。
关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟AbstractIn this paper, the method of variable separation andfinite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems.Keywords: One-dimensional heat conduction; method of variableseparation; finite difference method; numerical2method; MATLAB simulation目录第一章绪论11.1热传导的概念......................................................... .. (1)1.2热质的运动和传递......................................................... (1)第二章一维热传导问题的两种数值解法32.1一维热传导问题的初值问题32.2一维热传导问题的分离变量法42.3一维热传导问题的有限差分法63第三章一维有界杆热传导问题的MATLAB模拟9 3.1一维有界杆热传导问题93.2分离变量法的MATLAB模拟93.3有限差分法的MATLAB模拟12第四章总结与展望18参考文献19谢辞204第一章绪论1.1热传导的概念由于温度分布不均匀,热量从介质中温度高的地方流向温度低的地方称为热传导。
一维导热方程有限差分法matlab实现

第五次作业(前三题写在作业纸上)一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const ,22T T t xα∂∂=∂∂ 1. 用Tylaor 展开法推导出FTCS 格式的差分方程2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。
3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。
4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。
(部分由网络搜索得到,添加,修改后得到。
)function rechuandaopde%以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值xspan=[0 1];%x 的取值范围tspan=[0 20000];%t 的取值范围ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的f=@(x)0;%初值g1=@(t)100;%边界条件一g2=@(t)100;%边界条件二[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数[x,t]=meshgrid(x,t);mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,Txlabel('x')ylabel('t')zlabel('T')T%输出温度矩阵dt=tspan(2)/ngrid(1);%t 步长h3000=3000/dt;h9000=9000/dt;h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:)T9000=T(h9000,:)T15000=T(h15000,:)%输出三个时间下的温度分布%不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面%稳定性讨论,傅里叶级数法dx=xspan(2)/ngrid(2);%x步长sta=4*a*dt/(dx^2)*(sin(pi/2))^2;if sta>0,sta<2fprintf('\n%s\n','有稳定性')elsefprintf('\n%s\n','没有稳定性')errorend%真实值计算[xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid);[xe,te]=meshgrid(xe,te);mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Texlabel('xe')ylabel('te')zlabel('Te')Te%输出温度矩阵%误差计算jmax=1/dx+1;%网格点数[rms]=wuchajisuan(T,Te,jmax)rms%输出误差function [rms]=wuchajisuan(T,Te,jmax)for j=1:jmaxrms=((T(j)-Te(j))^2/jmax)^(1/2)endfunction[Ue,xe,te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid)n=ngrid(1);%t份数m=ngrid(2);%x份数Ue=zeros(ngrid);xe=linspace(xspan(1),xspan(2),m);%画网格te=linspace(tspan(1),tspan(2),n);%画网格for j=2:nfor i=2:m-1for g=1:m-1Ue(j,i)=100-(400/(2*g-1)/pi)*sin((2*g-1)*pi*xe(j))*exp(-a*(2*g-1)^2*pi^2*te(i)) endendendfunction [U,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid)n=ngrid(1);%t份数m=ngrid(2);%x份数h=range(xspan)/(m-1);%x网格长度x=linspace(xspan(1),xspan(2),m);%画网格k=range(tspan)/(n-1); %t网格长度t=linspace(tspan(1),tspan(2),n);%画网格U=zeros(ngrid);U(:,1)=g1(t);%边界条件U(:,m)=g2(t);U(1,:)=f(x);%初值条件%差分计算for j=2:nfor i=2:m -1U(j,i)=(1-2*a*k/h^2)*U(j -1,i)+a*k/h^2*U(j -1,i -1)+a*k/h^2*U(j -1,i+1);endend5. 将温度随时间变化情况用曲线表示x t T6. 给出3000、9000、15000三个时刻的温度分布情况,对温度随时间变化规律做说明。
【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

