数值计算方法期末考试题

合集下载

数值计算方法试题及答案解析

数值计算方法试题及答案解析

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

(完整版)数值计算方法试题及答案

(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法试题库及答案解析

数值计算方法试题库及答案解析

y 2y, y(0) 1,试问为保证该公式绝对稳定,步长 h 的取值范围为(
)。
(1) 0 h 2 , (2) 0 h 2 , (3) 0 h 2 , (4) 0 h 2
三、1、(8 分)用最小二乘法求形如 y a bx2 的经验公式拟合以下数据:
2
是否为插值型求积公式?为什么?其
代数精度是多少?
七、(9 分)设线性代数方程组 AX b 中系数矩阵 A 非奇异, X 为精确解, b 0 ,若向
~
~
量 X 是 AX b 的 一 个 近 似 解 , 残 向 量 r b A X , 证 明 估 计 式 :
~
X X
r cond ( A)
五、(8 分)已知求 a (a 0) 的迭代公式为:
1
a
xk1 2 (xk xk )
x0 0 k 0,1,2
证明:对一切 k 1,2,, xk a ,且序列xk 是单调递减的,
从而迭代过程收敛。
3 f (x)dx 3 [ f (1) f (2)]
六、(9 分)数值求积公式 0
六、(下列 2 题任选一题,4 分) 1、 1、 数值积分公式形如
1
0 xf (x)dx S(x) Af (0) Bf (1) Cf (0) Df (1)
(1) (1) 试确定参数 A, B,C, D 使公式代数精度尽量高;(2)设
1
f (x) C 4[0,1] ,推导余项公式 R(x) 0 xf (x)dx S(x) ,并估计误差。
i 1
的高斯(Gauss)型求积公式具有最高代数精确度的次
数为 2n 1。 (

数值计算方法期末考试题精选版

数值计算方法期末考试题精选版

数值计算方法期末考试题Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】一、单项选择题(每小题3分,共15分)1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。

5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 184.()()120f f <5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1. 解[]0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=--- []1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式; (2) 对于初始值()()0,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩ 雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 用雅可比迭代公式得()()10.72000,0.83000,0.84000X = 用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分101dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度证明题答案1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商 ()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法试题及答案

数值计算方法试题及答案

计算机数值计算方法试题 计算机数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)((),∑==nk k j kx l x)(( ),当2≥n 时=++∑=)()3(24x l x xk k nk k( )。

