数字电子技术课后题答案...docx

合集下载

数字电子技术基础课后习题及参考答案

数字电子技术基础课后习题及参考答案

《数字电子技术基础》课后习题及参考答案(总90页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)21(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。

(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。

数字电子技术课后习题答案(全部)

数字电子技术课后习题答案(全部)

第一章数制与编码1.1自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2.比特bit1.2.3.101.2.4.二进制1.2.5.十进制1.2.6.(a)1.2.7.(b)1.2.8.(c)1.2.9.(b)1.2.10.(b)1.2.11.(b)1.2.12.(a)1.2.13.(c)1.2.14.(c)1.2.15.(c)1.2.16.10010011.2.17.111.2.18.1100101.2.19.11011.2.20.8进制1.2.21.(a)1.2.22.0,1,2,3,4,5,6,71.2.23.十六进制1.2.24.0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25.(b)1.3自测练习1.3.1.1221.3.2.675.521.3.3.011111110.011.3.4.521.3.5.1BD.A81.3.6.1110101111.11101.3.7.38551.3.8.28.3751.3.9.100010.111.3.10.135.6251.3.11.570.11.3.12.120.51.3.13.2659.A1.4自测练习1.4.1.BCD Binary coded decimal 二—十进制码1.4.2.(a)1.4.3.(b)1.4.4.8421BCD码,4221BCD码,5421BCD1.4.5.(a)1.4.6.011001111001.10001.4.7.111111101.4.8.101010001.4.9.111111011.4.10.61.051.4.11.01011001.011101011.4.12.余3码1.4.13.XS31.4.14.XS31.4.15.1000.10111.4.16.1001100000111.4.17.521.4.18.110101.4.19.0101111.4.20.(b)1.4.21.ASCII1.4.22.(a)1.4.23.ASCII American Standard Code for Information Interchange美国信息交换标准码EBCDIC Extended Binary Coded Decimal Interchange Code 扩展二-十进制交换吗1.4.24.10010111.4.25.ASCII1.4.26.(b)1.4.27.(b)1.4.28.110111011.4.29.-1131.4.30.+231.4.31.-231.4.32.-861.5 自测练习 1.5.1 略1.5.2 11011101 1.5.3 010001011.5.4 11100110 补码形式 1.5.5 011111011.5.6 10001000 补码形式 1.5.7 11100010 补码形式习题1.1 (a )(d )是数字量,(b )(c )是模拟量,用数字表时(e )是数字量,用模拟表时(e )是模拟量 1.2 (a )7, (b )31, (c )127, (d )511, (e )40951.3 (a )22104108⨯+⨯+, (b )26108108⨯+⨯+,(c )321102105100⨯+⨯+⨯+(d )322104109105⨯+⨯+⨯+ 1.4 (a )212121⨯+⨯+, (b )4311212121⨯+⨯+⨯+, (c )64212+12+12+12+1⨯⨯⨯⨯(d )9843212+12+12+12+12⨯⨯⨯⨯⨯ 1.5 2201210327.15310210710110510--=⨯+⨯+⨯+⨯+⨯,3210-1-221011.0112+02+12+12+02+12=⨯⨯⨯⨯⨯⨯,210-18437.448+38+78+48=⨯⨯⨯⨯, 10-1-2163A.1C 316+A 16+116+C 16=⨯⨯⨯⨯1.6 (a )11110, (b )100110,(c )110010, (d )1011 1.7 (a )1001010110000, (b )10010111111.8 110102 = 2610, 1011.0112 = 11.37510, 57.6438 = 71.81835937510, 76.EB 16= 118.91796875101.9 1101010010012 = 65118 = D4916,0.100112 = 0.468 = 0.9816,1011111.011012 = 137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875, 126.748 = 86.9375101.11 2A 16 = 4210 = 1010102 = 528, B2F 16 = 286310 = 1011001011112 = 54578, D3.E 16= 211.87510 = 11010011.11102 = 323.78, 1C3.F916 = 451.9726562510 = 111000011.111110012 = 703.76281.12 (a )E, (b )2E, (c )1B3, (d )349 1.13 (a )22, (b )110, (c )1053, (d )2063 1.14 (a )4094, (b )1386, (c )49282 1.15(a )23, (b )440, (c )27771.16 198610 = 111110000102 = 00011001100001108421BCD , 67.31110 = 1000011.010012 =01100111.0011000100018421BCD , 1.183410 = 1.0010112 = 0001.00011000001101008421BCD ,0.904710 = 0.1110012 = 0000.10010000010001118421BCD1.17 1310 = 000100118421BCD = 01000110XS3 = 1011Gray, 6.2510 = 0110.001001018421BCD=1001.01011000 XS3 = 0101.01Gray,0.12510= 0000.0001001001018421BCD= 0011.010*********XS3 = 0.001 Gray1.18 101102 = 11101 Gray,0101102 = 011101 Gray1.19 110110112 = 0010000110018421BCD,45610 = 0100010101108421BCD,1748=0010011101008421BCD,2DA16 = 0111001100008421BCD,101100112421BCD = 010*********BCD, 11000011XS3 = 100100008421BCD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原= 10110反= 10111补1.21 010100原= 010100补,101011原= 110101补,110010原= 101110补,100001原=111111补1.22 1310 = 00001101补,11010 = 01101110补,-2510 = 11100111补,-90 =10100110补1.23 01110000补= 11210,00011111补= 3110,11011001补= -3910,11001000补= -56101.24 1000011 1000001 1010101 1010100 1001001 1001111 1001110 0100001 01000001001000 1101001 1100111 1101000 0100000 1010110 1101111 1101100 1110100 1100001 1100111 11001011.25 0100010 1011000 0100000 0111101 0100000 0110010 0110101 0101111 101100101000101.26 BEN SMITH1.27 00000110 100001101.28 01110110 10001110第二章逻辑门1.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 62.1.4. 与2.1.5. (b)2.1.6. 162.1.7. 32, 62.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习=⋅2.2.1. F A B2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (b)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. F A B=⋅, 高阻2.3.6. 不能2.4 自测练习1.29 TTL,CMOS1.30 Transisitor Transistor Logic1.31 Complementary Metal Oxide Semicoductor1.32 高级肖特基TTL,低功耗和高级低功耗肖特基TTL1.33 高,强,小1.34 (c)1.35 (b)1.36 (c)1.37 大1.38 强1.39 (a)1.40 (a)1.41 (b)1.42 高级肖特基TTL1.43 (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD2.4 (a )0 (b )1 (c )0 (d )0 2.5 (a )0 (b )0 (c )1 (d )0 2.6 (a )1 (b )1 (c )1 (d )1 2.7 (a )4 (b )8 (c )16 (d )32 2.8 (a )3 (b )4 (c )5 (d )62.9 (a )(b ) A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 11112.10 Y AB AC =+2.11A B C Y 0 0 0 0 0 0 1 0 011A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 11110 1 1 11 0 0 01 0 1 11 1 0 01 1 1 12.122.13F1 = A(B+C), F2=A+BCA B C F1F20 0 0 0 00 0 1 0 00 1 0 0 00 1 1 0 11 0 1 1 11 0 0 0 11 1 0 1 11 1 1 1 12.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.182.19 Y AB BC DE F=⋅⋅⋅2.20 Y AB CD EF=⋅⋅2.21 102.22 402.23 当TTL反相器的输出为3V,输出是高电平,红灯亮。

