状态转移矩阵e_At_的一种新算法及其仿真计算_吴华英

状态转移矩阵e_At_的一种新算法及其仿真计算_吴华英
状态转移矩阵e_At_的一种新算法及其仿真计算_吴华英

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

矩阵数值算法

计算实习报告 一 实习目的 (1)了解矩阵特征值与相应特征向量求解的意义,理解幂法和反幂法的原理, 能编制此算法的程序,并能求解实际问题。 (2)通过对比非线性方程的迭代法,理解线性方程组迭代解法的原理,学会编 写Jacobi 迭代法程序,并能求解中小型非线性方程组。初始点对收敛性质及收 敛速度的影响。 (3)理解 QR 法计算矩阵特征值与特征向量的原理,能编制此算法的程序,并 用于实际问题的求解。 二 问题定义及题目分析 1. 分别用幂法和幂法加速技术求矩阵 2.5 2.5 3.00.50.0 5.0 2.0 2.00.50.5 4.0 2.52.5 2.5 5.0 3.5-?? ?- ?= ?-- ?--?? A 的主特征值和特征向量. 2. 对于实对称矩阵n n ?∈A R ,用Jacobi 方法编写其程序,并用所编程序求下列矩阵的全部 特征值. 1515 4 1141144114114?-?? ?-- ? ?- ?= ? ?- ?-- ? ?-??A 3. 对于实矩阵n n ?∈A R ,用QR 方法编写其程序,并用所编程序求下列矩阵的全部特征值: 111 21 113,4,5,62311111n n n n n n ? ???? ?????==+? ????? ??+??A 三 概要设计 (1) 幂法用于求按模最大的特征值及其对应的特征向量的一种数值算法,

它要求矩阵 A 的特征值有如下关系: 12n ...λλλ>≥≥ ,对于相应 的特征向量。其算法如下: Step 0:初始化数据0,, 1.A z k = Step 1:计算1k k y A z +=。 Step 2:令 k k m y ∞=。 Step 3:令 k k k z y m = ;如果1k k m m +≈或1k k z z +≈,则 goto Step 4;否则 , k = k + 1 ,goto Step 1。 Step 4:输出结果 算法说明与要求 输入参数为实数矩阵、初始向量、误差限与最大迭代次数。输出 参数为特征值及相对应的特征向量。注意初始向量不能为“0”向量。 (2) 迭代法的原理 如果能将方程 Ax =b 改写成等价形式:x=Bx+f 。如果B 满足:ρ(B )<1,则对于任意初始向量 x (0) ,由迭代 x ( k + 1) = Bx (k ) + f 产生的序列均收敛到方程组的精确解。迭代法中两种最有名的迭代法就是Jacobi 迭代法,它的迭代矩阵 B 为: 1()J D L U -=-+,1 f D b -= 其中,D 为系数矩阵 A 的对角元所组成对角矩阵,L 为系数矩阵 A 的对角元下方所有元素所组成的下三角矩阵,U 为系数矩阵 A 的对角元上方所有元素所组成的上三角矩阵。 算法如下: Step 0:初始化数据 00,,,,k A b x δ=和ε。 Step 1:计算D,L,U,J 或G, 得到迭代矩阵B. Step 2::1k k =+ 0x B x f * =+ 0x x = 如果0x x δ-<或()f x ε≤,goto Step 3?否则 goto Step 2。 Step 3:输出结果。 程序说明与要求

矩阵链算法

/************************ Matrix Chain Multiplication ***************************/ /************************ 作者:Hugo ***************************/ /************************ 最后修改日期:2015.09.10 ***************************/ /************************ 最后修改人:Hugo ***************************/ using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Text.RegularExpressions; using System.Collections; namespace Matrix { class Program { public static int nummulti = 0; static ArrayList list1 = new ArrayList();//定义计算式存储列表 static ArrayList listrow = new ArrayList();//定义矩阵行数存储列表 static ArrayList listcolumn = new ArrayList();//定义矩阵列数存储列表 static void Main(string[] args) { /****************************************************************************** *****************/ //从键盘上获取矩阵 int nummatrix = Int32.Parse(Console.ReadLine()); int countmat = 0; for (countmat = 0; countmat < nummatrix; countmat++) { string s = Console.ReadLine(); string[] str = s.Split(' ');//把输入的一行字符按空格拆分 listrow.Add(Int32.Parse(str[1]));//行数存储到矩阵行数存储列表 listcolumn.Add(Int32.Parse(str[2]));//列数存储到矩阵列数存储列表

