三峡大学计算机与信息学院《信号检测与估计》研究生课程教

合集下载

信号检测与估计原理及应用教学设计

信号检测与估计原理及应用教学设计

信号检测与估计原理及应用教学设计一、课程概述本课程主要介绍信号检测与估计的基本原理与方法,包括信号检测的几种假设检验方法、似然比检验方法和贝叶斯检验方法等,以及信号估计的线性最小均方误差估计方法和极大似然估计方法等。

同时,针对实际应用,本课程将以雷达信号处理、数字通信和信号处理等为例,介绍信号检测与估计在实际应用中的具体应用。

二、课程目标1. 理论目标:掌握信号检测与估计的基本概念和原理,并掌握信号检测的几种假设检验方法、似然比检验方法和贝叶斯检验方法等,以及信号估计的线性最小均方误差估计方法和极大似然估计方法等。

2. 实践目标:能够熟练掌握使用MATLAB等软件对信号进行检测和估计的实现,并能够应用所学知识解决实际问题,如雷达信号处理、数字通信和信号处理等。

三、课程内容1. 信号检测基本概念信号检测处理的基本概念,基于最小误差概念的信号检测理论,二元信号检测,多元信号检测等。

2. 基于最小误差概念的信号检测贝叶斯检测、极大似然检测、信噪比检测等。

3. 常用信号检测方法单门限检测、双门限检测、能量检测、协方差矩阵检测等。

4. 似然比检验方法似然比基本概念,二元似然比检验、多元似然比检验等。

5. 贝叶斯检验方法贝叶斯检验概率、最佳贝叶斯检验、线性贝叶斯检验等。

6. 信号估计基于正交函数系的线性最小均方误差估计,基于极大似然估计的参数估计等。

7. 应用实例雷达信号检测、数字通信信号检测、始终对话检测与估计等。

四、课程教学方法本课程采用理论授课与实践相结合的教学方法。

理论课程以教师授课、案例演示为主,实践环节通过上机实验学习和设计完成学生实践等形式来巩固所学知识。

五、教学评价本课程教学评价主要采用以下几种手段:1. 学生考试通过期末考试对学生掌握的信号检测与估计知识进行考核。

2. 实验报告通过本课程的实验环节,要求学生完成实验报告,包括实验目的、实验内容、实验结果、实验心得等部分,对学生理解课程知识情况进行评测。

信号检测与估计理论

信号检测与估计理论

平方检测算法是一种简单而有效的信 号检测算法,它通过比较输入信号的 平方和与阈值来判断是否存在信号。
信号估计理论
02
信号估计的基本概念
信号估计
利用观测数据对未知信号或系统状态进行推断或预测 的过程。
信号估计的目的
通过对信号的处理和分析,提取有用的信息,并对未 知量进行估计和预测。
信号估计的应用
在通信、雷达、声呐、图像处理、语音识别等领域有 广泛应用。
阈值设置
03
在信号检测中,阈值是一个关键参数,用于区分信号和噪声。
通过调整阈值,可以控制错误判断的概率。
信号检测的算法
最大后验概率算法
最大后验概率算法是一种常用的信号 检测算法,它基于贝叶斯决策准则, 通过计算后验概率来判断是否存在信 号。
平方检测算法
多重假设检验算法
多重假设检验算法是一种处理多个假 设的信号检测算法,它通过比较不同 假设下的似然比来确定最佳假设。
医学影像信号处理
X光影像处理
通过对X光影像进行去噪、增强、分割等处理,可以提取出 病变组织和器官的形态特征,为医生提供诊断依据。
MRI影像处理
磁共振成像(MRI)是一种无创的医学影像技术,通过对MRI 影像进行三维重建、分割、特征提取等技术处理,可以更准确
地诊断疾病。
超声影像处理
超声影像是一种实时、无创的医学影像技术,通过对超声影像 进行实时采集、动态分析、目标检测等技术处理,可以为临床
03
估计的精度和效率。
深度学习在信号检测与估计中的应用
01
深度学习是人工智能领域的一种重要技术,在信号检
测与估计中信号进行高效的特征
提取和分类,提高信号检测的准确性和稳定性。