《数字电子技术基础》课后习题及参考答案

《数字电子技术基础》课后习题及参考答案

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

数字电子技术基础(第4版)_课后习题答案

数字电子技术基础(第4版)_课后习题答案

第一章1.1二进制到十六进制、十进制(1)(10010111)2=(97)16=(151)10 (2)(1101101)2=(6D)16=(109)10(3)(0.01011111)2=(0.5F)16=(0.37109375)10 (4)(11.001)2=(3.2)16=(3.125)10 1.2十进制到二进制、十六进制(1)(17)10=(10001)2=(11)16 (2)(127)10=(1111111)2=(7F)161621016210)3.19()1010 1(11001.101(25.7)(4))A D7030.6()0101 0000 0111 1101 0110 (0.0110(0.39)(3) B ====1.8用公式化简逻辑函数(1)Y=A+B (3)Y=1)=+(解:1A A 1)2(=+++=+++=+++=C B A C C B A C B Y CB AC B A Y ADC C B AD C B C B AD DC A ABD CD B A Y =++=++=++=)()(Y )4(解:(5)Y=0 (7)Y=A+CDE ABCD E C ABCD CE AD B BC CE AD B BC Y CE AD B BC B A D C AC Y =+=⋅+=+⋅=++++=)()()()()()6(解:CB AC B C B A A C B A C B A C B A C B C B A A C B A C B A C B A Y C B A C B A C B A Y +=++=+++=++++=++++⋅+=++++++=)())(())()(())()((8解:)(D A D A C B Y ++=)9(E BD E D BF E A AD AC Y ++++=)10(1.9 (a) C B C B A Y += (b) C B A ABC Y +=(c) ACD D C A D C A B A Y D AC B A Y +++=+=21,(d) C B A ABC C B A C B A Y BC AC AB Y +++=++=21, 1.10 求下列函数的反函数并化简为最简与或式(1)C B C A Y += (2)DC A Y++=CB C B AC C B AC B A BC AC C A B A BC AC C A B A Y BCAC C A B A Y +=++++=⋅+++=+++=+++=))((]))([())(())(()3(解: (4)C B A Y ++=DC ABD C B D C A D C B D A C A C D C B C A D A Y CD C B C A D A Y =++=+++=++++=+++=)())(())()(()5(解: (6)0=Y1.11 将函数化简为最小项之和的形式CB AC B A ABC BC A C B A C B A C B A ABC BC A CB A AC B B A BC A C B AC BC A Y CB AC BC A Y +++=++++=++++=++=++=)()()1(解:D C B A CD B A D C B A ABCD BCD A D C B A Y +++++=)(2)13()()()(3CD B A BCD A D BC A D C B A D C B A ABCD D ABC D C AB D C AB CD B A D C B A D C B A D C B A CD AB B A B A B A ACD D AC D C A D C A CD A D C A D C A D C A B BCD D BC D C B D C B CD B D C B D C B D C B A Y CDB A Y ++++++++++++=+++++++++++++++++++=++=解:)((4)CD B A D ABC D BC A D C AB D C AB CD B A ABCD BCD A Y +++++++= (5)MN L N M L N LM N M L N M L N M L Y +++++=1.12 将下列各函数式化为最大项之积的形式(1)))()((C B A C B A C B A Y ++++++= (2)))()((C B A C B A C B A Y ++++++= (3)76430M M M M M Y ⋅⋅⋅⋅= (4)13129640M M M M M M Y ⋅⋅⋅⋅⋅= (5)530M M M Y ⋅⋅=1.13 用卡诺图化简法将下列函数化为最简与或形式:(1)D A Y +=(3)1=Y (2)D C BC C A B A Y +++= (4)B AC B A Y ++=B A DC Y ++=AC B A Y +=(5)D C B Y ++= (6)C B AC B A Y ++=(7)C Y = (9)D C A C B D A D B Y +++=(8))14,11,10,9,8,6,4,3,2,1,0(),,,(m D C B A Y ∑= (10)),,(),,(741m m m C B A Y ∑=D A D C B Y ++=ABC C B A C B A Y ++=1.14化简下列逻辑函数(1)D C B A Y +++= (2)D C A D C Y += (3)C A D AB Y ++= (4)D B C B Y += (5)E D C A D A E BD CE E D B A Y +++++=1.20将下列函数化为最简与或式(1)AD D C B D C A Y ++= (2)AC D A B Y ++= (3)C B A Y ++= (4)D B A Y +=第二章2.1解:Vv v V V v T I mA I mA Vv T V v a o B o B BS B o B 10T 3.0~0(2.017.0230103.0207.101.57.05I V 5v 1021.5201.510V 0v )(i i ≈≈∴<=×≈=−≈∴−=×+−=截止,负值,悬空时,都行)饱和-=时,=当截止时,=当都行)=饱和,,-=悬空时,都行)饱和。

数字电子技术基础课后答案

数字电子技术基础课后答案

《数字电子技术基础教程》习题与参考答案第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

数字电子技术课后习题答案(全部)

数字电子技术课后习题答案(全部)

