信号检测与估计理论第一章习题讲解

合集下载

信号检测与估计-第一章 信号检测与估计 教学课件

信号检测与估计-第一章 信号检测与估计 教学课件

下, 平均错误概率为
Pe P(D0 / H1) P(D1 / H0 ) erfc[
E(1 r) ]
N0
E为两个信号的平均能量,r两信号之间的相关系数 E/N0为信噪比
计算三种常用的二元通信系统的性能:
1 相干相移键控系统(CPSK)
s0 (t) Asin ct (0 t T ) s1(t) Asin( ct ) Asin ct (0 t T )
若代价因子与随机参量矢量无关, 则其判决规 则与简单假设下的贝叶斯准则判决式相同
在代价因子与随机参量无关的条件下,求 似然比的步骤: 1 计算 p(x / α, H1 )
2 计算 p(x / H1 ) p(x / α, H1 ) p(α)d α {α}
3 计算似然比 (x) p(x / H1 ) p(x / H 0 )
大, 所付出的代价越大
2 几种常用的代价函数
| ˆ |
a
ˆ
(a)
( ˆ )2
( ˆ )2
ˆ
a (b)
C( ,ˆ ) K ,| | C( ,ˆ ) 0,| |
a1
a2
ˆ
( c)
ˆ
( d)
(a)误差绝对值代价函数 (b)误差平方代 价函数(c)相对误差的平方代价函数 (d) 均匀代价函数
H0—无信号,没有随机参量,简单假设 H1---有信号,有随机参量,复合假设
§1.5.1 贝叶斯准则
设 α (1,2,,m )T 是与H1有关的随机参量矢 量
p(α) 是随机参量矢量的m维联合先验概率 密度
代价因子为 C00 , C10 , C01(α), C11(α)
似然函数为 p(x / H0 ),
唯一
p(x / α, H1) 不唯一

信号检测与估计 01

信号检测与估计 01
'(x) 0 (或者 '(x) 0 )。则ζ=φ(ξ)也是一个连续型的随机变
量,其概率密度函数为
g( y) f [h( y)] h '( y)
式中h(ζ)是φ(ξ)的反函数。
1.2 随机过程的基本概念
X (t)
t
• 随机过程的分布函数
若X(t)是一个随机过程,对于给定的时刻 t1 ,T 其分布函数记为
若随机过程X(t)和Y(t)的互协方差函数等于零,或互相关系数等于零, 则称X(t)和Y(t) 不相关。
无论是随机变量还是随机过程,统计独立比不相关的要求更严,所谓不相关是 指两者之间没有线性相关关系,但并非完全没有关系。不独立的随机变量(或过 程)不一定就是相关的。但相关的随机变量(或过程)则一定不是统计独立的。
T
XT () xT (t)e jt dt x(t)e jt dt
T
样本函数x(t)的功率谱为
Ss
()
lim
T
1 2T
XT () 2
随机过程的功率谱密度(PSD)
SX
()
E{Ss ()}
lim
T
1 2T
E{
XT
()
2}
功率谱密度表示随机过程的功率在不同的频率上的概率分布。即单位频带 宽度上功率的概率分布,通常用对数方式表示为dBm/Hz或dBW/Hz。
0
erfc(x) 1 erf(x)
(x) 1 1 erfc( x )
2
2
1
0.5
(x)
0
erf(x)
-0.5
-1
-4
-3
-2
-1
0
1
2
3
4

信号检测与估计答案1

信号检测与估计答案1

信号检测与估计答案15-2 若观测方程为i i x s n =+()1,2,,i N =,其中信号()2~0,s s N σ,噪声()()2~0,1,2,,i n n N i N σ=独立同分布,且信号与噪声满足{}0i E sn =。

