动量守恒定律测试题及解析

合集下载

高考物理动量守恒定律试题经典及解析

高考物理动量守恒定律试题经典及解析

5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到 108K 时,可
以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:
4 2
He
___
8 4
Be
γ


8 4
Be
是一种不稳定的粒子,其半衰期为
2.6×10-16s。一定质量的
8 4
Be
,经
7.8×10-16s
后所剩下的
8 4
Be
占开始时的
械能守恒定律有 m1gh=
1 2
m1 v02
(1
分)v0=
2gh ,解得:v0=4.0 m/s(1 分)
②设物块 B 受到的滑动摩擦力为 f,摩擦力做功为 W,则 f=μm2g(1 分)
W=-μm2gx 解得:W=-1.6 J(1 分)
③设物块 A 与物块 B 碰撞后的速度为 v1,物块 B 受到碰撞后的速度为 v,碰撞损失的机械
关数学知识辅助分析、求解。
4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对 一下简化模型的计算可以粗略说明其原因.质量为 2m、厚度为 2d 的钢板静止在水平光滑 桌面上.质量为 m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成 厚度均为 d、质量均为 m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同 的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深 度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影
E
1 2
mv02
1 2
Mv2
M
m mv02
2M
E mc2
解得
m

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)
v 25m / s
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q

1.3 动量守恒定律 练习题(解析版)

1.3 动量守恒定律 练习题(解析版)