信号检测与估计-第一章 信号检测与估计 教学课件

信号检测与估计-第一章 信号检测与估计 教学课件

下, 平均错误概率为
Pe P(D0 / H1) P(D1 / H0 ) erfc[
E(1 r) ]
N0
E为两个信号的平均能量,r两信号之间的相关系数 E/N0为信噪比
计算三种常用的二元通信系统的性能:
1 相干相移键控系统(CPSK)
s0 (t) Asin ct (0 t T ) s1(t) Asin( ct ) Asin ct (0 t T )
若代价因子与随机参量矢量无关, 则其判决规 则与简单假设下的贝叶斯准则判决式相同
在代价因子与随机参量无关的条件下,求 似然比的步骤: 1 计算 p(x / α, H1 )
2 计算 p(x / H1 ) p(x / α, H1 ) p(α)d α {α}
3 计算似然比 (x) p(x / H1 ) p(x / H 0 )
大, 所付出的代价越大
2 几种常用的代价函数
| ˆ |
a
ˆ
(a)
( ˆ )2
( ˆ )2
ˆ
a (b)
C( ,ˆ ) K ,| | C( ,ˆ ) 0,| |
a1
a2
ˆ
( c)
ˆ
( d)
(a)误差绝对值代价函数 (b)误差平方代 价函数(c)相对误差的平方代价函数 (d) 均匀代价函数
H0—无信号,没有随机参量,简单假设 H1---有信号,有随机参量,复合假设
§1.5.1 贝叶斯准则
设 α (1,2,,m )T 是与H1有关的随机参量矢 量
p(α) 是随机参量矢量的m维联合先验概率 密度
代价因子为 C00 , C10 , C01(α), C11(α)
似然函数为 p(x / H0 ),
唯一
p(x / α, H1) 不唯一

信号检测与估计课程设计

信号检测与估计课程设计

信号检测与估计 课程设计一、课程目标知识目标:1. 让学生掌握信号检测与估计的基本原理,理解信号处理在通信技术中的应用。

2. 使学生了解不同类型的信号检测方法,如最大似然检测、匹配滤波器等,并掌握其优缺点及适用场景。

3. 帮助学生掌握信号估计的基本方法,如最小二乘法、卡尔曼滤波等,并了解其在实际系统中的应用。

技能目标:1. 培养学生运用数学工具对信号进行处理和分析的能力,提高解决实际问题的能力。

2. 让学生具备设计简单信号检测与估计系统的能力,能够根据实际需求选择合适的算法和参数。

3. 培养学生运用编程工具(如MATLAB)实现信号检测与估计算法的能力。

情感态度价值观目标:1. 培养学生对信号处理领域的兴趣,激发他们探索未知、创新技术的热情。

2. 培养学生的团队合作精神,使他们学会在团队中沟通、协作,共同解决问题。

3. 培养学生严谨、务实的科学态度,使他们具备良好的学术道德和职业素养。

本课程针对高年级本科生或研究生,考虑到学生的数学基础和专业知识,课程性质以理论教学为主,实践操作为辅。

在教学过程中,注重引导学生将理论知识与实际应用相结合,提高他们的创新能力和实践能力。

通过本课程的学习,期望学生能够达到上述课程目标,为后续相关课程的学习和未来职业发展打下坚实基础。

二、教学内容1. 信号检测基础理论:介绍信号检测的基本概念、假设检验和判决准则。

关联课本第二章,讲解信号检测的理论框架。

- 假设检验和判决准则- 信号检测性能分析2. 常见信号检测方法:分析最大似然检测、贝叶斯检测、匹配滤波器等检测方法。

关联课本第三章,对比不同检测方法的性能和适用场景。

- 最大似然检测- 贝叶斯检测- 匹配滤波器3. 信号估计理论:讲解最小二乘法、卡尔曼滤波等估计方法。

关联课本第四章,探讨信号估计在实际系统中的应用。

- 最小二乘法- 卡尔曼滤波4. 实践操作与案例分析:结合MATLAB等编程工具,分析实际信号检测与估计案例。

第五章信号检测与估计清华

第五章信号检测与估计清华

根据最小均方误差估计准则,估计量为
mse p x d

由题设,可知,给定 随机变量

条件下,观测信号xk是均值为 ,方差为

2 的高斯 n
p
2 exp 2 2 2 2 1
xk 2 pxk exp 2 2 2 n 2 n 1 px pxk
本章的核心问题之一就是研究上述函数的构造方法,评估所构造估计量的优劣。
国家重点实验室
5.1 引言
ˆ E θ x
3. 估计量性能的评估
估计量的均值