求s 的最大后验概率估计ˆMAP s。

解:依题意,以信号s 为条件的观测样本的概率密度函数为()()()2112221,,|exp 22N i i N Nnnx s f x x s σπσ=⎡⎤-⎢⎥⎢⎥=-⎢⎥⎢⎥⎣⎦∑信号s 的概率密度函数为()222ss f s σ⎛⎫=- ⎪⎝⎭则由上面两式可得()()()()()211222212221ln ,,|ln exp 221ln 22N i i N N nn Ni i N n n x s f x x s ss x s s σπσσπσ==⎧⎫⎡⎤⎧⎫-⎪⎪⎢⎥⎪⎪∂∂⎪⎪⎪⎪⎢⎥=-⎨⎨⎬⎬∂∂⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭⎡⎤-⎢⎥∂⎢⎥=-∂⎢⎥⎢⎥⎣⎦∑∑()22222ln ln 22s s s s f s s s s s s⎧⎫⎡⎤⎛⎫∂∂⎪⎪=-⎥⎨⎬ ⎪∂∂⎥⎝⎭⎪⎪⎦⎩⎭⎡⎤∂=-⎢⎥∂⎢⎥⎣⎦=-σσσ最大后验概率准则为()ˆmax |MAP f θθθ=x ,即()ˆ|0MAPf θθθθ=∂⎡⎤=⎢⎥∂⎣⎦x ,又可表示为()()ˆln |ln 0MAPf f θθθθθθ=∂∂⎡⎤+=⎢⎥∂∂⎣⎦x ,将之前结果带入其中可得2221ˆNs MAP ii ns sx N σσσ==+∑ 。

5-4已知观测信号0()cos()()x t A t n t ωθ=++(0)t T ≤≤,式子中()n t 是零均值,功率谱为2N 的高斯白噪声,θ是在[0,2)π上均匀分布的随机变量,求A 的最大似然估计和估计量的均方误差。

解:0()cos()()x t A t n t ωθ=++()x t 的似然函数为:020002220000022000000()cos()()1(|,)exp [()cos()]1exp [()2()cos()cos ()]12exp [()()cos()2TTTTTT x t A t n t f x A F x t A t dt N F x t dt x t A t dt At dt N A A T F x t dt x t t dt N N N ωθθωθωθωθωθ=++⎧⎫=⋅--+⎨⎬⎩⎭⎧⎫=⋅--+++⎨⎬⎩⎭⎧⎫=⋅-++-⎨⎬⎩⎭⎰⎰⎰⎰⎰⎰因为1(),022f θθππ=≤≤ 所以202200000(|)(|,)()12exp{}exp [()()2Tf x A f x A f d A TAq F x t dt I N N N πθθθ=⎧⎫=⋅--⎨⎬⎩⎭⎰⎰ 其中22200002200000()sin ()cos 12ln (|)ln ()ln ()2T TT q x t tdt x t tdt A T Aqf x A F x t dt I N N N ωω⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦=--+⎰⎰⎰令000ln (|)20()0f x A AT AqI A N A N ∂∂=⇒-++∂∂ (1)假设SNR,即02Aq N 足够大,则00022()Aq AqI N N ≈0022ˆ(1)0MLAT q q A N N T⇒-+=⇒=由2220000()sin ()cos T Tq x t tdt x t tdt ωω⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰知22202221()exp(())()242T T TqA T qATf q q I σσσ=-+所以222323240001()2T T qq x x q T q E qf q dq AT e dq e AT x e dx AT σσσ=-+∞+∞+∞-⎛⎫−−−→ ⎪==←−−− ⎪⎝⎭⎰⎰⎰ 所以221ˆ()()2MLE A E q AT A T T ==⋅= (无偏估计) 200024ˆvar(),var()44T ML N T N T N q A T T σ====5-11. 假定已知信号112()cos cos 2...cos p s t a t a t a p t ωωω=+++212()sin sin 2...sin p s t b t b t b p tωωω=+++观测信号12()()()()x t s t s t n t =++,()n t 是均值为0、均方差为1的高斯白噪声。