第1章前言1.1问题背景在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。
诸如粒子扩散或神经细胞的动作电位。
也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。
热方程及其非线性的推广形式也被应用与影响分析。
在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。
虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。
自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。
科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。
而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。
解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。
为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。
1.2问题现状近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。
同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。
而且精度上更好。
目前,在欧美各国MATLAB的使用十分普及。
在大学的数学、工程和科学系科,MATLAB苏佳园:二维热传导方程有限差分法的MATLAB实现被用作许多课程的辅助教学手段,MATLAB也成为大学生们必不可少的计算工具,甚至是一项必须掌握的基本技能。
一维热传导方程数值解法及matlab实现分离变量法和有限差分法

一维热传导方程数值解法及matlab实现分离变量法和有限差分法一维热传导方程的Matlab解法:分离变量法和有限差分法。
问题描述:本实验旨在利用分离变量法和有限差分法解决热传导方程问题,并使用Matlab进行建模,构建图形,研究不同情况下采用何种方法从更深层次上理解热量分布与时间、空间分布关系。
实验原理:分离变量法:利用分离变量法,将热传导方程分解为两个方程,分别只包含变量x和变量t,然后将它们相乘并求和,得到一个无穷级数的解。
通过截取该级数的前n项,可以得到近似解。
有限差分法:利用有限差分法,将空间和时间分别离散化,将偏导数用差分代替,得到一个差分方程组。
通过迭代求解该方程组,可以得到近似解。
分离变量法实验:采用Matlab编写代码,利用分离变量法求解热传导方程。
首先设定x和t的范围,然后计算无穷级数的前n项,并将其绘制成三维图形。
代码如下:matlabx = 0:0.1*pi:pi;y = 0:0.04:1;x。
t] = meshgrid(x。
y);s = 0;m = length(j);for i = 1:ms = s + (200*(1-(-1)^i))/(i*pi)*(sin(i*x).*exp(-i^2*t));endsurf(x。
t。
s);xlabel('x')。
XXX('t')。
zlabel('T');title('分离变量法(无穷)');axis([0 pi 0 1 0 100]);得到的三维热传导图形如下:有限差分法实验:采用Matlab编写代码,利用有限差分法求解热传导方程。
首先初始化一个矩阵,用于存储时间t和变量x。
然后计算稳定性系数S,并根据边界条件和初始条件,迭代求解差分方程组,并将其绘制成三维图形。
代码如下:matlabu = zeros(10.25);s = (1/25)/(pi/10)^2;fprintf('稳定性系数S为:\n');disp(s);for i = 2:9u(i。
matlab传热计算程序

matlab传热计算程序
传热计算在工程学和科学领域中是一个重要的应用。
Matlab是一个功能强大的工程计算软件,可以用于传热计算。
在Matlab中,你可以使用各种方法来进行传热计算,比如有限元法、差分法、有限体积法等。
以下是一些常见的传热计算程序的示例:
1. 热传导方程求解,你可以编写一个Matlab程序来求解热传导方程,根据给定的边界条件和初始条件,使用差分法或有限元法来离散方程,并进行时间步进求解,得到温度场的分布。
2. 对流换热计算,对于流体内部的对流换热问题,你可以编写一个Matlab程序来求解Navier-Stokes方程和能量方程,结合有限体积法来进行流场和温度场的耦合求解。
3. 辐射换热计算,针对辐射换热问题,你可以编写一个Matlab程序来计算辐射传热,比如使用辐射传热方程和辐射传热模型,结合离散方法进行求解。
4. 传热系统优化,除了单一的传热计算,你还可以使用Matlab进行传热系统的优化设计,比如通过建立传热模型和耦合其
他工程模型,使用优化算法来寻找最优的传热系统设计参数。
总之,Matlab提供了丰富的工具和函数,可以用于传热计算的各个方面。
通过编写程序,你可以灵活地进行传热计算,并且可以根据具体的问题需求进行定制化的计算和分析。
希望这些信息对你有所帮助。