第一章动量守恒定律1.3 动量守恒定律一、单选题:1.如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后()A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒解析:根据动量守恒定律的条件,以甲、乙为一系统,系统的动量守恒,A、B错误,C正确;甲、乙的一部分动能转化为弹簧的弹性势能,甲、乙系统的动能不守恒,D错误.答案:C2.2019年1月11日,我国在西昌卫星发射中心用“长征三号乙”运载火箭成功将中星2D卫星送入预定轨道.假设将发射火箭看成如下模型:静止的实验火箭,总质量M=2 100 g,当它以对地速度v0=840 m/s喷出质量Δm=100 g的高温气体后,火箭的速度为(喷出气体过程中重力和空气阻力可忽略)()A.42 m/s B.-42 m/sC.40 m/s D.-40 m/s答案:B解析:[取火箭及气体为系统,设火箭的速度为v,则系统在向外喷气过程中满足动量守恒定律,取v0方向为正方向,由动量守恒定律得0=Δmv0+(M-Δm)v,解得v=-Δmv0M-Δm=-42 m/s,选项B正确.]3.如图所示,A、B两个小球在光滑水平面上沿同一直线相向运动,它们的动量大小分别为p1和p2,碰撞后A球继续向右运动,动量大小为p1′,此时B球的动量大小为p2′,则下列等式成立的是()A .p 1+p 2=p 1′+p 2′B .p 1-p 2=p 1′-p 2′C .p 1′-p 1=p 2′+p 2D .-p 1′+p 1=p 2′+p 2答案:D解析:[因水平面光滑,所以A 、B 两球组成的系统在水平方向上动量守恒.取向右为正方向,由于p 1、p 2、p 1′、p 2′均表示动量的大小,所以碰前的动量为p 1-p 2,碰后的动量为p 1′+p 2′,由系统动量守恒知p 1-p 2=p 1′+p 2′,经变形得-p 1′+p 1=p 2′+p 2,D 对.]4.甲、乙两人站在光滑的水平冰面上,他们的质量都是M ,甲手持一个质量为m 的球,现甲把球以对地为v 的速度传给乙,乙接球后又以对地为2v 的速度把球传回甲,甲接到球后,甲、乙两人的速度大小之比为(忽略空气阻力) ( )A.2M M -mB.M +m MC.2(M +m )3MD.M M +m答案:D解析:[甲、乙之间传递球的过程中,不必考虑过程中的细节,只考虑初状态和末状态的情况.研究对象是由甲、乙二人和球组成的系统,开始时的总动量为零,在任意时刻系统的总动量都为零.设甲的速度大小为v 甲,乙的速度大小为v 乙,二者方向相反,根据动量守恒得(M +m )v 甲-Mv 乙=0,则v 甲v 乙=M M +m,选项D 正确.] 5.光滑水平桌面上有P 、Q 两个物块,Q 的质量是P 的n 倍.将一轻弹簧置于P 、Q 之间,用外力缓慢压P 、Q .撤去外力后,P 、Q 开始运动,P 和Q 的动量大小的比值为( )A .n 2B .n C.1nD .1 答案:D解析:[撤去外力后,系统所受外力之和为0,所以总动量守恒,设P 的动量方向为正方向,则有p P-p Q=0,故p P=p Q,因此P和Q的动量大小的比值为1,选项D正确.]6.将一个光滑的半圆形槽置于光滑的水平面上,如图所示,槽左侧有一个固定在水平面上的物块.现让一个小球自左侧槽口A点正上方由静止开始落下,从A点落入槽内,则下列说法正确的是()A.小球在半圆槽内运动的过程中,机械能守恒B.小球在半圆槽内运动的全过程中,小球与半圆槽组成的系统动量守恒C.小球在半圆槽内由B点向C点运动的过程中,小球与半圆槽组成的系统动量守恒D.小球从C点离开半圆槽后,一定还会从C点落回半圆槽答案:D解析:[小球在半圆槽内运动,由B到C的过程中,除重力做功外,槽的支持力也对小球做功,小球机械能不守恒,由此可知,小球在半圆槽内运动的全过程中,小球的机械能不守恒,A错误;小球在槽内由A到B的过程中,左侧物块对槽有作用力,小球与槽组成的系统动量不守恒,由B到C的过程中,小球有向心加速度,竖直方向的合力不为零,系统的动量也不守恒,B、C错误;小球离开C点以后,既有竖直向上的分速度,又有水平分速度,小球做斜上抛运动,水平方向做匀速直线运动,水平分速度与半圆槽的速度相同,所以小球一定还会从C点落回半圆槽,D正确.]7.如图所示,质量为m=0.5 kg的小球在距离车底部一定高度处以初速度v0=15 m/s向左平抛,落在以v=7.5 m/s的速度沿光滑水平面向右匀速行驶的小车中,小车足够长,质量为M=4 kg,g取10 m/s2,则当小球与小车相对静止时,小车的速度大小是()A.4 m/s B.5 m/sC.8.5 m/s D.9.5 m/s答案:B解析:[小球和小车在水平方向上动量守恒,取向右为正方向,有Mv-mv0=(M+m)v′,解得v′=5 m/s.]8.如图所示,轻弹簧的一端固定在竖直挡板上,一质量为m的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一质量也为m的小物块从槽上高h处开始下滑,下列说法正确的是()A.在下滑过程中,物块和槽组成的系统机械能守恒B.在下滑过程中,物块和槽组成的系统动量守恒C.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D.