ArcGIS土地利用转移矩阵

一、数据准备(图1) 准备两幅不同时相的土地利用现状图(shp格式),每幅图的属性表都要有一个表示土地利用类型的字段,并且要使用不同的名称加以区分,如Type1995,Type2000。土地利用类型名称必须统一,并且完整,如都使用“城镇用地”、“有林地”等。 二、数据融合(图2) 在ArcMap里分别打开两个时相的图层,打开ArcToolbox,选择Data Management Tools | Generalization | Dissolve工具。Input Feature选择要融合的图层,Output Feature Class选择输出结果存储的位置及名称,Dissolve Field(s)选择土地利用类型字段(如Type1995),然后勾选Creat multipart features选项,点击OK完成。重复此过程,对另一时相数据进行融合。此步骤使相同利用类型的记录融合为一个记录,以提高后面步骤的计算速度。

三、叠置分析(图3) 在ArcMap中打开两个时相融合后的数据,在ArcToolbox中选择Analysis Tools | Overlay | Intersect工具,Input Features选择两个时相的图层,Output Feature Class 选择叠加结果存储的位置及名称,其余选项可以忽略,单击【OK】完成。 四、计算面积并导出属性表(图4-6) 在ArcMap中打开叠加后的图层数据,在该图层上右键打开属性表,选择Option |

Add field… 新建一个字段,命名为NewArea。 在Editer工具条中选择Editer | Start Editing,然后在属性表中NewArea字段上单击右键选择Calculate Geometry… ,在打开的Calculate Geometry对话框中,Property选择Area,Units选择要使用的面积单位,单击【OK】完成图斑面积计算。依次选择Editer | Save Edits / End Editing保存和退出编辑状态。

求逆矩阵的方法

求逆矩阵的方法与矩阵的秩 一、矩阵的初等行变换 (由定理2.4给出的求逆矩阵的伴随矩阵法,要求计算矩阵A 的行列式A 值和它的伴随矩阵*A .当A 的阶数较高时,它的计算量是很大的,因此用伴随矩阵法求逆矩阵是不方便的.下面介绍利用矩阵初等行变换求逆矩阵的方法.在介绍这种方法之前,先给出矩阵初等行变换的定义.) 定义2.13 矩阵的初等行变换是指对矩阵进行下列三种变换: (1) 将矩阵中某两行对换位置; (2) 将某一行遍乘一个非零常数k ; (3) 将矩阵的某一行遍乘一个常数k 加至另一行. 并称(1)为对换变换,称(2)为倍乘变换,称(3)为倍加变换. 矩阵A 经过初等行变换后变为B ,用 A →B 表示,并称矩阵B 与A 是等价的. (下面我们把)第i 行和第j , ”;把第i 行遍乘k k ”;第j 行的k 倍加至第i 为“ + k ”. 例如,矩阵 A = ????? ?????321321321c c c b b b a a a ???? ? ?????321 3 21321 c c c a a a b b b ???? ??????32 1 321321c c c b b b a a a ???? ? ?????32 1321321 kc kc kc b b b a a a ???? ? ?????32 1 321321 c c c b b b a a a ??? ? ? ??? ??+++32 1 332 2113 21 c c c ka b ka b ka b a a a (关于初等矩阵内容请大家自己阅读教材) 二、运用初等行变换求逆矩阵 由定理2.7的推论“任何非奇异矩阵均能经过初等行变换化为单位阵”可知,对于任意一个n 阶可逆矩阵A ,经过一系列的初等行变换可以化为单位阵I ,那么用一系列同样的初等行变换作用到单位阵I 上,就可以把I 化成A -1.因此,我们得到用初等行变换求逆矩阵的方法:在矩阵A 的右边写上一个同阶的单位矩阵I ,构成一个n ?2n 矩阵 ( A , I ),用初等行变换将左半部分的A 化成单位矩阵I ,与此同时,右半部分的I 就被化成了1-A .即 ( A , I )初等行变换 ?→???( I , A -1 ) 例1 设矩阵 A = ???? ? ?????--23 2 311111 ③k ①,② ②+①k

