现代控制理论 状态转移矩阵

合集下载

现代控制理论-02

现代控制理论-02

3. 状态转移矩阵是可逆的,且 Φ −1 (t ) = Φ(−t )
根据 Φ (t + s ) = Φ (t )Φ ( s )
x2 = e A(t2 −t1 ) x1 = Φ(t2 − t1 ) x1
x x(t0) x(t1) x(t2)
x1 = e A(t1−t0 ) x0 = Φ(t1 − t0 ) x0
2. 对任意的t和s,Φ (t + s ) = Φ (t )Φ ( s )
Φ(t )Φ(s) = e At e As 1 2 2 1 A t + L)(I + As + A2 s 2 + L) 2! 2! 1 ⎞ 1 1 1 ⎞ ⎛1 ⎛1 = I + A(t + s) + A2 ⎜ t 2 + ts + s 2 ⎟ + A3 ⎜ t 3 + t 2 s + ts 2 + s 3 ⎟ + L 2! ⎠ 2! 2! 3! ⎠ ⎝ 3! ⎝ 2! 1 2 1 3 2 = I + A(t + s) + A (t + s) + A (t + s) 3 + L 2! 3! = e A(t + s) = Φ(t + s) = ( I + At +

e
At
1 −1 1 (T DT ) 2 t 2 + L + (T −1 DT ) n t n + L 2! n! 1 −1 2 2 1 −1 n n −1 −1 = T IT + T DTt + T D Tt + L + T D Tt + L n! 2! 1 1 ⎛ ⎞ = T −1 ⎜ I + Dt + D 2t 2 + L + D nt n + L⎟T n! 2! ⎝ ⎠ =e

《现代控制理论》(刘豹_唐万生)

《现代控制理论》(刘豹_唐万生)

第1章 控制系统的状态空间表达式1-1试求图1-27系统的模拟结构图,并建立其状态空间表达式图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n pb1611166131534615141313322211+--=+-==++--===••••••令θ(s)=y ,则y =x 1所以,系统的状态空间表达式及输出方程表达式为[ x 1•x 2•x 3•x 4•x 5•x 6•]=[ 01000000K b J 200000−K p J 1−K n J 11J K p J 100100000−K 100K 1−K 1p−K 1p ][ x 1x 2x 3x4x 5x 6]+[ 00000K 1K p ]uy =[100000][ x 1x 2x 3x 4x 5x 6]1-2有电路如图1-28所示。

以电压u(t)为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻R 2上的电压作为输出量的输出方程。

L1L2U图1-28 电路图解:由图,令i 1=x 1,i 2=x 2,u c =x 3,输出量y =R 2x 2 有电路原理可知:R 1x 1+L 1x 1•+x 3=uL 2x •2+R 2x 2=x 3x 1=x 2+Cx 3•既得 x 1•=−R1L 1x 1−1L 1x 3+1L 1ux •2=−R 2L 2x 2+1L 2x 3 x 3•=−1C x 1+1C x 2y =R 2x 2写成矢量矩阵形式为:[ x 1。