信号检测与估计第一章课后答案

信号检测与估计第一章课后答案
将代入得:
两边求微分得 =1/2 为判决门限 =
解得 =1/2值时达到极大极小化风险?
(2)根据一次观测的判决区域如何?
解:与上题求解类似得
=
=2/3
,=1/3
1.9 设两种假设为: : :
其中n(t)为零均值和功率为2的高斯白噪声。根据M个独 立样本(1,2,……,M),应用纽曼-皮尔逊准则进行检验。 令=0.05,试求:
(1) 最佳判决门限; (2) 相应的检测概率。 解:由(1-43)得似然比
将,n=M代入得
化简得
服从均值为2(下)和0(下),方差为2/M的高斯分布
从中解得 相应的
= =0.05
= 判为 (其中) 化简得到
判为 (1) 即曲线方程为
似然函数为 (k=1,0)
虚警概率
漏报概率
平均风险 =
其中为(1)式确定 1.3只用一次观测x来对下面两个假设作选择,:样本x为零均值、方差
的高斯变量,:样本x为零均值、方差的高斯变量,且>。 根据观测结果x,确定判决区域和。 画出似然比接收机框图。为真而选择了的概率如何? 解:(1)似然函数
|x|1时似然比为 判为
化简得 = 判为
所以得判决区域为
(2)应用纽曼-皮尔逊准则 所以得判决区域为
1.7 根据一次观测,用极大极小化检验对下面两个假设做判断 : :
设n(t)为零均值和功率为的高斯过程,且。试求: (1) 判决门限 (2) 与相应的各假设先验概率。
解:因为采用极大极小化准则,所以要求
(k=1,0) 似然比
判为 化简得
(>) 判为 得 根据选取准则而定 (2)框图
0 判为
<0 判为
x

信号与系统课后习题与解答第一章

信号与系统课后习题与解答第一章

1-1分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:图1-1所示信号分别为⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21(a )连续信号(模拟信号);(b )连续(量化)信号;(c )离散信号,数字信号;(d )离散信号;(e )离散信号,数字信号;(f )离散信号,数字信号。

1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问)(1);)sin(t e at ω-(2);nT e -(3);)cos(πn (4);为任意值)(00)sin(ωωn (5)。

221⎪⎭⎫ ⎝⎛解由1-1题的分析可知:(1)连续信号;(2)离散信号;(3)离散信号,数字信号;(4)离散信号;(5)离散信号。

1-3 分别求下列各周期信号的周期T :(1);)30t (cos )10t (cos -(2);j10t e (3);2)]8t (5sin [(4)。

[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。

(1)对于分量cos (10t )其周期;对于分量cos (30t ),其周期。

由于5T 1π=15T 2π=为的最小公倍数,所以此信号的周期。

5π21T T 、5T π=(2)由欧拉公式)t (jsin )t (cos e t j ωωω+=即)10t (jsin )10t (cos e j10t +=得周期。

