21.6(1)二元二次方程组的解法
二元二次方程四种解法

二元二次方程四种解法
二元二次方程是一种包含两个未知数和二次项的方程。
它的一般形式为:
ax²+ bxy + cy²+ dx + ey + f = 0
其中,a、b、c、d、e、f都是常数,且a和c不同时为0。
解二元二次方程的一般步骤是:将方程进行配方,化成标准形式后,使用四种解法之一求解。
以下是二元二次方程四种解法:
1. 消元法
消元法是指通过把一个未知数用另一个未知数表示出来,然后带入原方程,从而将方程化为一元二次方程。
解该一元二次方程即可求得原方程的解。
2. 相交法
相交法是指将二元二次方程表示成两个一元二次方程之和的形式,然后分别解这两个一元二次方程。
具体来说,可以先将方程化为标准形式,然后进行平移和旋
转,使得方程中的一次项和常数项都消失。
这时,方程可以表示为两个不含一次项和常数项的一元二次方程之和的形式。
解这两个一元二次方程即可求得原方程的解。
3. 公式法
公式法是指使用求根公式,直接求解二元二次方程的解。
具体来说,将方程化为标准形式,然后使用求根公式求解二元二次方程的解。
4. 矩阵法
矩阵法是指将二元二次方程表示成矩阵形式,然后使用矩阵的方法求解方程。
具体来说,将方程化为标准形式,然后将系数矩阵和常数向量表示成矩阵形式,使用矩阵的逆、转置等运算求解方程的解。
这四种解法都有其适用范围和优劣性,需要根据实际情况选择合适的方法来求解二元二次方程。
二元二次方程组的解法

二元二次方程组的解法
二元二次方程组是由两个未知数的一个二次方程和一个次数不超过二次的方程所组成的方程组。
二元二次方程组的解法有代入法,因式分解法,配方法,韦达定理法,消除常数等方法。
1
在初等代数中,通常把由两个未知数的一个二次方程和一个次数不超过二次的方程所组成的方程组,叫做二元二次方程组。
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。
由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
2
1.代入法
由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
2.因式分解法
在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
3.配方法
将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
4.韦达定理法
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
5.消常数项法
当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
八年级数学下册21.6二元二次方程组的解法1教学设计沪教版五四制

八年级数学下册21.6二元二次方程组的解法1教学设计沪教版五四制一. 教材分析《沪教版五四制》八年级数学下册21.6节,主要讲述了二元二次方程组的解法。
这部分内容是整个初中数学的重要部分,也是学生学习数学的难点之一。
教材通过引入二元二次方程组的概念,让学生了解并掌握其解法,培养学生解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了初一、初二级别的数学知识,对解一元二次方程、解二元一次方程组等概念有一定的了解。
但二元二次方程组作为一种新的方程形式,其解法较为复杂,需要学生进行适当的过渡和引导。
三. 说教学目标1.让学生理解二元二次方程组的概念,掌握其解法。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生的逻辑思维能力和团队协作能力。
四. 说教学重难点1.重点:二元二次方程组的概念及其解法。
2.难点:如何将实际问题转化为二元二次方程组,并灵活运用解法求解。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二元二次方程组的解法。
2.利用多媒体手段,如PPT、视频等,生动展示二元二次方程组的解法过程。
3.分组讨论,让学生在团队中互相学习,提高协作能力。
六. 说教学过程1.引入新课:通过一个实际问题,引导学生思考如何用数学方法解决此类问题。
2.讲解概念:介绍二元二次方程组的概念,让学生理解其含义。
3.演示解法:利用多媒体手段,展示二元二次方程组的解法过程。
4.练习巩固:让学生通过练习题,巩固所学解法。
5.拓展应用:引导学生将实际问题转化为二元二次方程组,并求解。
6.总结反馈:对学生的学习情况进行总结,查漏补缺。
七. 说板书设计板书设计要清晰、简洁,能够突出二元二次方程组的概念和解法。
主要包括以下几个部分:1.二元二次方程组的定义2.二元二次方程组的解法步骤3.实际问题转化为二元二次方程组的例子八. 说教学评价教学评价主要包括两个方面:1.过程评价:观察学生在课堂上的参与程度、思考问题的深度以及团队协作能力。
二元二次方程组的解法步骤