状态转移矩阵判定条件小论文

摘要:状态转移矩阵是现代控制理论的重要概念,在线性控制系统的运动分析中起着重要的作用。分别对连续时间线性时变系统、离散时间线性定常系统以及离散时间线性时变系统的状态转移矩阵进行了研究。根据常微分方程和差分方程解的唯一性,得到了判断矩阵函数是某一线性系统状态转移矩阵的充分条件,以及如何求出其对应的系统矩阵的方法。 状态转移矩阵是现代控制理论的重要概念,在线性控制系统的运动分析中起着重要的作用。 文献[1-8] 对线性系统的状态转移矩阵(包括连续时间线性定常系统、连续时间线性时变系统、离散时间线性定常系统、离散时间线性时变系统)进行了详细而深人的介绍。通常情况下,判断矩阵函数是某一连续时间线性时不变系统的状态转移矩阵的充要条件会在之前的工作中给出。 本文对连续时间线性时变系统、离散时间线性定常系统、离散时间线性时变系统的状态转移矩阵进行了进一步的研究。根据常微分方程和差分方程解的唯一性,得到了判断矩阵函数是某一线性系统状态转移矩阵的充分条件,并求出了其对应的系统矩阵。 1预备知识 考虑连续时间线性时变系统、离散时间线性定常系统和时变系统,它们的齐次状态方程分别为: 其中差分方程部分如下: 为了给出判断矩阵函数是某一线性系统状态转移矩阵的充分条件,需要用到下面的引理。 引理1状态转移矩阵是下列矩阵微分方程初值问题的解,且解是唯一的[5]: 引理2状态转移矩阵是下列矩阵差分方程初值问题的解:

引理3状态转移矩阵是下列矩阵差分方程初值问题的解: 2.1判定结果

2.2讨论 定理1 ~3给出了判定矩阵函数是某一线性系统状态转移矩阵的充分条件,也给出了计算其对应的系统矩阵的公式。由状态转移矩阵的性质可知对连续系统,定理1的条件也是必要的;但对于离散系统,由于状态转移矩阵不能保证必为非奇异[2],所以定理2和定理3的条件不是必要的。但对于连续时间线性系统的时间离散化系统,无论其为时不变或时变系统,状态转移矩阵必为非奇异[2],此时定理2和定理3 的条件是充分必要的。 定理1 ~3给出的条件是非常容易验证的,可使用比较流行的Matlab工具进行验证,因而这些充分条件是有效的。 3结束语 本文对线性系统的状态转移矩阵进行了进一步的讨论,针对连续时间线性时变系统、离散时间线性定常系统和离散时间线性时变系统,分别给出了函数矩阵是某一线性系统状态转移矩阵的充分条件。这些条件是非常容易验证的,因而是有效的,并通过例子说明了结论的正确性。 参考文献 [1 ]王高雄,周之铭,朱思铭,等.常徽分方程[M].2版.北京:高等《自动化仪表》 [2] 郑大钟.线性系统理论[M].2版.北京:清华大学出版社,2002. [3] 刘豹,唐万生.现代控制理论[M].2版.北京:机械工业出版社, 2005. [4] 施颂椒,陈学中,杜秀华.现代控制理论基础[M].北京:高等教育出版社,2007. [5] 王孝武.现代控制理论基础[M].2版.北京:机械工业出版社, 2006. [6] 白素英四种计算方法的比较[J].数学的实践与认识,2008 , 38(2) :156-158. [7] 徐进.常系数齐次线性微分方程组基解矩阵的求解[J].江汉大学学报:自然科学版,2005,33(4): 17-19. [8] 黄承绪.矩阵指数函数的一些性质[J].武汉理工大学学报:交通科学与工程版,2001,25(2) ;147 -149.