被弹簧反弹后,物块能回到槽上高h处答案:A解析:[对物块和槽组成的系统,在下滑过程中没有机械能损失,系统的机械能守恒,A正确;在下滑的过程中,物块在竖直方向有加速度,物块和槽组成的系统所受合外力不为零,不符合动量守恒的条件,故系统的动量不守恒,但系统在水平方向上动量守恒,B错误;在压缩弹簧的过程中,对于物块和弹簧组成的系统,由于挡板对弹簧有向左的弹力,所以系统受到的合外力不为零,则系统动量不守恒,C错误;因为物块与槽在水平方向上动量守恒,且两者质量相等,根据动量守恒定律知物块离开槽时物块与槽的速度大小相等、方向相反,物块被弹簧反弹后,与槽的速度相同,即两者做速度相同的匀速直线运动,所以物块不会再滑上弧形槽,D错误.]9.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动答案:B解析:[最终,木箱和小木块都具有向右的动量,并且相互作用的过程中总动量守恒,选项A、D错误;由于小木块与底板间存在摩擦,小木块最终将相对木箱静止,选项B正确,选项C错误.]二、多选题:10.关于动量守恒的条件,下面说法正确的是()A.只要系统内有摩擦力,动量就不可能守恒B.只要系统所受合外力为零,系统动量就守恒C.系统加速度为零,系统动量一定守恒D.只要系统所受合外力不为零,则系统在任何方向上动量都不可能守恒答案:BC解析:[动量守恒的条件是系统所受合外力为零,与系统内有无摩擦力无关,选项A错误,B正确;系统加速度为零时,根据牛顿第二定律可得系统所受合外力为零,所以此时系统动量守恒,选项C正确;系统合外力不为零时,在某方向上合外力可能为零,此时在该方向上系统动量守恒,选项D错误.]11.下列四幅图所反映的物理过程中,动量守恒的是()答案:AC解析:[A图中子弹和木块组成的系统在水平方向上不受外力,竖直方向所受合力为零,该系统动量守恒;B图中在弹簧恢复原长的过程中,系统在水平方向上始终受墙的作用力,系统动量不守恒;C图中木球与铁球组成的系统所受合力为零,系统动量守恒;D图中木块下滑过程中,斜面体始终受到挡板的作用力,系统动量不守恒.]12.如图所示,木块A静置于光滑的水平面上,其曲面部分MN光滑、水平部分NP粗糙,现有一物体B自M点由静止释放,设NP足够长,则以下叙述正确的是()A.A、B最终以同一不为零的速度运动B.A、B最终速度均为零C.A物体先做加速运动,后做减速运动D.A物体先做加速运动,后做匀速运动答案:BC解析:[系统在水平方向不受外力,故系统在水平方向动量守恒,因系统初动量为零,A、B在任一时刻的水平方向动量之和也为零,因NP足够长,B最终与A速度相同,此速度为零,B选项正确,A物体由静止到运动、最终速度又为零,C选项正确.]13.如图所示,小车放在光滑的水平面上,将系着绳的小球拉开到一定的角度,然后同时放开小球和小车,那么在以后的过程中()A.小球向左摆动时,小车也向左运动,且系统水平方向动量守恒B.小球向左摆动时,小车向右运动,且系统水平方向动量守恒C.小球向左摆到最高点,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反答案:BD解析:[以小球和小车组成的系统为研究对象,在水平方向上不受力的作用,所以系统在水平方向上动量守恒,由于初始状态小车与小球均静止,所以小球与小车在水平方向上的动量要么都为零,要么大小相等、方向相反,选项A、C错误,选项B、D正确.]三、非选择题:14.一辆质量m1=3.0×103 kg的小货车因故障停在车道上,后面一辆质量m2=1.5×103 kg的轿车来不及刹车,直接撞入货车尾部失去动力.相撞后两车一起沿轿车运动方向滑行了s=6.75 m停下.已知车轮与路面间的动摩擦因数μ=0.6,求碰撞前轿车的速度大小.(重力加速度取g=10 m/s2)[解析]两车一起运动时,由牛顿第二定律得a=F fm1+m2=μg=6 m/s2v=2as=9 m/s两车碰撞前后,由动量守恒定律(取轿车滑行方向为正方向)得m2v0=(m1+m2)vv0=m1+m2m2v=27 m/s.[答案]27 m/s15.如图所示,甲车质量m1=20 kg,车上有质量M=50 kg的人,甲车(连同车上的人)以v=3 m/s 的速度向右滑行,此时质量m2=50 kg的乙车正以v0=1.8 m/s的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?不计地面和小车的摩擦,且乙车足够长.[解析]人跳到乙车上后,如果两车同向,甲车的速度小于或等于乙车的速度就可以避免两车相撞以人、甲车、乙车组成的系统为研究对象由水平方向动量守恒得:(m1+M)v-m2v0=(m1+m2+M)v′,解得v′=1 m/s以人与甲车为一系统,人跳离甲车过程水平方向动量守恒,得:(m1+M)v=m1v′+Mu解得u=3.8 m/s因此,只要人跳离甲车的速度u≥3.8 m/s就可避免两车相撞.[答案]大于等于3.8 m/s16.如图所示,在光滑的水平杆上套有一个质量为m的滑环,滑环通过一根不可伸缩的轻绳悬挂着一个质量为M的物块(可视为质点),绳长为L.将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定,仍给物块以同样的水平冲量,求物块摆起的最大高度.[解析] 滑环固定时,根据机械能守恒定律,有MgL =12Mv 20,解得v 0=2gL 滑环不固定时,物块的初速度仍为v 0,在物块摆起至最大高度h 时,它们的速度都为v ,在此过程中物块和滑环组成的系统机械能守恒,水平方向动量守恒,则:Mv 0=(m +M )v12Mv 20=12(m +M )v 2+Mgh 由以上各式,可得h =m m +ML . [答案]m m +M L。

