状态转移矩阵例题

合集下载

数学物理方法第三章答案完整版

数学物理方法第三章答案完整版

第三章答案1. (6分)已知齐次状态方程Ax x=&的状态转移矩阵)(t Φ如下,求其逆矩阵)(1t -Φ和系统矩阵A 。

⎥⎦⎤⎢⎣⎡+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e3e 2e 2e 2e 3e )t (。

解: ⎥⎦⎤⎢⎣⎡+-+---=-Φ=Φ-2t t 2t t 2t t 2t t 13e 2e 3e3e 2e 2e 2e 3e )t ()t ( (3分) ⎥⎦⎤⎢⎣⎡=Φ==4-3-21|)t (A 0t & (3分) 2. (8分)求定常控制系统的状态响应。

()()()()()()0101,0,0,11210x t x t u t t x u t t ⎛⎫⎛⎫⎛⎫=+≥== ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭&解:11t tt Att tt t tt e te te e e t t tee te -------+⎛⎫+⎛⎫== ⎪ ⎪----⎝⎭⎝⎭ (4分)0()()(0)()()10t t t t t x t t x Bu t d e te e d te e e τττττττττ------=Φ+Φ-⎡⎤⎡⎤+⎡⎤=+=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎰⎰ (4分)3.(3分) 已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其系统矩阵A 。

⎥⎦⎤⎢⎣⎡+-+---=Φ--------2t t 2tt 2t t 2tt 3e 2e 3e3e 2e 2e 2e 3e )t (。

解:⎥⎦⎤⎢⎣⎡=Φ==4-3-21|)t (A 0t & (3分) 4.(8分)已知系统的状态方程为:u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=111101&, 初始条件为1)0(1=x ,0)0(2=x 。

求系统在单位阶跃输入作用下的响应。

解:解法1:⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡---=Φ--t t t e te e s s L t 01101)(11; (4分)⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰---t t t t t t t t t t t ttte e te e te e d e e t e e tee x 212111)(00100τττττ。

状态转移概率矩阵计算

状态转移概率矩阵计算

状态转移概率矩阵计算摘要:1.状态转移概率矩阵的概念2.状态转移概率矩阵的计算方法3.状态转移概率矩阵的应用正文:一、状态转移概率矩阵的概念状态转移概率矩阵是在马尔可夫过程中,描述系统从某一状态转移到另一状态的概率分布的矩阵。

在马尔可夫过程中,系统的状态转移是随机的,且只与当前状态有关,与过去状态无关。

状态转移概率矩阵是一个方阵,行和列分别对应系统的所有可能状态。

矩阵中的每个元素表示从当前状态转移到对应状态的概率。

二、状态转移概率矩阵的计算方法状态转移概率矩阵的计算方法有多种,以下介绍两种常用的方法:1.直接计算法对于具有n 个状态的马尔可夫过程,假设状态转移概率矩阵为P,那么P 的第i 行第j 列元素表示从状态i 转移到状态j 的概率,可以通过如下公式计算:P(i, j) = (观测到从状态i 转移到状态j 的次数+ 1) / (总的观测次数+ n)2.隐马尔可夫模型算法在实际应用中,通常使用隐马尔可夫模型(HMM)算法来估计状态转移概率矩阵。

该算法的基本思想是利用训练数据中的观测序列和状态序列,通过最小二乘法或其他优化算法来估计状态转移概率矩阵。

具体步骤如下:(1)初始化状态转移概率矩阵P 为任意值。

(2)根据训练数据中的观测序列和状态序列,计算观测概率矩阵O 和观测概率矩阵I。

(3)利用最小二乘法或其他优化算法,求解状态转移概率矩阵P,使得观测概率矩阵O 和观测概率矩阵I 的乘积等于观测序列的概率分布。

(4)不断迭代,直到状态转移概率矩阵P 收敛。

三、状态转移概率矩阵的应用状态转移概率矩阵在实际应用中有广泛的应用,例如:1.在马尔可夫过程中,用于描述系统的状态转移规律,预测未来状态的概率分布。

2.在隐马尔可夫模型中,用于估计状态转移概率,从而推测隐藏状态序列。

控制理论lesson15-状态转移矩阵的求法

控制理论lesson15-状态转移矩阵的求法



i
1 i

J=QAQ-1
e Jt e Q
1
AQt
e J1t Q 1e At Q 0
e J2t
0 J Lt e
e At Qe Jt Q1
其中:若Ji为J的约当块,则eJit为Φ (t)中对应的约当块。
2.求特征矢量: 即
(1 I A) P1 0
1 1 1 P11 6 10 6 P 0 21 6 11 6 P31
P21 0
1 P1 0 1
解出:
P11 P31 1 (任取)
1 P 1 AP A 0
2
0 nt
e 1t P 1e At P 0
e 2 t
0 n t e
e At
e 1t 0 P 1 P n t e 0
2e 3e e 2 t 3 t 6e 6e t 2 t 3 t 2e 12e 9e
t 2 t 3 t
t 2 t 3 t 3 e 3 e e 6e 2 t 6e 3 t t 3e 12e 2 t 9e 3 t
3.求P,P-1:
1 1 1 , P 0 2 6 1 4 9
P 1 5 3 2 2 adj 3 4 3 P 3 1 1 2
4.求
eAt
e
At