5102T ππ==(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-⨯=所以周期。

信号检测与估计 张明友 第一二三八章答案

信号检测与估计 张明友 第一二三八章答案

时间:6月16日(星期一)晚上6:30-8:30 地点:六教104室(上课教室)试卷共8题,其中4题属于教材第一章内容,其余4题分别的其他章节。

请同学们对匹配滤波器,离散卡尔曼滤波,离散维纳滤波,高斯白噪声下确知信号的检测,K -L 展开,高斯白噪声信道中的单参量信号估计等内容重点关注。

1.1 (付柏成 20060150)在例1.2中,设噪声均方差电压值为σ=2v ,代价为f c =2,m c =1。

信号存在的先验概率P =0.2。

试确定贝叶斯意义下最佳门限β,并计算出相应的平均风险。

解:根据式(1-15),可以算出00.8280.21f mQc Pc ⨯Λ===⨯ 而判决门限2201ln 0.52ln88.822βσ=+Λ=+= 根据式(1-21)可知平均风险1010Pr 0.2r 0.8R Qr r =+=+01100.2(|)0.8(|)m f c P D H c P D H =+ 而011(|)(|)D P D H p x H dx =⎰1100(|)(|)D P D H p x Hdx =⎰而212(1)(|)]2x p x H σ-=-202(|)]2x p x H σ=-所以20112(1)(|)(|)]2D D x P D H p x H dx dx σ-==-⎰⎰22(1)]2x dx βσ-=-⎰=17.82()()(3.91)22β-Φ=Φ=Φ 同理1121002(|)(|)]2D D x P D H p x H dx dx σ==-⎰⎰22)2x dx βσ∞=- 8.821()1()1(4.41)22β=-Φ=-Φ=-Φ 所以0.21(3.91)0.82[1(4.41)]R =⨯⨯Φ+⨯⨯-Φ 1.2 (关瑞东 20060155)假定加性噪声()n t 服从均值为零,方差为的正态分布。

此时,两个假设为01:()():()1()H x t n t H x t n t ==+我们根据()x t 的两次独立测量值12,x x 作判断,则12,x x 是统计独立的,在假设1H 下其均值为1a =1,在假设0H 下均值为0a =0,因而在两种假设下它们的联合概率密度函数可写为22/221()(|)(2)exp()2nn i k k i x a p x H πσσ-=-=-∑ (0,1;2)k n == 于是,似然比等于22011012210()(|)()exp[](|)2n ii a a n a a p x H x x p x H σσ=--Λ==-∑如果0()x Λ≥Λ,则选择假设1H ,否则选择假设0H 。

信号检测与估计理论

信号检测与估计理论
x~N (μx,Cx),互不相关等 计价 独 , 独 于 立 立 相同 互分 统布 概率密度函数 。
第2章 信号检测与估计理论的基础知识 内容提要
三. 离散随机信号的函数
1.一维雅可比特变别换是, 简单线性 的函 变数 。 换时 2. N维雅可比变换。
四. 连续随机信号
1任 .tk 时 意刻采 x (tk) 样 (x k ; tk)所 k ( 1 ,2 , 得 ,N )的 样 概 本 率 函数描述。
平均似然 广 比 义 检 似 验 然 ,比-检 皮验 尔和 逊奈 检曼 验的基
和方法。
第3章 信号状态的统计检测理论 例题解答
例3.1 设二元信号检测的模信型号为
H 0: x1n H1: x2n
其中 观,测n噪 服声 从对称三 如3 角 图 .1(a)分 所布 。 示,
若似然 1 ,求 比最 检 图 佳 测 示 判 门 计 判 P ( 决 H 限 算 1|H 0 决 )。 式域
也相互统计独立。
七. 信号模型及统计特性
确知信号 (未和 )知 参随 量机 ; 信 随号 机参量信性 号描 的述 统
第2章 信号检测与估计理论的基础知识 例题解答
例 2.1设离散x随 服机 从信 对号 称 其 三 概 角 率 分 密 布 度 , 函
p(x)
11|x| a a2
axa (a0)
0
其他
第3章 信号状态的统计检测理论 内容提要
一.信号状态统计检测 的理 基论 本概念
信号状态观 的测 假信 设号 , 的数 概合 ,率理 密判 判 度决 决 函,结果 与判决概最 率佳 , 判决的概 。念
二.二元信号状态统计 的检 三测 个准则
贝叶斯最 检小 测平 准均 则准 错 , 奈 则 误 曼 , 皮 概尔 率逊 检 测准则的概 检 念 验 、 判 似 决 然 为 式 比 最 、简 化判 简决 能 式

信号检测与估计理论(复习题解)