x 2。

x 3。

] =[−R 1L 10−1L 10−R 2L 21L 21C−1C 0][x 1x 2x 3]+[1L 100]u y =[0R 20][x 1x 2x 3] 1-3有机械系统如图1.29所示,M1和M2分别受外力f1和f2的作用.求以M1和M2的运动速度为输出的状态空间表达式.解:以弹簧的伸长度y 1,y 2 质量块M 1, M 2的速率c 1,c 2作为状态变量 即 x 1=y 1,x 2=y 2,x 3=c 1,x 4=c 2根据牛顿定律,对M 1有:M 1dc1dt =f 1-k 1(y 1-y 2)-B 1(c 1-c 2) 对M 2有:M 2dc2dt =f 2+k 1(y 1-y 2)+B 1(c 1-c 2)-k 2y 2-B 2c 2将x 1,x 2,x 3,x 4代入上面两个式子,得 M 1ẋ3=f 1-k 1(x 1-x 2)-B 1(x 3-x 4) M 2ẋ4=f 2+k 1(x 1-x 2)+B 1(x 3-x 4)-k 2x 2-B 2x 4B 1\y 2 c 2 y 1 c 1f 2(t)M 2M 1f 1(t) B 2 K 2K 1整理得 ẋ1=x 3ẋ2=x 4ẋ3=1M 1f 1-k 1M 1x 1+k 1M 1x 2-B 1M 1x 3+B1M 1x 4ẋ4=1M 2f 2+k1M 2x 1-k 1+k 2M 2x 2+B1M 2x 3-B 1+B 2M 2x 4输出状态空间表达式为 y 1=c 1=x 3 y 2=c 2=x 4 1-4两输入u 1,u 2,两输出y 1,y 2的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。

现代控制理论知识点汇总

现代控制理论知识点汇总

现代控制理论知识点汇总Revised at 2 pm on December 25, 2020.第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。

② 由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

现代控制理论第二章答案

现代控制理论第二章答案

et
2e 2t
4e2t 2et
4e2t
et
0 1
2 3
(4)
(t)(t)
1
2
(et
e3t
)
(et e3t )
141((eet tee33t t))
1 (et 2 (et
e3t ) e3t )
2
141((eet tee33t t)) I
2
(t)
d dt
1 2
(t)
et
e2t
2e2t 2et
2e2t
et
(4)
(t )
1
2
(et
e3t
)
(et e3t )
141((eet tee33t t))
2
【解】 主要验证矢量不变性:
(t)(t) I
和组合性质: (t2 t1)(t1 ) (t2 )
(1)
1
(t)(t) 0
0
0 sin t cost
8
8
(
z
1 8
3)(z
5)
8
8
(
z
z1 2
3)(z
5)
8
8
x(z) (zI G) 1 zx(0) Hu(z)
(
z
z1 2
3)(z
5)
8
8
1 8
(
z
3)(z
5)
8
8
( (
z z
1 8
3)(z 8 z1
2 3)(z
5 8
5
) )
z
1
3
1 0
8
8
zT
(et
(et

现代控制理论第二章

现代控制理论第二章
(2)在e At 定义中,用(1 )的方法可以消去 A的n及n以上的幂次项,即 e At = I + At + 1 2 2 1 1 A t +⋯+ An −1t n −1 + An t n + ⋯ 2! ( n − 1)! n!
= α n −1 (t ) An −1 + α n − 2 (t ) An − 2 + ⋯ + α1 (t ) A + α 0 (t ) I
【例2-5】见板书
(3)α i (t )的计算公式 A的特征值互异时 α 0 (t ) 1 λ1 α1 (t ) 1 λ2 ⋮ = ⋮ ⋮ α (t ) 1 λ n −1 n
λ λ λ
பைடு நூலகம்
2 1 2 2

2 n
⋯ λ e λ1t λ2 t ⋯ λ e ⋮ ⋮ λn t n −1 ⋯ λn e
At
2.变换A为约旦标准型 (1)A特征根互异 Λ = T −1 AT 有
例2-2 ,同例2-1
e At = Te ΛtT −1
(2)A特征值有重根
J = T AT e At = Te JtT −1
0 1 0 [例2 - 3]已知A = 0 0 1 , 求e At 2 - 5 4

σ ω A= −ω σ

cos ωt sin ωt σt e = Φ(t ) = e − sin ωt cos ωt
At
2.2.4 计算
1.根据 e At 或 Φ (t ) 的定义直接计算
1 2 2 1 33 1 n n e = I + At + A t + A t ⋯ A t + ⋯ 2! 3! k! 1 0 [例2 - 1]已知A = , 求e At − 2 − 3

《现代控制理论》复习提纲()

《现代控制理论》复习提纲()