At
Pe P 1
e 1t P 0
(3 I A) P3 0

状态转移问题

状态转移问题

状态转移问题本节介绍两种状态转移问题,解决这种问题的方法,有状态转移法,图解法及用图的邻接距阵等。

1 人、狗、鸡、米问题人、狗、鸡、米均要过河,船上除1人划船外,最多还能运载一物,而人不在场时,狗要吃鸡,鸡要吃米,问人,狗、鸡、米应如和过河?分析:假设人、狗、鸡、米要从河的南岸到河的北岸,由题意,在过河的过程中,两岸的状态要满足一定条件,所以该问题为有条件的状态转移问题。

1. 允许状态集合我们用(w, x, y, z),w, x, y, z=0或1,表示南岸的状态,例如(1,1,1,1)表示它们都在南岸,(0,1,1,0)表示狗,鸡在南岸,人,米在北岸;很显然有些状态是允许的,有些状态是不允许的,用穷举法可列出全部10个允许状态向量,(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)我们将上述10个可取状态向量组成的集合记为S ,称S 为允许状态集合2、状态转移方程对于一次过河,可以看成一次状态转移,我们用向量来表示决策,例(1,0,0,1)表示人,米过河。

令D 为允许决策集合, D={ (1, x, y, z) : x+y+z=0 或 1}另外,我们注意到过河有两种,奇数次的为从南岸到北岸,而偶数次的为北岸回到南岸,因此得到下述转移方程,k k k k d S S )1(1−+=+ (2.1)),,,(k k k k k z y x w S =表示第k 次状态,D d k ∈ 为决策向量.图2-1 2. 人、狗、鸡、米过河问题,即要找到D d d d m ∈−121,,,"S S S S m ∈,,,10")0,0,0,0(0=S)1,1,1,1(=m S 且满足(2.1)式。

下面用状态转移图求解将10个允许状态用10个点表示,并且仅当某个允许状态经过一个允许决策仍为允许状态,则这两个允许状态间存在连线,而构成一个图, 如图2—1 , 在其中寻找一条从(1,1,1,1)到(0,0,0, 0)的路径,这样的路径就是一个解, 可得下述路径图由图,有两个解都是经过7次运算完成,均为最优解2 商人过河问题三名商人各带一个随从乘船渡河,现有一只小船只能容纳两个人,由他们自己划行,若在河的任一岸的随从人数多于商人,他们就可能抢劫财物。

移位寄存器 第三章答案

移位寄存器 第三章答案

第三章习题参考答案1.画出以1)(246+++=x x x x f 为联接多项式的线性移位寄存器逻辑框图,及其对应的状态图。

解:由1)(246+++=x x x x f ,得反馈函数为531621),,,(x x x x x x f ++= ,故 (1)逻辑框图:(2)状态图:状态圈-1: 状态圈-2:状态圈-3: 状态圈-4:状态圈-5: 状态圈-6:状态圈-7: 状态圈-8:状态圈-9: 状态圈-10:状态圈-11: 状态圈-12:2.已知图3-2所示的7级线性反馈移位寄存器:图3-2(1)绘出该移位寄存器的线性递推式,联接多项式及特征多项式。

(2)给出状态转移矩阵。

(3)设初态为(1 1 1 1 1 1 1),给出输出序列a 。

解:(1)由逻辑框图得,递推式为:k k k k a a a a ++=+++357 ()0≥k 。

联接多项式为:7421)(x x x x f +++=。

特征多项式为:7531)(~x x x x f +++=(2)状态转移矩阵:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0100000101000000010001000100000001000000011000000。

(3)输出序列:)111111111( =-a 。

3.设5级线性反馈移位寄存器的联接多项式为1)(25++=x x x f ,初态为(10101)。

求输出序列a 。

解:由联接多项式得,反馈函数为:41521),,,(x x x x x f += 。

故以)10101(为初态的状态转移图为:1010101010001010001000001100000100000100100100100110100110100110100110100111100111100111101111101111001110001110001110000110010110110111110101110101110101110101→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ 由此可得,输出序列为:=a一个周期0110100100000011111001010111011…。

自控原理9(第九章418-437)

自控原理9(第九章418-437)