利用栅格计算器进行土地利用类型转移矩阵计算

利用栅格计算器进行土地利用类型转移矩阵计算 1.数据准备 准备好两期的土地利用分类数据裁剪_86和裁剪_95,用arcmap 打开这两期影像文件:

2.转移矩阵计算 打开Arctoolbox window 窗口,在Arctoolbox window窗口中选择Spatial Analyst Tools>>Map Algebra>>Raster Calculator. 双击Raster Calculator,出现如下显示窗口。

表达式输入框 在表达式输入框中输入表达式:"裁剪_86" * 10 + "裁剪_95",在Raster Calculator中双击map algebra expression中的文件即为 选中此文件,Output raster中设置输出文件目录及文件名fangfa_1, 选择OK。 如图得到栅格计算器结果文件fangfa_1,右击layers中文件fangfa_1, 选择open attribute table,查看fangfa_1的属性表。

在fangfa_1属性表中选择table options>>export,选择路径和文件名,输出一个.dbf文件表格。 3.结果分析 按照刚刚的输出路径,找到该表,用excel打开该表格。每个像元大小为30*30,所以需要将表中count字段乘以900即为面积(单位为米)。

需要注意的是,“23”表示由裁剪_86年的第2类型转化为裁剪 _95年的第3类型,“56”表示由裁剪_86年的第5类型转化为裁剪_95 年的第6类型,等等。 调整excel表中的数值为下表所示: 调整后的转移矩阵结果表中右边即为86年到95年土地利用类型转移矩阵结果。

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例 苏红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面 的读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ???? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ????? ??-100012001210010411 →???? ? ??----123200124010112001→

GE矩阵+计算方法+案例(一班三组)

GE矩阵法及其使用方法介绍 一、GE矩阵法概述 GE矩阵法又称通用电器公司法、麦肯锡矩阵、九盒矩阵法、行业吸引力矩阵是美国通用电气公司(GE)于70年代开发了新的投资组合分析方法。对企业进行业务选择和定位具有重要的价值和意义。GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 二、方格分析计算方法介绍: GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业 单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要 对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战 略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),

每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 绘制GE矩阵,需要找出外部(行业吸引力)和内部(企业竞争力)因素,然后对各因素加权,得出衡量内部因素和市场吸引力外部因素的标准。当然,在开始搜集资料前仔细选择哪些有意义的战略事业单位是十分重要的。 1. 定义各因素。选择要评估业务(或产品)的企业竞争实力和市场吸引力所需的重要 因素。在GE内部,分别称之为内部因素和外部因素。下面列出的是经常考虑的一些因素(可能需要根据各公司情况作出一些增减)。确定这些因素的方法可以采取头脑风暴法或名义群体法等,关键是不能遗漏重要因素,也不能将微不足道的因素纳人分析中。 2. 估测内部因素和外部因素的影响。从外部因素开始,纵览这张表(使用同一组经理), 并根据每一因素的吸引力大小对其评分。若一因素对所有竞争对手的影响相似,则对其影响做总体评估,若一因素对不同竞争者有不同影响,可比较它对自己业务的影响和重要竞争对手的影响。在这里可以采取五级评分标准(1=毫无吸引力,2=没有吸引力,3=中性影响,4=有吸引力,5=极有吸引力)。然后也使用5级标准对内部因素进行类似的评定(1=极度竞争劣势,2=竞争劣势,3=同竞争对手持平,4=竞争优势,5=极度竞争优势),在这一部分,应该选择一个总体上最强的竞争对手做对比的对象。 具体的方法是:- 确定内外部影响的因素,并确定其权重- 根据产业状况和企业状况定出产业吸引力因素和企业竞争力因素的级数(五级)- 最后,用权重乘以级数,得出每个因素的加权数,并汇总,得到整个产业吸引力的加权值 下面分别用折线图和表格两种形式来表示。