第一章数制与编码1.1自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2.比特bit1.2.3.101.2.4.二进制1.2.5.十进制1.2.6.(a)1.2.7.(b)1.2.8.(c)1.2.9.(b)1.2.10.(b)1.2.11.(b)1.2.12.(a)1.2.13.(c)1.2.14.(c)1.2.15.(c)1.2.16.11.2.17.111.2.18.1.2.19.11011.2.20.8进制1.2.21.(a)1.2.22.0,1,2,3,4,5,6,71.2.23.十六进制1.2.24.0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25.(b)1.3自测练习1.3.1.1221.3.2.675.521.3.3.011111‎110.011.3.4.521.3.5.1BD.A81.3.6.1111.11101.3.7.38551.3.8.28.3751.3.9.100010‎.111.3.10.135.6251.3.11.570.11.3.12.120.51.3.13.2659.A1.4自测练习1.4.1.BCD Binary‎l二—十进制码1.4.2.(a)1.4.3.(b)1.4.4.8421BC‎D码,4221BC‎D码,5421BC‎D1.4.5.(a)1.4.6.011001‎111001‎.10001.4.7.111111‎101.4.8.101010‎001.4.9.111111‎011.4.10.61.051.4.11.010110‎01.011101‎011.4.12.余3码1.4.13.XS31.4.14.XS31.4.15.1000.10111.4.16.100110‎000011‎1.4.17.521.4.18.110101.4.19.010111‎1.4.20.(b)1.4.21.ASCII1.4.22.(a)1.4.23.ASCII h ange美‎准码EBCDIC‎Extend‎e d Binary‎Coded Decima‎l Interc‎h ange Code 扩展二-十进制 ‎1.4.24.100101‎11.4.25.ASCII1.4.26.(b)1.4.27.(b)1.4.28.110111‎011.4.29.-1131.4.30.+231.4.31.-231.4.32.-861.5 自测练习 1.5.1 略 1.5.2 110111‎01 1.5.3 010001‎01 1.5.4 111001‎10 补码形式 1.5.5 011111‎01 1.5.6 100010‎00 补码形式 1.5.7 111000‎10 补码形式 习题1.1 (a )(d )是数字量,(b )(c )是模拟量,用数字表时(e )是数字量,用模拟表时(e )是模拟量1.2 (a )7, (b )31, (c )127, (d )511, (e )40951.3 (a )22104108⨯+⨯+, (b )26108108⨯+⨯+,(c )321102105100⨯+⨯+⨯+(d )322104109105⨯+⨯+⨯+1.4 (a )212121⨯+⨯+, (b )4311212121⨯+⨯+⨯+, (c )64212+12+12+12+1⨯⨯⨯⨯(d )9843212+12+12+12+12⨯⨯⨯⨯⨯ 1.5 2201210327.15310210710110510--=⨯+⨯+⨯+⨯+⨯,3210-1-221011.0112+02+12+12+02+12=⨯⨯⨯⨯⨯⨯, 210-18437.448+38+78+48=⨯⨯⨯⨯, 10-1-2163A.1C 316+A 16+116+C 16=⨯⨯⨯⨯1.6 (a )11110, (b ) ,(c ) , (d )1011 1.7 (a ) 0, (b ) 1111 1.8 110102‎ = 2610, 1011.0112 = 11.37510, 57.6438 = 71.818359‎37510, 76.EB 16 = 118.7510 1.9 110101‎001001‎2 = 65118 = D4916,0.100112‎ = 0.468 = 0.9816,101111‎1.011012‎ =137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875‎, 126.748 = 86.937510‎ 1.11 2A 16 = 4210 = 2 = 528, B2F 16 = 286310‎ = 2 = 54578,D3.E 16 = 211.87510 = 11.11102 = 323.78, 1C3.F916 = 451 2510 = 011.111110‎012 = 703.76281.12 (a )E, (b )2E, (c )1B3, (d )349 1.13 (a )22, (b )110, (c )1053, (d )2063 1.14 (a )4094, (b )1386, (c )49282 1.15 (a )23, (b )440, (c )2777 1.16 198610‎ = = 000110‎011000‎011084‎21BCD , 67.31110 = 1.010012‎ = 011001‎11.001100‎010001‎8421BC ‎D ,1.183410‎ = 1.001011‎2 = 0001.000110‎000011‎010084‎21BCD , 0.904710‎ = 0.111001‎2 = 0000.100100‎000100‎011184‎21BCD1.17 1310 = 000100‎118421‎B CD = 010001‎10XS3 = 1011Gr‎a y, 6.2510 = 0110.001001‎018421‎B CD = 1001.010110‎00XS3 = 0101.01Gray‎,0.12510= 0000.000100‎100101‎ = 0011.010001‎101000‎X S3 = 0.001 Gray8421BC‎D1.18 101102‎= 11101 Gray,010110‎2 = 011101‎ Gray1.19 110110‎112 = 001000‎011001‎8421BC‎D,45610 = 010001‎010110‎8421BC‎D,1748=001001‎110100‎8421BC‎D,2DA16 = 011100‎110000‎8421BC‎D,101100‎112421‎B CD = 010100‎118421‎B CD,110000‎11XS3 = 100100‎008421‎B CD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原‎=10110反‎=10111补‎1.21 010100‎原= 010100‎补,101011‎原= 110101‎补,110010‎原= 101110‎补,100001‎原=111111‎补1.22 1310 = 000011‎01补,11010 = 011011‎10补,-2510 = 111001‎11补,-90 = 101001‎10补1.23 011100‎00补= 11210,000111‎11补= 3110,110110‎01补= -3910,110010‎00补= -56101.24 100001‎1100000‎1101010‎1101010‎0100100‎1100111‎1 100111‎0010000‎1010000‎0100100‎0 110100‎1 110011‎1 110100‎0 010000‎0 101011‎0 110111‎1 110110‎0 111010‎0 110000‎1 110011‎1 110010‎11.25 010001‎0101100‎0010000‎0011110‎1010000‎0011001‎0 011010‎1010111‎1101100‎1010001‎01.26 BEN SMITH1.27 000001‎10 100001‎101.28 011101‎10 100011‎10第二章逻辑门1.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 62.1.4. 与2.1.5. (b)2.1.6. 162.1.7. 32, 62.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习2.2.1. F A B=⋅2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (b)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. F A B=⋅, 高阻2.3.6. 不能2.4 自测练习1.29 TTL,CMOS1.30 Transi‎s itor Transi‎s tor Logic1.31 Comple‎m entar‎y Metal Oxide Semico‎d uctor‎1.32 高级肖特基T‎T L, 高级‎ 肖特基‎T TL1.33 高,强,小1.34 (c)1.35 (b)1.36 (c)1.37 大1.38 强1.39 (a)1.40 (a)1.41 (b)1.42 高级肖特基T‎T L1.43 (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD2.4 (a )0 (b )1 (c )0 (d )0 2.5 (a )0 (b )0 (c )1 (d )0 2.6 (a )1 (b )1 (c )1 (d )1 2.7 (a )4 (b )8 (c )16 (d )32 2.8 (a )3 (b )4 (c )5 (d )6 2.9 (a )(b ) A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 11112.10 Y AB AC =+2.11A B C Y 0 0 0 0 0 0 1 0 011A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 11110 1 1 11 0 0 01 0 1 11 1 0 01 1 1 12.122.13F1 = A(B+C), F2=A+BCA B C F1F20 0 0 0 00 0 1 0 00 1 0 0 00 1 1 0 11 0 1 1 11 0 0 0 11 1 0 1 11 1 1 1 12.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.18=⋅⋅⋅2.19 Y AB BC DE F=⋅⋅2.20 Y AB CD EF2.21 102.22 402.23 当TTL反相‎器的输出为3‎V,输出是高电 ‎,红灯亮。