估计量的均方误差 ~ ˆ θ x θ θ x
2 ~ ˆ E θ 2 x E θ θx
国家重点实验室
5.2 随机参量的贝叶斯估计
4. 最大后验估计
根据上述分析,得到最大后验概率估计量为
p x
ˆ map
0
两种等价形式
ln p x
ˆ map
0
ln px ln p 0 ˆ map
2xk 2 2 2 2 n 2 k 1
N
所以最大后验估计量为满足以下方程的解
2xk 2 2 2 2 2 k 1 n
N
0
ˆ map
N 1 0 2 2 2 k 1 n n ˆ map
3. 最小均方误差估计



2 ˆ ˆ 2 2 p x d ˆ 2




ˆ p x d p x d 2

信号检测与估计PPT课件

信号检测与估计PPT课件

is unbiase ˆdm2 l if E[
] = σ 2. That is,
E [K 1k K 1 (y k m )2 ] K 1E [K m 2 k K 1 Y k 2 2 m k K 1y k]2
Hence,
ˆ
2 m
l
is unbiased.
可编辑课件PPT
21
6.4 贝叶斯估计
(a) Assuming the constant m is not known, obtain the ML estmiˆ mm late
of
the mean.
(b) Suppose now that the mean m is known, but the variance σ 2 is unknown.
等式两边同取对数得 利用式6.1.2 解似然方程得到似然估计得
得到 the ML estimator is
。 Thus,
可编辑课件PPT
6
6.1 最大似然估计
(b) 最大似然估计式为
方程两边取对数得
其中对lnL(σ 2)最大化等价于对σ 2最小化
由似然函数的不变性得
可编辑课件PPT
7
6.1 最大似然估计
可编辑课件PPT
24
6.4 贝叶斯估计
Figure 6.3.1 Density function of the unbiased estimator θˆ .
可编辑课件PPT
19
6.3 优良估计评价标准
无偏最小方差: ˆ 是θ的最小方差和无偏估计,对所有的参数θ'都有E(θ')=θ,则对所有 ˆ
var( )≤var(θ')
也就是说,对于所有θ无偏估计, 具有最小的方差。

信号检测与估计课程教学大纲

信号检测与估计课程教学大纲

《信号检测与估计》课程教学大纲
一、课程基本信息
课程名称(中):信号检测与估计
课程名称(英):Signal Detection and Estimation
课程编号:××××××
学时:48学时
学分:2-3学分
考核方式:闭卷笔试
适用学科及专业:信息与通信工程、信号与信息处理、电子信息工程、通信工程、电子信息科学与技术、电子科学与技术
适用对象:硕士、高年级本科生
先修课程:概率论与数理统计,信号与系统,随机过程,数字信号处理
二、课程的性质和任务
本课程是“信息与通信工程”学科硕士研究生的重要基础课,是电子信息工程、通信工程、电子信息科学与技术等专业本科生的专业基础选修课。

本课程以信息传输系统为研究对象,主要研究随机信号统计处理的理论和方法,包括匹配滤波、信号检测及信号估计三个方面的内容。

它采用数理统计的方法,研究从噪声环境中检测出信号,并估计信号参量或信号波形的理论,是现代信息理论的一个重要分支,广泛应用于电子信息系统、自动控制、模式识别、射电天文学、气象学、地震学、生物医学工程及航空航天系统工程等领域。

三、课程的教学目的和要求
通过本课程学习,使学生了解信号检测与估计的统计处理方法的特点,掌握信号检测与估计的基本概念、理论和方法,建立随机信号统计处理的观念和思维方法,提高用统计处理方法解决问题的能力,能对工程实际中应用的系统建立数学模型,并对数学模型进行统计求解,为今后的学习和工作打下良好基础。