现代控制理论复习提纲第一章:绪论(1)现代控制理论的根本内容包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波(2)现代控制理论与经典控制理论的区别第二章:控制系统的状态空间描述1.状态空间的根本概念;系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程2.状态变量图概念、绘制步骤;3.由系统微分方程建立状态空间表达式的建立;第三章:线性控制系统的动态分析1.状态转移矩阵的性质及其计算方法〔1〕状态转移矩阵的根本定义;〔2〕几个特殊的矩阵指数;〔3〕状态转移矩阵的根本性质〔以课本上的5个为主〕;〔4〕状态转移矩阵的计算方法掌握:方法一:定义法方法二:拉普拉斯变换法例题2-2第四章:线性系统的能控性和能观测性(1)状态能控性的概念状态能控、系统能控、系统不完全能控、状态能达(2)线性定常连续系统的状态能控性判别包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据掌握秩判据、PBH判据的计算(3)状态能观测性的概念状态能观测、系统能观测、系统不能观测(4)线性定常连续系统的状态能观测性判别包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据掌握秩判据、PBH判据的计算(5)能控标准型和能观测标准型只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II 型的计算方法第五章:控制系统的稳定性分析〔1〕平衡状态〔2〕李雅普诺夫稳定性定义:李雅普诺夫意义下的稳定概念、渐进稳定概念、大范围稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析例4-6第六章线性系统的综合(1)状态反应与输出反应(2)反应控制对能控性与观测性的影响复习题1. 、和统称为系统变量。

2. 系统的状态空间描述由和组成,又称为系统的动态方程。

3. 状态变量图是由、和构成的图形。

4. 计算1001A-⎡⎤=⎢⎥⎣⎦的矩阵指数Ate__________。

现代控制理论第三章

现代控制理论第三章

Hu i
i0
从该式可知, 在线性定常离散系统中,设其状态转移 阵为 k ,则 k G k 是满足下列方程的唯一解
k 1 G k
0 I
3.5 线性定常离散系统的受控运动
(二)Z变换法
G
k
G
i0
k 1
k i 1
zI G z Hu i Z zI G
a 0 t , a 1 t , , a n 1 t
e
At
n 1


n 1
a k t A
k
k 0
式中,
为 t 的函数. 根据 A 的不同
特征值情况, 由不同的公式给出.
3.3 线性系统的受控运动
动态系统在控制作用下的运动,称为受控运动. 若受控线性状态方程
x t A t x t B t u t , x t 0 x 0

k 1 T
1 T , kT

kT
k 1 T , B d
D k D t t kT
t , t 0 ——连续系统的状态转移矩阵
3.6 线性连续系统的离散化
当采样周期很小时, 有下面的近似关系.
G kT I TA kT
线性时变离散系统的状态空间模型如下:
x k 1 G k x k H k u k
y k C k x k D k u k , k 0 , 1, 2 ,
线性定常离散系统的状态空间模型如下:
x k 1 Gx k Hu k
(三)矩阵指数(状态转移矩阵)的性质:

现代控制理论(8-11讲:第3章知识点)

现代控制理论(8-11讲:第3章知识点)

f () I - A n an1 n1 a1 a0
f (A) An an1An1 a1A a0I 0
f () I - A 2 5 7 0
用A代替λ ,则
f (A) A 5A 7I 0
1 2 2 t 0 0 1t 2! 1 1 1 .. .. 0 nt 1 0
1 2 2 1 k k P (I + At + A t + ... + A t + ...)P 2! k!
11
习题: 2.4 (2) (3) 2.5 (1):1, 2
12
(2)系统矩阵A具有n重特征值: 则
Φ(t ) e
At
i t e Q
te e
i t
i t
0
1 ( n 1) i t ... t e (n 1)! 1 ... ... Q .. tei t i t e
2
15
例2:设矩阵为:
0 0 A 0 1
1 0 0 0
0 1 0 0
0 0 1 0
试用Cayly-Hamilton定理,求A7-A3+2I。 解:
0 1 0 0 1 0 4 1 0 I A 0 0 1 1 0 0
At
e 0 (t )I 1 (t )A an1 (t )A
At
n1
证: A 即
n
an1A
n1
a1A a0I 0
An an1An1 a1A a0I
an1 (an1An1 a1A a0I) an2 A n1 ... a0 A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= 0 = 0 − (− ) − =()() (−)
故有: + =
从- 到t的转移,可以看作是从- 转移到0,再从0转移到t的组合。
2. 可逆性