高二物理动量守恒定律试题答案及解析

高二物理动量守恒定律试题答案及解析

高二物理动量守恒定律试题答案及解析1.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大【答案】C【解析】水平面光滑,把两个人和小车看做糸统,在水平方向不受外力,糸统动量守恒。

若小车不动,A、B两个动量相等,由于不知道两个质量大小,所以不能确定两个的速度,A不对。

若小车向左运动,A、B总动量向右,所以A动量大于B动量,故C正确。

若小车向右运动,A、B总动量向左,B动量大于A动量,D错。

【考点】动量守恒2.如图所示,在光滑水平面上,有一质量为M="3" kg的薄板和质量为m="1" kg的物块.都以v="4" m/s的初速度朝相反方向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.4 m/s时,物块的运动情况是( )A.做加速运动B.做减速运动C.做匀速运动D.以上运动都可能【答案】A【解析】开始阶段,m向右减速,M向左减速,根据系统的动量守恒定律得:当m的速度为零时,.规定向右为正方向,根据动量守恒定律得:,代入解得:设此时M的速度为v1.此后m将向右加速,M继续向左减速;当两者速度达到相同时,设共同速度为.规定向右为正方向,由动量守恒定律得:,代入解得:.两者相对静止后,一起向右做匀速直线运动.由此可知当M的速度为时,m处于向右加速过程中.故A正确.【考点】考查了动量守恒定律的应用3.如图所示,质量为m的铅弹以大小为初速度射入一个装有砂子的总质量为M的静止的砂车中并与车相对静止,砂车与水平地面间的摩擦可以忽略.求:(1)弹和砂车的共同速度;(2)弹和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为的砂子时砂车的速度【答案】(1) (2)【解析】:(1)以铅球、砂车为系统,水平方向动量守恒,,得球和砂车的共同速度.(2)球和砂车获得共同速度后漏砂过程中系统水平方向动量也守恒,设当漏出质量为的砂子时砂车的速度为,砂子漏出后做平抛运动,水平方向的速度仍为,由,得.【考点】考查了动量守恒定律的应用4.(6分)如图所示,木板A质量mA =1 kg,足够长的木板B质量mB=4 kg,质量为mC=1kg的木块C置于木板B上,水平面光滑, B、C之间有摩擦,开始时B、C均静止,现使A以v=12 m/s的初速度向右运动,与B碰撞后以4 m/s速度弹回. 求:(1)B运动过程中的最大速度大小.(2)C运动过程中的最大速度大小.【答案】(1)4 m/s.;(2)3.2 m/s.【解析】(1)A与B碰后瞬间, C的运动状态未变, B速度最大. 由A、B系统动量守恒(取向右为正方向)有: mA v+0=-mAvA+mBvB代入数据得: vB=4 m/s.(2)B与C相互作用使B减速、C加速,由于B板足够长,所以B和C能达到相同速度,二者共速后, C速度最大,由B、C系统动量守恒,有mB vB+0=(mB+mC)vC,代入数据得: vC=3.2 m/s.【考点】动量守恒定律的应用。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

高考物理动量守恒定律真题汇编(含答案)含解析

高考物理动量守恒定律真题汇编(含答案)含解析

高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律测试题及解析1.(2019·北京海淀一模)如图所示,站在车上的人,用锤子连续敲打小车。

初始时,人、车、锤子都静止。

假设水平地面光滑,关于这一物理过程,下列说法正确的是( )A .连续敲打可使小车持续向右运动B .人、车和锤子组成的系统机械能守恒C .当锤子速度方向竖直向下时,人和车水平方向的总动量为零D .人、车和锤子组成的系统动量守恒解析:选C 人、车和锤子整体看做一个处在光滑水平地面上的系统,水平方向上所受合外力为零,故水平方向上动量守恒,总动量始终为零,当锤子有相对地面向左的速度时,车有向右的速度,当锤子有相对地面向右的速度时,车有向左的速度,故车做往复运动,故A 错误;锤子击打小车时,发生的不是完全弹性碰撞,系统机械能有损耗,故B 错误;锤子的速度竖直向下时,没有水平方向速度,因为水平方向总动量恒为零,故人和车水平方向的总动量也为零,故C 正确;人、车和锤子在水平方向上动量守恒,因为锤子会有竖直方向的加速度,故锤子竖直方向上合外力不为零,竖直方向上动量不守恒,系统总动量不守恒,故D 错误。

2.质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m /s 的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4 kg ,地面光滑,则车后来的速度为(g =10 m/s 2)( )A .4 m /sB .5 m/sC .6 m /sD .7 m/s解析:选A 物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒。