信号检测与估计理论(复习题解)
优缺点
最大似然估计法具有一致性和渐近无偏性等优点,但在小样本情况下可能存在偏差。此外,该方 法对模型的假设较为敏感,不同的模型假设可能导致不同的估计结果。
最小二乘法
01
原理
最小二乘法是一种基于误差平方和最小的参数估计方法, 它通过最小化预测值与观测值之间的误差平方和来估计模 型参数。
02 03
步骤
首先,构建包含未知参数的预测模型;然后,根据观测数 据计算预测值与观测值之间的误差平方和;接着,对误差 平方和求导并令其为零,得到参数的估计值;最后,通过 求解方程组得到参数的最小二乘估计值。
优缺点
最小二乘法具有计算简单、易于实现等优点,但在处理非 线性问题时可能效果不佳。此外,该方法对异常值和噪声 较为敏感,可能导致估计结果的偏差。
01
小波变换基本原理
小波变换是一种时频分析方法,通过伸缩和平移等运算对信号进行多尺
度细化分析,能够同时提供信号的时域和频域信息。
02
小波变换在信号去噪中的应用
小波变换具有良好的时频局部化特性,可以用于信号的去噪处理。通过
对小波系数进行阈值处理等操作,可以有效去除信号中的噪声成分。
03
小波变换在信号特征提取中的应用
3. 观察相关函数的峰值,判断是否超过预设门限。
实现步骤
2. 将待检测信号与本地参考信号进行相关运算。
优缺点:相关接收法不需要严格的信号同步,但要求参 考信号与待检测信号具有较高的相关性,且容易受到多 径效应和干扰的影响。
能量检测法
原理:能量检测法通过计算接收信号的能量来判断信号 是否存在。在噪声功率已知的情况下,可以通过比较接 收信号的能量与预设门限来判断信号是否存在。 1. 计算接收信号的能量。
经典参数估计方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1 第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x ke x -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问()112f xd x k ∞-∞==⎰ 第②问 {}()()()211221x x P x X xF x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

先求边缘概率密度()X f x 、()Y f y注意上下限的选取()X 2,01,01(),00,xx XY x x dy x f x f x y dy else else +∞--∞⎧<<<<⎧⎪===⎨⎨⎩⎪⎩⎰⎰, ()11,011||(),,10011,y Y XY ydxy y f y f x y dx dx y elsey else+∞-∞-⎧<<⎪-⎪⎧===⎨⎨-<<-<<⎩⎪⎪⎩⎰⎰⎰1-14 已知离散型随机变量X 的分布律为求:①X 的分布函数31X +的分布律1-15 已知随机变量X 服从标准高斯分布。

求:①随机变量XY e =的概率密度?②随机变量Z X =的概率密度? 分析:①[]()'()()Y X f y h y f h y =⋅②1122()|'()|[()]|'()|[()]Y X X f y h y f h yh y f h y =⋅+⋅答案:()22ln 22100()()00y z Y Z e y z f y f z elseelse--⎧>≥==⎩⎩1-16 已知随机变量1X 和2X 相互独立,概率密度分别为11121111,0()20,0x X e x f x x -⎧⎪≥=⎨⎪<⎩,22132221,0()30,0x X e x f x x -⎧⎪≥=⎨⎪<⎩求随机变量12Y X X =+的概率密度?解:设11221()Y Y X X Y X ==+⎧⎨=⎩任意的 求反函数,求雅克比J =-1()12121136121210,60y y Y Y e y y f y y else--⎧⎪≥≥=⎨⎪⎩()11111321100y y Y e e y f y else --⎧⎪-≥=⎨⇒⎪⎩1-17 已知随机变量,X Y 的联合分布律为{}532m,,,0,1,2,!!m n e P X Y n m n m n -====求:①边缘分布律{}m (0,1,2,)P X m == 和{}(0,1,2,)P Y n n == ?②条件分布律{}m |P X Y n ==和{}|m P Y n X ==?分析:{}32532m,,,0,1,2,!!32!!m n m n e P X Y n m n m n e e m n ---=⋅====泊松分布 {},0,1,2,!k e P X k k k λλ-==={}01!!k k kk k P X k e e e k e k λλλλλλ-∞=∞∞--======⋅=∑∑∑P19 (1-48)解:①{}{}121332m !m,!n m n n e P X P X Y n e n m -=∞=∞-=====∑∑{}{}21n m 2,!n n P Y P X Y n e n ∞=-=====∑同理 ②{}{}{}m,n P X Y n P X m P Y ⋅===== 即X 、Y 相互独立1-18 已知随机变量12,,,nX XX 相互独立,概率密度分别为1122(),(),,()n n f x f x f x 。