《数字电子技术(第二版)》课后习题参考答案

《数字电子技术(第二版)》课后习题参考答案

《数字电子技术(第二版)》课后习题参考答案课题一认识数字电路任务一认识数制与数制转换一、填空题1.1 232.1 273.1 2154.1 2315.B O D H二、计算题1.2.54,85,4273.0101,1100,1 1000,11 01114.17O,37O,66 O5.110B,010 111B,001 101 110B6.0FH,36H,0AE63H7.0001 0110B,0010 1010B,1111 1100 0000B任务二学习二进制数算术运算一、计算题(给出的二进制均是无符号数)1.(1)1 0000 (2)1 0000 10012.(1)10 1010 (2)1010 11113.(1)1 0100 (2)110 00004.(1)101 (2)11二、写出下列带符号位二进制数(原码)所表示的十进制数(1)+110 (2)-15 (3)-42 (4)+127 (5)+111(6)-63 (7)+0 (8)+32 767 (9)-32 768三、问答题1.(1)答:左移,移动3位,应作乘以8运算。

(2)答:左移,移动4位,应作乘以16运算。

(3)答:右移,移动7位,应作除以128运算。

(4)答:右移,移动3位,应作除以8运算。

2.答:4位二进制无符号数的最大值是15。

3.答:8位二进制无符号数、有符号数的最大值分别是255和+127。

4.答:16位二进制有符号数的最大值是+32 767。

任务三学习二进制代码一、填空题1.二进制数2.43.8,4,2,1二、判断题1.×2.× 3.√ 4.× 5.× 6.×三、计算题1.36,55,892.[0011 0010]8421,[0101 0010 0111]8421,[0001 0011 0110 1001]8421任务四认识基本逻辑关系并测试逻辑门一、填空题1.与或非2.13.04.1 05.Y=AB6.Y=A+B7.Y=A8.Y=AB9.Y=A+B10.Y=A B=AB+AB二、选择题1.D 2.A 3.B,C 4.A,D三、判断题1.× 2.× 3.× 4.√四、问答题1.答:Y1=ABCD2.答:Y2=A+B+C+D五绘图题1.2.3.4.任务五测试TTL集成门电路1.答:TTL集成门电路电源电压范围为4.75~5.25V之间,额定电压为5V。

全版《数字电子技术基础》课后习题答案.docx

全版《数字电子技术基础》课后习题答案.docx
A
00
01
11
10
0
0
1
0
1
1
1
0
1
0
另有开关S,只有S=1时,Y才有效,所以
4.14、解:根据题意,画卡诺图如下:
BC
A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
所以逻辑表达式为:Y=AC+AB
(1)使用与非门设计:
逻辑电路如下:
(2)使用或非门设计:
4.15、
(2)解:
1、写出逻辑函数的最小项表达式
2、将逻辑函数Y和CT74LS138的输出表达式进行比较
(45.36)10=(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001)余3BCD
(136.45)10=(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000)余3BCD
(374.51)10=(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD
二、
3、√
4、√
三、
5、A
7、C
练习题:
4.1;解:(a) ,所以电路为与门。
(b) ,所以电路为同或门
4.5、解:当M=0时, ,同理可推:

所以此时电路输出反码。
当M=1时, ,同理可推:

所以此时电路输出原码。
4.7、
4.9、解:设三个开关分别对应变量A、B、C,输出Y’,列出卡诺图如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 单元能力训练检测题(共100 分, 120 分钟)一、填空题:(每空分,共20 分)1、由二值变量所构成的因果关系称为逻辑关系。