已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体在水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:m v +M v 0=(M +m )v ′,解得:v ′=m v +M v 0M +m =4×51+4m /s =4 m/s ,故选项A 正确,B 、C 、D 错误。

3.[多选](2020·泸州第一次诊断)在2019年世界斯诺克国际锦标赛中,中国选手丁俊晖把质量为m 的白球以5v 的速度推出,与正前方另一静止的相同质量的黄球发生对心正碰,碰撞后黄球的速度为3v ,运动方向与白球碰前的运动方向相同。

若不计球与桌面间的摩擦,则( )A .碰后瞬间白球的速度为2vB .两球之间的碰撞属于弹性碰撞C .白球对黄球的冲量大小为3m vD .两球碰撞过程中系统能量不守恒解析:选AC 由动量守恒定律可知,相同质量的白球与黄球发生对心正碰,碰后瞬间白球的速度为2v ,故A 正确。

碰前的动能为12m (5v )2=252m v 2,碰后的动能为12m (3v )2+12m (2v )2=132m v 2,两球之间的碰撞不属于弹性碰撞,故B 错误。

由动量定理,白球对黄球的冲量I 大小就等于黄球动量的变化Δp ,Δp =3m v -0=3m v ,故C 正确。

两球碰撞过程中系统能量守恒,损失的动能以其他形式释放,故D 错误。

4.如图甲所示,物块A 、B 的质量分别是m A =4.0 kg 和m =3.0 kg ,用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触,另有一物块C 从t =0时以一定速度向右运动在t =4 s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图像如图乙所示,墙壁对物块B 的弹力在4 s ~12 s 的时间内对B 的冲量I 的大小为( )A .9 N·sB .18 N·sC .36 N·sD .72 N·s解析:选C 由题图乙知,C 与A 碰前速度为v 1=9 m /s ,碰后速度为v 2=3 m/s ,物块C 与A 碰撞过程动量守恒,以C 的初速度方向为正方向,由动量守恒定律得:m C v 1=(m A +m C )v 2,12 s 末A 和C 的速度为v 3=-3 m/s,4 s 到12 s ,墙对B 的冲量为:I =(m A +m C )v 3-(m A +m C )v 2,代入数据解得:I =-36 N·s ,方向向左,故墙壁对物块B 的弹力在4 s ~12 s 的时间内对B 的冲量I 的大小为36 N·s ,故C 正确,A 、B 、D 错误。

5.如图,立柱固定于光滑水平面上O 点,质量为M 的小球a 向右运动,与静止于Q 点的质量为m 的小球b 发生弹性碰撞,碰后a 球立即向左运动,b 球与立柱碰撞能量不损失,所有碰撞时间均不计,b 球恰好在P 点追到a 球,Q 点为OP 间中点,则a 、b 球质量之比M ∶m =( )A .3∶5B .1∶3C .2∶3D .1∶2解析:选A 设a 、b 两球碰后速度大小分别为v 1、v 2。

由题意可知:b 球与挡板发生弹性碰撞后恰好在P 点追上甲,则从碰后到相遇a 、b 球通过的路程之比为:s 1∶s 2=1∶3根据s =v t 得:v 2=3v 1以水平向右为正方向,两球发生弹性碰撞,由动量守恒定律得:M v 0=M (-v 1)+m v 2由机械能守恒定律得:12M v 02=12M v 12+12m v 22 解得M ∶m =3∶5,故A 正确。

6.(2019·内江一模)如图所示,将一质量为m 的小球,从放置在光滑水平地面上、质量为M 的光滑半圆形槽的槽口A 点,由静止释放经过最低点B 运动到C 点,下列说法中正确的是( )A .从A →B ,半圆形槽运动的位移一定大于小球在水平方向上运动的位移B .从B →C ,半圆形槽和小球组成的系统动量守恒C .从A →B →C ,C 点可能是小球运动的最高点D .小球最终在半圆形槽内做往复运动解析:选D 小球与半圆形槽水平方向动量守恒,m v 1=M v 2,则m v 1t =M v 2t ,mx 1=Mx 2,若m <M ,则x 1>x 2,故A 错误;从B →C ,半圆形槽和小球组成的系统水平方向受外力为零,水平方向上动量守恒,故B 错误;从A →B →C ,小球和半圆形槽组成的系统机械能守恒,小球到达C 点时,速度不为零,小球运动的最高点应与A 点等高,故C 错误;小球从右边最高点滑下运动到左边最高点A 时,速度又减到零,如此反复,做往复运动,故D 正确。