又随机变量1121212n nY X Y X X Y X X X =⎧⎪=+⎪⎨⎪⎪=+++⎩证明:随机变量12,,,nY Y Y 的联合概率密度为12112211(,,,)()()()Y n n n n f y y y f y f y y f y y -=--11212121212323211211121n n n n n n n nY X Y X X X Y Y Y X X X X Y Y Y X X X X Y Y Y X X X X ----=⎧⎪=+=-⎧⎪⎪⎪=++=-⎪⎪⎨⎨⎪⎪⎪⎪=+++=-⎩⎪=+++⇒+⎪⎩10000110001001000011000011J -==--因为|J|=1,故 已知随机变量12,,,nX X X 相互独立,概率密度分别为1122(),(),,()n n f x f x f xX 121211(,,,)(,,,)n Y n n f y y y f y y y y y -=-- 12121111221X 1(,,,)(,,,)()()()n n n n n n Y f y y y f y y y y y f y f y y f y y --=--=--1-19 已知随机变量X 服从拉普拉斯分布,其概率密度为1(),2xX f x ex -=-∞<<+∞求其数学期望与方差?解:[]()()22222200121(022222)()X xxxX xxxxx E X x dx x dx E X x dx x dx x dx x ee dx exdxxee f x e d f x x e e ∞∞-∞-∞∞∞-∞-∞∞∞-+∞-∞-∞-+∞----===⎡⎤==⎣⎦==-+=⋅=-+=⎰⎰⎰⎰⎰⎰⎰⎰奇函数偶函数1-20 已知随机变量X 可能取值为{4,1,2,3,4}--,且每个值出现的概率均为15。

求:①随机变量X 的数学期望和方差?②随机变量23Y X =的概率密度?③Y 的数学期望和方差?①③答案: ② Y 3 12 27 48 P1/51/51/52/5离散型随机变量的概率密度表达式 P12,1-25式()()1k k k f x p x x δ∞==-∑ 其中(),0,0x x x δ∞=⎧=⎨≠⎩ 为冲激函数()()()()()()1312272485Y f y y y y y δδδδ=-+-+-+-[]21212[][()]()[]D [][]k k k k kk E X x p E g X g x p E X X E X E X ∞=∞===⇒=-∑∑[][]22446214[][]D 55251388406[][]1098D 525E X E X X E Y E Y Y ======1-22 已知两个随机变量,X Y 的数学期望为1,2X Y m m ==,方差为224,1X Y σσ==,相关系数0.4XY ρ=。

现定义新随机变量,V W 为23V X YW X Y=-+⎧⎨=+⎩ 求,V W 的期望,方差以及它们的相关系数?[][][][][][][][][][]22374.817.82XYE V E W D V D W E aX bY aE X bE Y D aX bY a D X b D Y abC +=+++=+====XYXY X YC ρσσ=0.131-23 已知随机变量,X Y 满足Y aX b =+,,a b 皆为常数。

证明: ① 2XY XC a σ=;②1010XYa a ρ>⎧=⎨-<⎩;③ 当0X m ≠且2[][]aE X b E X =-时,随机变量,X Y 正交。

① X Y X Y X C R m m =-[][][]()22XY X C a X XE Y E aX b am bE XY E X aX b aE X bm σ=+=+⎡⎤=+=+⎡⎤⎣⎦⎣⎦⇒=②XYXY X YC ρσσ=()()()222X aX b a D Y D D X a σ===+2XYXY X YC a a aρσσ===③0XY R ⇔正交=[]22[][]XE XY aE X bm aE X b E X ⎧⎡⎤=+⎣⎦⎪⇒⎨=-⎪⎩得证1-25 已知随机变量,X Y 相互独立,分别服从参数为1λ和2λ的泊松分布。

相关文档
最新文档