二元二次方程组的解法步骤一、介绍二元二次方程组是一种由两个二次方程组成的方程组,形式一般为:a1x^2 + b1xy + c1y^2 + d1x + e1y + f1 = 0a2x^2 + b2xy + c2y^2 + d2x + e2y + f2 = 0其中,a1、b1、c1、d1、e1、f1为第一个方程的系数,a2、b2、c2、d2、e2、f2为第二个方程的系数。
在解二元二次方程组时,我们的目标是找到一组满足上述方程组的x和y的解。
二、解法步骤1. 消元法为了解二元二次方程组,我们首先需要将其中一个方程中的一个变量消去。
这可以通过两个方程的相减或相加来实现。
情况一:消去x的平方项为了消去x的平方项,我们需要使得两个方程的系数满足:a2 / a1 = b2 / b1 = c2 / c1如果上述条件满足,则我们可以将两个方程相减,消去x的平方项,得到一个新的一次方程:(b2 * c1 - b1 * c2) * y + (d2 * c1 - d1 * c2) * x + (f2 * c1 - f1 *c2) = 0这就得到了一个关于x和y的一次方程。
情况二:消去y的平方项类似地,为了消去y的平方项,我们需要使得两个方程的系数满足:a2 / a1 = b2 / b1 = c2 / c1如果上述条件满足,则我们可以将两个方程相减,消去y的平方项,得到一个新的一次方程:(a2 * d1 - a1 * d2) * x + (a2 * f1 - a1 * f2) = 0这就得到了一个关于x的一次方程。
2. 解一次方程通过消元法,我们得到了一个关于x和y的一次方程。
现在,我们需要解这个一次方程来求得x或y的值。
首先,我们可以根据方程的形式,将一次方程写成一般的标准形式,即Ax +By + C = 0,其中A、B、C为常数。
然后,我们可以使用线性代数的方法或代数方法来解这个一次方程。
如果该方程有唯一的解,则我们可以得到x或y的值。
二元二次方程组的解法技巧

二元二次方程组的解法技巧二元二次方程组是高中数学中比较重要的一部分,解决二元二次方程组的问题可以帮助我们更好地理解高中数学知识,同时也有助于我们在日常生活中应用数学知识。
一、方程式二元二次方程组通常可以表示为以下形式:ax^2 + bxy + cy^2 + dx + ey + f = 0gx^2 + hxy + iy^2 + jx + ky + l = 0其中,a、b、c、d、e、f、g、h、i、j、k、l均为实数。
二、解法技巧1. 消元法消元法是解决二元二次方程组的基本方法之一。
其思想是将方程组中的一些变量消除,得到一个只有一个未知数的一元二次方程。
例如,将方程组x^2 + y^2 = 25x + y = 7中的y消去,就得到一个只含有x的二次方程,从而可以求出x的值。
通过将得到的x值带入方程中,可以求出y的值。
2. 完全平方公式完全平方公式是解决二元二次方程组的重要方法之一。
对于一个一元二次方程,其一般形式为ax^2 + bx + c = 0,根据完全平方公式,可将其表示为(a x + k)^2 + p = 0,其中k和p分别为常数,根据该公式可以方便地求解一元二次方程的根。
对于二元二次方程组,我们可以尝试将其转化为一元二次方程,从而运用完全平方公式来求解。
例如,转化为一元二次方程后,方程组x^2 – y^2 = 36x^2 + y^2 = 100可表示为(x^2 + y^2) – (x^2 – y^2) = 100 – 362y^2 = 64y^2 = 32y = ±√32带入x^2 + y^2 = 100中可得出x^2 = 68,从而得出x = ±√68。
3. 消元法和完全平方公式的结合运用有时候,解决二元二次方程组需要结合运用上述两种方法。
例如,对于方程组x^2 – 4x – 5y + 18 =0y^2 + 6x + 8y + 9 = 0我们可以先使用“合并同类项”的方法,得到:(x^2 – 4x + 4) – 5y = -2y^2 + 6x + 8y + 9 = 0进一步变形后,有:(x – 2)^2 – 5y = -2 + 4y^2 + 6x + 8y + 9 = 0(x – 2)^2 = 5y + 2将上式代入第二个式子,得到:y^2 + 6x + 8y + 9 = 05y + 2 + 6x + 8y + 9 = 0从而得出y = -1,带入x –2 = ±√7,得出x = 2 ±√7。
沪教版(上海)数学八年级第二学期-21.6 二元二次方程组的解法(2) 教案