7.如图所示,在光滑的水平面上,有两个质量均为m 的小车A 和B ,两车之间用轻质弹簧相连,它们以共同的速度v 0向右运动,另有一质量为m 的黏性物体,从高处自由落下,正好落在A 车上,并与之粘合在一起,粘合之后的运动过程中,弹簧获得的最大弹性势能为( )A.14m v 02 B.18m v 02 C.112m v 02 D.115m v 02 解析:选C 黏性物体落在A 车上,由动量守恒有m v 0=2m v 1,解得v 1=v 02,之后整个系统动量守恒,当系统再次达到共同速度时,有2m v 0=3m v 2,解得v 2=2v 03,此时弹簧获得的弹性势能最大,最大弹性势能E p =12m v 02+12×2m ⎝⎛⎭⎫v 022-12×3m ⎝⎛⎭⎫23v 02=112m v 02,所以C 正确。

8.(2020·青岛模拟)质量m =260 g 的手榴弹从水平地面上以v 0=14.14 m /s 的初速度斜向上抛出,上升到距地面h =5 m 的最高点时炸裂成质量相等的两块弹片,其中一块弹片自由下落到达地面,落地动能为5 J 。

重力加速度g =10 m/s 2,空气阻力不计,火药燃烧充分,求:(1)手榴弹爆炸前瞬间的速度大小;(2)手榴弹所装弹药的质量;(3)两块弹片落地点间的距离。

解析:(1)设手榴弹上升到最高点时的速度为v 1,根据机械能守恒有12m v 02=12m v 12+mgh 解得:v 1=10 m/s 。

(2)设每块弹片的质量为m 1,爆炸后瞬间其中一块速度为零,另一块速度为v 2,有m 1gh =5 J设手榴弹装弹药的质量为Δm ,有Δm =m -2m 1代入数据解得:Δm =0.06 kg 。

(3)另一块做平抛运动时间为t ,两块弹片落地点间距离为Δx ,有m v 1=m 1v 2Δx =v 2th =12gt 2 解得:Δx =26 m 。

答案:(1)10 m/s(2)0.06 kg(3)26 m9.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。

某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度)。

已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动。

取重力加速度的大小g=10 m/s2。

(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?解析:(1)规定向右为速度正方向。

冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3。

由水平方向动量守恒和机械能守恒有m2v20=(m2+m3)v12m2v202=12(m2+m3)v2+m2gh式中v20=-3 m/s为冰块推出时的速度解得m3=20 kg。

(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v20=0解得v1=1 m/s设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒定律和机械能守恒定律有m2v20=m2v2+m3v312m2v202=12m2v22+12m3v32解得v2=1 m/s由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩。

答案:(1)20 kg(2)见解析10.光滑水平面上放有一上表面光滑、倾角为α的斜面体A,斜面体质量为M、底边长为L,如图所示。

将一质量为m可视为质点的滑块B从斜面的顶端由静止释放,滑块B经过时间t刚好滑到斜面底端。

此过程中斜面对滑块的支持力大小为F N,则下列说法中正确的是()A.F N=mg cos αB.滑块下滑过程中支持力对B的冲量大小为F N t cos αC.滑块B下滑的过程中A、B组成的系统动量守恒D.此过程中斜面体向左滑动的距离为mm+ML解析:选D当滑块B相对于斜面加速下滑时,斜面体A水平向左加速运动,所以滑块B相对于地面的加速度方向不再沿斜面方向,即沿垂直于斜面方向的合外力不再为零,所以斜面对滑块的支持力F N 不等于mg cos α,故A错误;滑块B下滑过程中支持力对B的冲量大小为F N t,故B错误;由于滑块B有竖直方向的分加速度,所以系统竖直方向合外力不为零,系统的动量不守恒,故C 错误;系统水平方向不受外力,水平方向动量守恒,设A 、B 两者水平位移大小分别为s 1、s 2,取水平向左为正方向,由动量守恒定律得M s 1t -m s 2t =0,即有Ms 1=ms 2,又s 1+s 2=L ,解得s 1=m m +ML ,故D 正确。

相关文档
最新文档