5、设1326)(247+++=x x xx f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001aaa a A ,当∈a ()时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、 解常微分方程初值问题的欧拉(Euler)方法的局部截断误差为_。
10、 为了使计算的乘除法运算次数尽量的少,应将表达式改写成。
填空题答案
1、
4、
5、
6、
7、
8、收敛
9、
10、
二、计算题(共75分,每题15分)
1•设
(1)试求在上的三次Hermite插值多项式使满足
以升幂形式给出。
(2)写出余项的表达式
一、单项选择题(每小题3分,共15分)
1.和分别作为的近似数具有()和()位有效数字•
A.4和3B.3和2
C.3和4D.4和4
2.已知求积公式,则=()
A.B.C.D.
3.通过点的拉格朗日插值基函数满足()
A.=0,B.=0,
C.=1,D.=1,
4.设求方程的根的牛顿法收敛,则它具有()敛速。
A.超线性B.平方C.线性D.三次
5.用列主元消元法解线性方程组作第一次消元后得到的第3个方程()
A.B.
C.D.
、填空题(每小题3分,共15分)
1.设,则二
2.一阶均差_
3.已知时,科茨系数,那么_
4.因为方程在区间上满足所以在区间内有根。
5.取步长,用欧拉法解初值问题的计算公式
填空题答案
1.9和
2.
3.
4.
5.
三、计算题(每题15分,共60分)
1.设,取5位有效数字,则所得的近似值x=.
2•设一阶差商,
则二阶差商
3.设,则_, _。
4•求方程的近似根,用迭代公式,取初始值,那么
5•解初始值问题近似解的梯形公式是
6、,则A的谱半径=_。—
7、设,则_和_。
8、 若线性代数方程组AX=b的系数矩阵A为严格对角占优阵,则雅可比迭代和高斯 塞德尔迭代都_。
2.(1)
(2)
(3)
3.(15分)确定求积公式 的待定参数,使其代数精度尽量高,并确定其代数 精度.
计算题3.答案
Hale Waihona Puke 4.(15分)设初值冋题(1)写出用Euler方法、步长h=解上述初值问题数值解的公式;
⑵写出用改进的Euler法(梯形法)、步长h=解上述初值问题数值解的公
计算题1.答案
1、(1)
计算题2.答案
2、由,可得,
3.试确定常数A,B,C和a,使得数值积分公式
有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少它是否为
型的
计算题3.答案
3、,该数值
求积公式具有5次代数精确度,它是Gauss型的
4.推导常微分方程的初值问题的数值解公式:
(提示:利用Simpson求积公式。)
().
3.设f (x)可微,则求方程的牛顿迭代格式是().
4.迭代公式收敛的充要条件是_。
5.解线性方程组Ax=b(其中A非奇异,b不为0)的迭代格式中的B称为().
给定方程组,解此方程组的雅可比迭代格式为()o
填空题答案
1.3
2.
3.
4.
5.迭代矩阵,
二、判断题(共10分)
1.若,则在内一定有根。()
计算题4.答案
4、数值积分方法构造该数值解公式:对方程 在区间 上积分,
得,记步长为h,
对积分用Simpson求积公式得
所以得数值解公式:
5•利用矩阵的LU分解法解方程 组
计算题5.答案
5、解:
三、证明题 (5分)
1.设,证明解 的Newton迭代公式是线性收敛的。
证明题答案
1、
一、填空题(20分)
高斯-塞德尔迭代法公式
用雅可比迭代公式得
用高斯-塞德尔迭代公式得
3.用牛顿法求方程在之间的近似根
(1)请指出为什么初值应取2
(2)请用牛顿法求出近似根,精确到
计算题3.答案
3.解,,
,,,故取作初始值
迭代公式为
方程的根
4.写出梯形公式和辛卜生公式,并用来分别计算积分
计算题4.答案
4解梯形公式
应用梯形公式得
1.(10分)已知f(0)=1,f(3)二,f(4)=,求过这三点的
二次插值基函数11(X)= (),=(),插值多项式P2(X)= (),用三点式求得().
计算题1.答案
1.
2.(15分)已知一元方程。
1)求方程的一个含正根的区间;
2)给出在有根区间收敛的简单迭代法公式(判断收敛性);
3)给出在有根区间的Newt on迭代法公式计算题2.答案
计算题2.答案
2)
3).(15分)用高斯-塞德尔方法解方程组,取,迭代三次(要求按五
位有效数字计算).0
计算题3.答案
3)迭代公式
4).(15分)求系数
计算题4.答案
5).(10分)对方程组
试建立一种收敛的Seidel迭代公式,说明理由
计算题5.答案
5)解:调整方程组的位置,使系数矩阵严格对角占优
故对应的高斯一塞德尔迭代法收敛•迭代格式为
2.区间[a,b]上的三次样条函数是一个次数不超过三次的多项式。()
3.若方阵A的谱半径,则解方程组Ax=b的Jacobi迭代法收敛。()
4.若f (x)与g (x)都是n次多项式,且在n+1个互异点上,则。()
5.用近似表示产生舍入误差。()
判断题答案
1.x2.x3.x4.V5.x
三、计算题(70分)
(1).设是真值的近似值,则有_位有效数字。
(2).对,差商()。
(3)
(4).牛顿一柯特斯求积公式的系数和
填空题答案
(1)3(2)1(3)7(4)1
、计算题
1).(15分)用二次拉格朗日插值多项式的值。
插值节点和相应的函数值是(0,0),(,),(,)
计算题1.答案
2).(15分)用二分法求方程区间内的一个根,误差限
取,经7步迭代可得:
三、简答题
1)(5分)在你学过的线性方程组的解法中,你最喜欢那一种方法,为 什么
2)(5分)先叙述Gauss求积公式,再阐述为什么要引入它。
简答题答案
1)凭你的理解去叙述。
2)参看书本99页。
一、填空题(20分)
1.若a=是的近似值,则a有()位有效数字.
2.是以为插值节点的Lagrange插值基函数,则
辛卜生公式为
应用辛卜生公式得
四、证明题(本题10分)
确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度
证明题答案
证明:求积公式中含有三个待定系数,即,将分别代入求积公式,并令其左右相等,得
得,。所求公式至少有两次代数精确度。
又由于
故具有三次代数精确度。
一、填空(共20分,每题2分)
1. 已知函数的一组数据:求分段线性插值函数,
计算题1.答案
1.解,
所以分段线性插值函数为
2.已知线性方程组
(1)写出雅可比迭代公式、高斯-塞德尔迭代公式;
(2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留
小数点后五位数字)•
计算题2.答案
1•解原方程组同解变形为
雅可比迭代公式为
相关文档
最新文档