= −
证明: 由性质1
− = − =
再从 1 转移到 2 。
证明:由状态转移矩阵的物理意义:
2 = 2 − 0 (0 )
2 = 2 − 1 (1 ) = 2 − 1 1 − 0 (0 )
故有: 2 − 1 1 − 0 = 2 − 0
4. 倍时性 ()
状态转移矩阵实质上就是矩阵指数函数,其求解方法与矩阵指数函数相同。
例:已知线性定常系统的状态转移矩阵 为:
1 −
1
3
( + )
(− − + 3 )
4
= 2
1 −

3
− +
( + 3 )
2
求系统矩阵。

解:由状态转移矩阵的定义:()
=A , 0 = , ≥ 0
求解矩阵微分方程可得,状态转移矩阵为: − 0 = (−0 ) , ≥ 0
当 0 = 0时,状态转移矩阵可表示为: = , ≥ 0
系统的零输入响应可用状态转移矩阵表示:
=
−0
0 = − 0 0 , ≥ 0
或 = 0 = 0 , ≥ 0
《现代控制理论》MOOC课程
2.2 状态转移矩阵
2.2 状态转移矩阵
一. 状态转移矩阵的定义
定义:对于给定的线性定常系统 ሶ =A + 其中,x为n维状态向量
称满足如下矩阵微分方程
ሶ − 0 ) =A − 0 , 0 = , ≥ 0
(
的n×n维解阵 − 0 为系统的状态转移矩阵。
状态转移矩阵的物理意义 :
− 0 就是在零输入条件下将时刻 0 的状态 0 转移到时刻t的状态 () 的一个线性变换。
2.2 状态转移矩阵
二. 状态转移矩阵的性质
1. 分解性 + =
证明:由状态转移矩阵的物理意义:
= − (− )(−) = + −

解法1:由 A = ()
− 计算

解法2:由 A = ()

− ห
=
Байду номын сангаас

= ()
ห=
1
1 −

3
(− + 3 )
( + 3 3 )
4

()
= 2
1

3
+ 3
(− − + 3 3 )
2

A = ()
ห= = 1 1
4 1
故有:

= −
状态转移矩阵的逆意味着状态向量按时间的逆向转移。
即从0状态到t状态转移的逆,等于从t状态到0状态的转移。
二. 状态转移矩阵的性质
2.2 状态转移矩阵
3. 传递性 2 − 1 1 − 0 = 2 − 0
一个转移过程可以分解为若干个小的转移过程。即从0到2的转移等于从 0 转移到 1 ,

=
状态转移矩阵的k次方等于该转移矩阵的时间自变量扩大k倍。
证明:由性质1
()

= () ⋯ () =
二. 状态转移矩阵的性质
5. 微分性和交换性 ሶ = =
状态转移矩阵与矩阵A的乘积是可以互换的。
证明:由矩阵指数函数的性质

( ) = =

故有: ሶ = =
6. 唯一性
系统的状态转移矩阵唯一地由系统的系统矩阵决定。
ሶ − 0 ) =A − 0 , 0 = , ≥ 0
由状态转移矩阵的定义 (
其唯一的参数就是系统矩阵。
2.2 状态转移矩阵
2.2 状态转移矩阵
三. 状态转移矩阵的算法
相关文档
最新文档