§21.6二元二次方程组的解法(2)一、教学目标:1、 掌握用“因式分解法”解由两个二元二次方程组成的方程组。
2、 在学习过程中体会解此类特殊二元二次方程组的基本策略是“降次”。
3、 通过解简单的二元二次方程组,进一步理解“消元”、“降次”的数学方法,获得对事物可以相互转化的数学思想。
二、教学重点:让学生经历探索Ⅱ、Ⅱ型二元二次方程组解法的过程,学会用因式分解法来解这类特殊的方程组。
三、教学难点:能正确组合由两个二元二次方程因式分解后形成的二元一次方程组。
四、教学过程: (一)复习引入:问:1、根据二元二次方程组的意义,你可以举出哪几种不同类型的二元二次方程组?我们可以用什么方法求解?(学生举例分析)师:这些解题的过程体现了转化的数学思想,把二元转化成一元,把二次转化成一次,就可以把新问题转化成我们已有的知识来解决。
教师板书:2、你觉得还有什么类型的二元二次方程组问题你没有解决?你可以尝试举个例子吗? 师:今天我们就来解决两个都是二元二次方程的二元二次方程组的解法。
引出课题 (二)学习新课:1、出示: ⎪⎩⎪⎨⎧=+-=+065202222y xy x y x 这个方程组你能不能先办法解决?请同学们试着解解看。
解:将方程②的左边因式分解变形为0)3)(2(=--y x y x ,方程②可变形为02=-y x 或03=-y x二、一型方程组消元降次一元整式方程二元一次方程组将它们与方程①组合分别组成方程组,得(Ⅰ) ⎩⎨⎧=-=+022022y x y x 或 (Ⅱ)⎩⎨⎧=-=+032022y x y x解方程组(Ⅰ)得⎩⎨⎧==2411y x⎩⎨⎧-=-=2422y x 解方程组(Ⅱ)得⎪⎩⎪⎨⎧==22333y x ⎪⎩⎪⎨⎧-=-=22344y x 所以原方程组的解为⎩⎨⎧==2411y x⎩⎨⎧-=-=2422y x ⎪⎩⎪⎨⎧==22333y x ⎪⎩⎪⎨⎧-=-=22344y x反馈练习:(1)⎪⎩⎪⎨⎧=+-=-0404222xy x y x (2)⎪⎩⎪⎨⎧=+=++516442222y x y xy x 先请学生分析解题思路,再写出解题过程。
21.6二元二次方程及方程组解法(二)

① ②
① + ②×3 得 x2 + 2x – 35 = 0
‹# ›
拓
展3
求两个未知数的和与积
x y 25 xy 12
2 2
① ②
②×2 + ① 得 x + y = ±7 原方程组可化为
x y 7 x y 7 , xy 12 xy 12
如果二元二次方程组中有一个方程可以变形为两个 一次方程的形式,那么解这个方程组的问题可以转化 为解由一个二元一次方程和一个二元二次方程所组成 的两个方程组,像这样解二元二次方程组的方法叫做 因式分解法
‹# ›
转化举例
2 2 x xy 2 y 2 x 2 xy 2 y 2 2 x 2 xy 2 y 2 2 , 2 2 x 3y 0 x 4 y 0 x 7 xy 12 y 0
②×2 - ①×3
得 4x + 9y – 6 = 0
原方程组可化为
2 x 2 4 xy 2 x y 2 0 4 x 9 y 6 0
‹# ›
拓
展2
消去一个未知数得到一元方程
2 2 x 15 xy 3 y 2 x 9 y 98 0 2 5 xy y 3 y 21 0
其中有一个方程可以分解成一次方程
2 2 x 2 xy 3 y 0 2 2 x 4 xy 4 y 1
x 2 y 1 x 2 y 1 , x 3y 0 x y 0 x 2 y 1 x 2 y 1 , x 3y 0 x y 0
拓
展5
21.6二元二次方程组的解法(1)