马尔科夫转移矩阵法

马尔科夫转移矩阵法 1.工具名称 马尔科夫转移矩阵法是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。比如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计:销售额都无关。 2.工具使用场合/范围 单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。 市场占有率的预测可采用马尔科夫转移矩阵法 3.工具运用说明: 在马尔科夫分析中,引入状态转移这个概念。所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转穆到另一种状态的概率。 马尔科夫分析法的一般步骤为: ①调查目前的市场占有率情况; ②调查消费者购买产品时的变动情况; ③建立数学模型; ④预测未来市场的占有率。 二、马尔科夫分析模型 实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。 马尔科夫分析法的基本模型为: X(k+1)=X(k)×P 式中:X(k)表示趋势分析与预测对象在t=k时刻的状态向量,P表示一步转移概率矩阵,X(k+1)表示趋势分析与预测对象在t=k+1时刻的状态向量。 必须指出的是,上述模型只适用于具有马尔科夫性的时间序列,并且各时刻的状态转移概率保持稳定。若时间序列的状态转移概率随不同的时刻在变化,不宜用此方法。由于实际的客观事物很难长期保持同一状态的转移概率,故此法一

动态规划矩阵连乘算法

问题描述:给定n个矩阵:A1,A2,...,A n,其中A i与A i+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 问题解析:由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。 完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC) 例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。 看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数

((A1*A2)*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):10*5*50+10*100*50=75000次 所以问题是:如何确定运算顺序,可以使计算量达到最小 化。 算法思路: 例:设要计算矩阵连乘乘积A1A2A3A4A5A6,其中各矩阵的维数分别是: A1:30*35; A2:35*15; A3:15*5; A4: 5*10; A5:10*20; A6:20*25 递推关系: 设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。 当i=j时,A[i:j]=A i,因此,m[i][i]=0,i=1,2,…,n 当i

Excel中矩阵的运算

nxn方阵对应行列式的值 第二步,选中A4单元格,在“插入”菜单中选中“函数”菜单项: 第三步,在打开的“函数”对话框中,选中“MDETERM”函数如图2,并按“确定”按钮: 第四步,在弹出的对话框中输入矩阵所在的地址,按确定即得到行列式的值。 矩阵求和 已知 第二步,在A5单元格中输入公式:=A1+El,按回车,这时A5中显示数字7; 第三步,选中A5单元格,移动鼠标至其右下角,鼠标形状变为黑色十字时,按下鼠标左键往右拖至C5,B5和C5中分别显示一3.3。同样的方法选中A5:C5,往下拖至A7:C7,便得到A+B的值。 矩阵求逆 第一步,在A1:C3中输入矩阵A; 第二步。选中A5:C7,“插入”→“函数”→“MINVERSE”→“确定”: 第三步,在“array”项中输入A1:C3,按F2,同时按CTRL+SHIFF+ENTER即可如图6。 5矩阵转置 第一步,在Al:C3中输入矩阵A,并选中; 第二步,“编辑”→“复制”; 第三步,选中A5,“编辑”→“选择性粘贴”→“转置”→确定”。 矩阵求秩 6.1矩阵秩的概念 定义设A是mxn矩阵,从A中任取k行k列(k≤min(m,n)),由这些行、列相交处的元素按原来的次序所构成的阶行列式,称为矩阵A的一个k阶子行列式,简称k阶子式。 定义矩阵A的所有不为零的子式的最高阶数r称为矩阵A的秩,记作r(A),即r(A)=r。 6.2矩阵秩的数学求法 6.2.1行列式法:即定义从矩阵的最高阶子式算起,计算出不等于零的子式的最高阶数r,此r即为该矩阵的秩。 6.2.2行初等变换法:用初等行变换化矩阵为阶梯形矩阵,此阶梯形矩阵非零行的行数r就是该矩阵的秩。 6.3利用EXCEL求矩阵秩 方法一,根据矩阵秩的定义,可以求所有不为零子式的最高阶数。 求矩阵A的秩. 显然A是4x4矩阵,4为其所有子式的最高阶数。先求IAI的值,若|A|不为零,则矩