由于:
则: (9-65)
定义输入向量至输出向量之间的传递矩阵,为闭环传递矩 阵,记为 (s),则:
(9-66) 它描述了 U(s) 至 Y(s) 之间的传递关系。 由于: 则: (9-67)
定义输入向量至偏差向量之间的传递矩阵为偏差传递矩阵, 记为e (s),则: 它描述了 U(s) 至 E(s) 之间的传递关系。 (9-68)
(9-77) 成立,则称系统 (A, B, C, D) 是 G(s) 的一个实现。 简言之,实现问题就是由传递函数矩阵寻求对应的状态空 间表达式。前面曾就由传递函数导出几种标准型式动态方程问
题进行过研究,乃属于传递函数矩阵的实现。
由于多输入多输出系统传递函数矩阵的实现问题比较复 杂, 这里仅限于研究单输入多输出或多输入单输出系统, 它 们的传递函数矩阵是一列向量或行向量。
矩阵为一行向量,故不存在其对偶形式,即不存在可控标准型 实现。
[例9-12] 已知单输入-双输出系统的传递矩阵为:
求传递矩阵的可控标准型实现及对角型实现。 [解] 由于系统是单输入、双输出的,故输入矩阵只有一列,输 出矩阵有两行。 将 G(s) 化为严格有理真分式:
各元素的最小公分母 D(s) 为:
1) 单输入-多输出系统传递矩阵的实现 设单输入、q 维输出系统如图9-22所示,系统可看作由 q 个 独立子系统组成,
传递矩阵 G(s) 为:
(9-78) 式中,d 为常数向量; (i = 1, 2, …, q) 为不可约分的严格有 理真分式 (即分母阶次大于分子阶次) 函数。 通常 的特性并不相同,具有不同
故其输出方程为:
7. 线性离散系统状态空间表达式的建立及其解
离散系统的特点是系统中的各个变量被处理成为只在离散 时刻取值,其状态空间描述只反映离散时刻的变量组间的因果 关系和转换关系,因而这类系统通常称为离散时间系统,简称 为离散系统。 线性离散系统的动态方程可以利用系统的差分方程建立, 也可以利用线性连续动态方程的离散化得到。

现代控制理论 状态转移矩阵

现代控制理论 状态转移矩阵

= 0 = 0 − (− ) − =()() (−)
故有: + =
从- 到t的转移,可以看作是从- 转移到0,再从0转移到t的组合。
2. 可逆性

= −
证明: 由性质1
− = − =
再从 1 转移到 2 。
证明:由状态转移矩阵的物理意义:
2 = 2 − 0 (0 )
2 = 2 − 1 (1 ) = 2 − 1 1 − 0 (0 )
故有: 2 − 1 1 − 0 = 2 − 0
4. 倍时性 ()
状态转移矩阵实质上就是矩阵指数函数,其求解方法与矩阵指数函数相同。
例:已知线性定常系统的状态转移矩阵 为:
1 −
1
3
( + )
(− − + 3 )
4
= 2
1 −

3
− +
( + 3 )
2
求系统矩阵。

解:由状态转移矩阵的定义:()
=A , 0 = , ≥ 0
求解矩阵微分方程可得,状态转移矩阵为: − 0 = (−0 ) , ≥ 0
当 0 = 0时,状态转移矩阵可表示为: = , ≥ 0
系统的零输入响应可用状态转移矩阵表示:
=
−0
0 = − 0 0 , ≥ 0
或 = 0 = 0 , ≥ 0
《现代控制理论》MOOC课程
2.2 状态转移矩阵
2.2 状态转移矩阵
一. 状态转移矩阵的定义
定义:对于给定的线性定常系统 ሶ =A + 其中,x为n维状态向量

矩阵指数函数-状态转移矩阵

矩阵指数函数-状态转移矩阵

e2t
0 T 1 n t e
4 矩阵指数的计算
1、根据定义直接计算 0 1 【例2-1】已知系统矩阵 A 求 2 3 解:
1 e At I At 2! A2t
e

At
k1! Ak t k
2
k1! Ak t k
k 0
s3 ( s 1)( s 2) 2 ( s 1)( s 2) 1 ( s 1)( s 2) s ( s 1)( s 2)
则有:
1 1 1 2 s 1 s 2 s 1 s 2 At 1 e L 1 2 2 2 s 1 s 2 s 1 s 2
2et e2t t 2t 2e 2e
et e2t t 2t e 2e
A( t t0 )
称为状态转移矩阵。
这样,线性系统的自由解又可表示
x(t ) (t t0 ) x(t0 )
(3) 当t0 0 时,状态转移矩阵为 (t ) e At 状态方程解为 x(t ) (t ) x(0)
状态转移矩阵的几何意义
x(t1 ) (t1 ) x(0)
3 拉氏变换法: 可用拉氏反变换求矩阵指数
1 e At (t ) L1 ( sI A )
例2-4 用拉式变换法计算矩阵指数: 解: s 0 1 sI A A 2 2 3
1
1 s 3
s 3 1 1 ( sI A) 2 s s( s 3) 2
1 T 1 2 1 0 1 21 1 1 0 1 2 1 3 , 3 2 3 4 4 9 3 4 1 T 1 6 5 1 4 4 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档