能够反映和处理逻辑关系的数学工具称为逻辑代数。

2、在正逻辑的约定下,“ 1”表示高电平,“ 0”表示低电平。

3、数字电路中,输入信号和输出信号之间的关系是逻辑关系,所以数字电路也称为逻辑电路。

在逻辑关系中,最基本的关系是与逻辑、或逻辑和非逻辑。

4、用来表示各种计数制数码个数的数称为基数,同一数码在不同数位所代表的权不同。

十进制计数各位的基数是10,位权是10的幂。

5、 8421 BCD码和2421码是有权码;余3码和格雷码是无权码。

6、进位计数制是表示数值大小的各种方法的统称。

一般都是按照进位方式来实现计数的,简称为数制。

任意进制数转换为十进制数时,均采用按位权展开求和的方法。

7、十进制整数转换成二进制时采用除2取余法;十进制小数转换成二进制时采用乘 2取整法。

8、十进制数转换为八进制和十六进制时,应先转换成二进制,然后再根据转换的二进数,按照三个数码一组转换成八进制;按四个数码一组转换成十六进制。

9、逻辑代数的基本定律有交换律、结合律、分配律、反演律和非非律。

10、最简与或表达式是指在表达式中与项中的变量最少,且或项也最少。

13、卡诺图是将代表最小项的小方格按相邻原则排列而构成的方块图。

卡诺图的画图规则:任意两个几何位置相邻的最小项之间,只允许一位变量的取值不同。

14、在化简的过程中,约束项可以根据需要看作1或0 。

二、判断正误题(每小题1分,共10分)1、奇偶校验码是最基本的检错码,用来使用PCM方法传送讯号时避免出错。

(对)2、异或函数与同或函数在逻辑上互为反函数。

(对)3、8421BCD码、 2421BCD码和余 3码都属于有权码。

(错)4、二进制计数中各位的基是2,不同数位的权是2的幂。

(对)3、每个最小项都是各变量相“与”构成的,即n个变量的最小项含有n个因子。

(对)4、因为逻辑表达式A+B+AB=A+B成立,所以 AB=0成立。

(错)5、逻辑函数F=A B+A B+B C+B C已是最简与或表达式。

(错)6、利用约束项化简时,将全部约束项都画入卡诺图,可得到函数的最简形式。

(错)7、卡诺图中为 1的方格均表示逻辑函数的一个最小项。

(对)8、在逻辑运算中,“与”逻辑的符号级别最高。

(对)9、标准与或式和最简与或式的概念相同。

(对)10、二极管和三极管在数字电路中可工作在截止区、饱和区和放大区。

(错)三、选择题(每小题 2分,共 20分)1、逻辑函数中的逻辑“与”和它对应的逻辑代数运算关系为( B )。

A、逻辑加B、逻辑乘C、逻辑非2.、十进制数 100对应的二进制数为( C )。

A、1011110B、1100010C、 1100100 D 、3、和逻辑式AB表示不同逻辑关系的逻辑式是( B )。

A、A BB、 A ? B C 、A ? B B D、 AB A4、数字电路中机器识别和常用的数制是( A )。

A、二进制B、八进制C、十进制D、十六进制5、以下表达式中符合逻辑运算法则的是( D )。

2A 、 C· C=CB、 1+1=10C、 0<1D、 A+1=16、 A+BC=( C )。

A、 A+BB、 A+CC、( A+B)( A+C)D、 B+C7、在( D )输入情况下,“与非”运算的结果是逻辑0。

A 、全部输入是 0B 、任一输入是 0C 、仅一输入是0 D、全部输入是 18、逻辑变量的取值1和0可以表示(ABCD)。

A 、开关的闭合、断开B、电位的高、低C、真与假D、电流的有、无9、求一个逻辑函数 F 的对偶式,可将 F 中的( ABD )。