四、教学内容及要求
第一章绪论(1学时)
教学内容:
1.1 随机过程信号检测与估计的研究对象及应用
1.2 信号检测与估计的内容及研究方法
1。

第五章信号检测与估计理论(1)PPT课件

第五章信号检测与估计理论(1)PPT课件
1
参数估计实质上一个统计推断的问题。估计 理论就是研究对观测的数据进行怎样运算才能获 得对未知参数的最佳估计值的理论。所谓最佳是 指估计值与真值最接近,衡量这种接近程度有各 种不同的标准,就产生了各种不同的估计方法。
2
第5章 信号的统计估计理论
5.1 引言 5.1.1 估计的分类
信号的统计估计大致可分为 参量估计:属于静态估计;(被估计的参量是随机或非随机的未
16
c~
~
0
a误差平方代价函数
c
2
17
c~
~
0
b 误差绝对值代价函数
c
18
c~
1
~
0
22
c 均匀代价函数
1
c
2
0
2
19
说明:代价函数也可以选择其它的形式;
~
代价函数的共同特点是非负性和 0 时 ,
有极小值。
平均代价C表示为
C
c
p
,
x
dxd
2.贝叶斯估计的概念

p 已知,选定代价函数 c
使 C | x 达到极小值。
从(5.2.9)式估计量
mse
的构造公式可见,它是
的条件均值,所以最小均方误差估计又称条件均值估计。
利用关系式
p | x px | p px

px p , xd px | p d 24
得最小均方误差估计量的另一形式的构造公式
p x | p d
解得
s mse
spx | spsds px | spsds
ssMM spx | spsds ssMM px | spsds
s mse
x
f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三峡大学计算机与信息学院《信号检测与估计》研究生课程教学大纲
课程名称:总学时: 32 适用专业:通信与信息工程制定人:黄瑶审核人(学科负责人):
教学目的与基本要求:(150字以内)
信号的检测与估计理论是现代信息理论的一个重要分支,是现代通信、雷达、声纳以及自动控制技术的理论基础。

不仅如此,它也在模式识别、射电天文学、遥感遥测、天气预报、系统辨识乃至医学、社会学等领域或技术中有广泛的应用。

通过本课程的学习,使学生系统地了解信号检测与估计的基础知识和基本理论,掌握对受噪信号处理的基本方法。

其基本要素是运用数理统计的理论与方法,对统计的通信信号进行分析,如检测信号状态、估计信号参量等,为今后科学研究打下一个坚实的基础。

先修课程:
高等数学、概率论与数理统计、随机过程、信号与系统。

信号检测与估计理论的研究对象和发展历程;随机信号及其统计描述,包括随机过程、高斯噪声与白噪声;信号检测的基本理论和方法,包括经典检测理论、确知信号的检测、随机参量信号的检测和多重信号的检测;估计理论,包括估计的方法、性质以及信号参量的估计等。

第一章绪论
1.1 信号检测与估计理论的研究对象
1.2 信号检测与估计理论的发展历程
第二章随机信号及其统计描述
2.1 随机过程
2.2 高斯噪声与白噪声
第三章经典检测理论
3.1 检测理论的基本概念
3.2 最大后验概率准则
3.3 最小风险Bayes准则
3.4 最小错误概率准则
3.5 极大极小准则
3.6 Neyman-Person准则
3.7 M元检测
第四章确知信号的检测
4.1 高斯白噪声下二元确知信号的检测
4.2 三种常用系统性能评价
4.3 高斯白噪声下多元确知信号的检测
4.4 匹配滤波器
4.5 广义匹配滤波器
第五章随机参量信号的检测
5.1 复合假设检测
5.2 随机相位信号的检测
5.3 随机相位和振幅信号的检测
5.4 随机频率信号的检测
第六章经典估计理论
6.1 引言
6.2 Bayes估计
6.3 最大后验估计
6.4 最大似然估计
6.5 最小二乘法估计
6.6 估计量的性质
6.7克拉美-罗不等式
6.8 估计的最小均方误差限
第七章信号参量的估计
7.1 概述
7.2 振幅估计
7.3 相位估计
7.4 时延估计
7.5 频率估计
实验、实践环节及习题内容与要求:
无课堂实验、实践环节;根据每章内容布置习题,完成情况计入平时成绩。

考核方式(开卷,闭卷,笔试+实验,撰写论文,完成实验设计等):
本课程总成绩由两部分组成:课程论文成绩占70%,平时成绩占30%。

其中课程论文为一篇综述性论文。

平时成绩为课堂考勤、作业和课堂讨论的综合评价。

教材及主要参考文献(顺序为:文献名,作者,出版时间,出版单位):
1.《信号检测与估计》,2010年6月,清华大学出版社,张立毅
2.信号检测与估计——理论与应用,(美)舍恩霍夫等著,关欣等译,2012年1月,电子工业出
版社。

相关文档
最新文档