逆矩阵运算

陕西科技大学 教育实习教案 课题:逆矩阵 学院:职业技术学院 学号: 8070614118 班级:信工 071 姓名:赵进彪

逆矩阵 Ⅱ.教学目的与要求 熟练掌握逆矩阵存在的条件与矩阵求逆的方法 Ⅲ.重点与难点 重点:矩阵的逆 难点:矩阵的逆的概念 Ⅳ.教学内容 定义 1 对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使 E BA AB ==,则说矩阵A 是可逆的,并把B 称为A 的逆矩阵。 A 的逆矩阵记为1-A .,, 的逆阵也一定是的逆阵时为当由定义知B A A B . ,, 212211B B I A B AB I A B AB =====?则设唯一性

.. 111I A A AA A A ==---有的唯一的逆阵记为可逆阵 定理1 若矩阵A 可逆,则0≠A 证 A 可逆,即有1-A ,使E AA =-1 ,故11 ==-E A A 所以 0≠A 定理2 若0≠A ,则矩阵A 可逆,且* 1 1A A A =- 其中*A 为矩阵A 的伴随矩阵 证 由例1知: E A A A AA ==* * 因0≠A ,故有E A A A A A A ==**11 所以有逆矩阵的定义,既有* 1 1A A A =- 当A =0时,,A 称为奇异矩阵,否则称为非奇异矩阵,由上面两定理可知:A 是可逆矩阵的充分必要条件是0≠A ,即可逆矩 阵就是非奇异矩阵。 推论:若E AB =(或E BA =),则1 -=A B 证 1==E B A ,故0≠A ,因而1-A 存在,于是

111*)()(---=====A E A AB A B A A EB B 方程的逆 矩阵满足下述运算规律 ①若A 可逆,则1 -A 也可逆,且 A A =--11)( ②若A 可逆,数0≠λ,则A λ可逆,且11 1 ) (--= A A λ λ ③若B A .为同阶矩阵且均可逆,则B A .也可逆,且111)(---A B AB 证明 ()()() 1111----=A BB A A B AB 1 -=AEA ,1E AA ==- ().111 ---=∴A B AB 例2 求方程 ??? ? ? ??=343122321.A 的逆矩阵 解 023********≠=?+?+?=A A A A ,知1-A 存在 2.11=A 6.21 =A 4.31-=A 3.12-=A 6.22-=A 532 =A 2.13=A 2.23=A 2.33-=A 于是.A 的伴随矩阵为 ?? ??? ? ?----=222563462 .* A

计算方法_矩阵LU分解法

clear all; %A=LU矩阵三角分解法 n=input('输入方矩阵的维数: '); for i=1:n for j=1:n A(i,j)=input('依次输入矩阵元素:'); end end %输入一个n阶方形矩阵 for j=1:n L(j,j)=1; %Doolittle分解,L对角元素全为1 end for j=1:n U(1,j)=A(1,j); end %U的第一行 for i=2:n L(i,1)=A(i,1)/U(1,1); end %L的第一列 for k=2:n for j=k:n sum1=0; for m=1:k-1 sum1=sum1+L(k,m)*U(m,j); end %求和 U(k,j)=A(k,j)-sum1; end for i=k+1:n sum2=0; for m=1:k-1 sum2=sum2+L(i,m)*U(m,k); end %求和 L(i,k)=(A(i,k)-sum2)/U(k,k); end end L %输出下三角矩阵L U %输出上三角矩阵U

运行结果:(示例) 输入方矩阵的维数: 4 依次输入矩阵元素: 1 依次输入矩阵元素: 1 依次输入矩阵元素: 2 依次输入矩阵元素: 3 依次输入矩阵元素:0 依次输入矩阵元素: 2 依次输入矩阵元素: 1 依次输入矩阵元素: 2 依次输入矩阵元素: 1 依次输入矩阵元素:-1 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 5 依次输入矩阵元素:9 A=LU分解后则可以求解Ax=b线性方程组,相关计算参考计算方法,这里不再详细介绍。

相关文档
最新文档