A . “·”换成“ +”,“ +”换成“· ”B 、原变量换成反变量,反变量换成原变量C、变量不变D、常数中“ 0”换成“ 1”,“ 1”换成“ 0”10、在( BCD)输入情况下,“或非”运算的结果是逻辑0。

A 、全部输入是 0B、全部输入是 1C、任一输入为 0,其他输入为 1D、任一输入为 1四、简述题(每小题 4分,共 16分)1、逻辑代数与普通代数有何异同答:逻辑代数中仅含有0 和 1 两个数码,普通代数含有的数码是0~ 9 个,逻辑代数是逻辑运算,普通代数是加、减、乘、除运算。

2、什么是最小项最小项具有什么性质答:一个具有 n个逻辑变量的与或表达式中,若每个变量以原变量或反变量形式仅出现一次,就可组成2n个“与”项,我们把这些“与”项称为n个变量的最小项,分别记为m n。

最小项具备下列性质:①对于任意一个最小项,只有一组变量取值使它的值为1, 而变量取其余各组值时,该最小项均为0。

②任意两个不同的最小项之积恒为0。

③变量全部最小项这和恒等于1。

3、在我们所介绍代码范围内,哪些属于有权码哪些属于无权码答: 8421BCD码和 2421BCD码属于有权码,余 3 码和格雷码属于无权码。

4、试述卡诺图化简逻辑函数的原则和步骤。

答:利用卡诺图化简逻辑函数式的步骤:①根据变量的数目,画出相应方格数的卡诺图;②根据逻辑函数式,把所有为“1”的项画入卡诺图中;③用卡诺圈把相邻最小项进行合并,合并时就遵照卡诺圈最大化原则;④根据所圈的卡诺圈,消除圈内全部互非的变量,每一个圈作为一个“与”项,将各“与”项相或,即为化简后的最简与或表达式。

五、计算题(共 34分)1、用代数法化简下列逻辑函数(12分)① F ( A B)C ABF( A B)C AB ACBC AB解:C AB ABC AB② F AC AB BCF AC AB BC解:AC BCAAC B③ F ABC ABC ABC ABC ABC解:FABC ABC ABC ABC ABCAB AB AC④ F AB BC D C D ABC AC DF AB BC D C D ABC AC D解:AB AC C D BCAB ABC ABC C D BCAB C D BC2、用卡诺图化简下列逻辑函数(8分)①F m(3,4,5,10,11,12)d(1,2,13)卡诺图略F m(3,4,5,10,11,12) d (1,2,13)BC BC ACD② F ( ABCD)m(1,2 ,3,5 ,6 ,7 ,8 ,9 ,12 ,13)F ( ABCD )m(1,2 ,3,5,6 ,7 ,8,9 ,12 ,13)AC C D AC③ F( A、B、C 、 D)m(0,1, 6, 7, 8,12,14, 15)F (、、C、D)(0,1, 6, 7, 8,12,14,15)ABC AC D BC A B m④ F( A、B、C 、 D)m(0,1, 5, 7, 8, 14,15)d( 3, 9,12)F (、、、D)m(0,1, 5, 7, 8,14,15)(3, 9,12)BC AD ABC A B C d3、完成下列数制之间的转换(8分)①( 365)10=( 1 )2=( 555) 8=(16D) 16②()=()=()=()162108③()10=( =)=()16 284、完成下列数制与码制之间的转换(6分)①( 47)10=( 01111010)余 3码=(01000111) 8421码②( 3D)16=(00101011)格雷码③()10=()=()=()88421BCD2421BCD第 2 单元能力训练检测题(共100分,120分钟)一、填空题:(每空分,共23 分)1、基本逻辑关系的电路称为逻辑门,其中最基本的有与门、或门和非门。

常用的复合逻辑门有与非门、或非门、与或非门、异或门和同或门。

2、 TTL集成电路的子系列中,74S表示肖特基系列,74L表示低功耗系列、74LS 表示低功耗肖特基系列。

3、CMOS集成电路是由增强型PMOS管和增强型NMOS管组成的互补对称MOS门电路,其中 CC4000系列和高速系列是它的主要子系列。

4、功能为“有0出 1、全 1出 0”的门电路是与非门;具有“有1出1,全0出0”功能的门电路是或门;实际中集成与非门应用的最为普遍。

5、普通的 TTL与非门具有图腾结构,输出只有高电平“ 1” 和低电平“ 0” 两种状态; TTL三态与非门除了具有 1 态和0 态,还有第三种状态高阻态,三态门可以实现总线结构。

6、集成电极开路的7、 TTL集成电路和TTL与非门又称为CMOS集成电路相比较,OC 门,其输出可以“线与。

TTL 集成门的带负载能力较强,CMOS集成门的抗干扰能力较强。

8、两个参数对称一致的一个NMOS管和一个PMOS管,并联可构成一个CMOS传输门。

两管源极相连构成传输门的(输入端)或输出端,两管漏极相连构成传输门的(输出端)或输入端,两管的栅极分别与两个互非的控制端相连。

9、具有图腾结构的TTL集成电路,同一芯片上的输出端,不允许并联使用;同一芯片上的 CMOS集成电路,输出端可以并联使用,但不同芯片上的CMOS集成电路上的输出端是不允许并联使用的。

10、当外界干扰较小时,TTL与非门闲置的输入端可以悬空处理;TTL或非门不使用的闲置输入端应与地相接;CMOS门输入端口为“与”逻辑关系时,闲置的输入端应接高电平,具有“或”逻辑端口的CMOS门多余的输入端应接低电平;即 CMOS门的闲置输入端不允许悬空。

二、判断正误题(每小题1分,共10分)1、所有的集成逻辑门,其输入端子均为两个或两个以上。

(错)2、根据逻辑功能可知,异或门的反是同或门。

(对)3、具有图腾结构的TTL与非门可以实现“线与”逻辑功能。

(错)4、逻辑门电路是数字逻辑电路中的最基本单元。

(对)5、TTL和 CMOS两种集成电路与非门,其闲置输入端都可以悬空处理。

(错)6、74LS系列产品是 TTL集成电路的主流,应用最为广泛。

7、74LS系列集成芯片属于TTL型, CC4000系列集成芯片属于8、三态门采用了图腾输出结构,不仅负载能力强,且速度快。

9、OC门可以不仅能够实现“总线”结构,还可构成与或非逻辑。

10、 CMOS电路的带负载能力和抗干扰能力均比TTL电路强。

(对)CMOS型。

(对)(错)(对)(错)三、选择题(每小题2分,共 16分)1、具有“有 1出 0、全 0出 1”功能的逻辑门是(B)。

A、与非门B、或非门C、异或门D、同或门2、两个类型的集成逻辑门相比较,其中(B)型的抗干扰能力更强。

A、TTL集成逻辑门B、CMOS集成逻辑门3、 CMOS电路的电源电压范围较大,约在(B)。

A、- 5V~+5VB、3~18VC、5~15VD、+5V4、若将一个 TTL异或门当做反相器使用,则异或门的A和 B输入端应:(A)。

A、B输入端接高电平,A输入端做为反相器输入端B、B输入端接低电平,A输入端做为反相器输入端C、A、 B两个输入端并联,做为反相器的输入端D、不能实现5、(C)的输出端可以直接并接在一起,实现“线与”逻辑功能。

相关文档
最新文档