§21.6二元二次方程组的解法(1)班级: 学号: 姓名:一、学习目标:1、学会用代入消元法解由一个二元二次方程和一个二元一次方程组成的方程组。
2、经历探索简单的二元二次方程组解法的过程;体验化归的思想以及“消元”的策略。
3、体会数学知识之间的内在联系,养成深入观察、分析的良好习惯,树立科学的认知观。
二、学习重点:用代入消元法解由一个二元二次方程和一个二元一次方程组成的方程组。
三、学习难点:灵活运用整体代入法简化解方程组过程。
第一部分 课前预习一、知识回顾:用指定方法解下列二元一次方程组:(1) ,2x y -= (用代入消元法) (2) ,62=-y x (用加减消元法);123=+y x .1023=+y x二、新知探究:1、运用你所掌握的知识,选用你认为适当方法尝试解一个二元二次方程和一个二元一次方程组成的方程组。
⎩⎨⎧=+=-25122y x y x.归纳:解二元二次方程组的基本思想是“ ”,把它转化为解 方程的问题。
第二部分 课中学习1、解方程组:⎩⎨⎧=+-++=+022322x y xy x y x 法一: 法二:2、选用适当的方法解下列方程组:试一试,你的水平直线升高? (1)⎩⎨⎧=++=--01032y x y x(2)⎩⎨⎧=-=-532159422y x y x当堂检测选用适当的方法解下列方程组:1、⎩⎨⎧==+56xy y x 2、⎩⎨⎧=+=+42822y x xy x当堂检测 选用适当的方法解下列方程组:1、⎩⎨⎧==+56xy y x2、⎩⎨⎧=+=+42822y x xy x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y
2 2
2 y2 3 1
3. 2
3
例题讲解:
解方程组:4x2 9y2 15
(1)
2x3y5
(2)
解: 方程(1)可变形为:2 x 3 y 2 x 3 y 1 5(3 )
把(2)代入(3)中,得52x3y15
即 2x3y3
于是,原方程组化为
2 2
x x
3 3
y y
3 5 x
2
解这个二元一次方程组,得
变式:当m为何值时,方程组 x 2 y 8 x y m
(1)有两个不相等的实数根 (2)有两个相等的实数根 (3)没有实数解
五.布置作业: 练习册 习题21.6(1)
一.复习引入:
1、解二元一次方程组的基本思路是什么? 消元
2、解二元一次方程组有哪几种方法? 代入消元法、加减消元法
二.学习新课:
解方程组:
yx1 x2 y2 13
(1) (2)
把(1)代入(2)得 x2 x12 13
整理,得 x2x60,解得 x13, x22 .
把 x1 3 代入(1),得 y1 2;
即时练习:
解方程组:x2 2y2 10
(1)
xy10
(2)
解:由方程(2),得x=y-1
将x=y-1代入(1),得 (y1)22y210
整理,得 3y2 2y 0 解得 y1 0,
把 y1 把 y2Fra bibliotek02 代代入入((22)),,得得
3
x1
x2
所以,原方程组的解是
x1 y1
1
1
0
1 ;
3
x 2
y
1 3
所以,原方程组的解是
y
1 3
三.巩固练习:
解下列方程组:
(1)x x
3y 2 y2
0
; 20
(2)xx22yy252x3y70;
x y 7 (3)xy 12 .
四.拓展练习:
从方程组x2 y 2 8 中消去y,得到关于x的 x y m
二次方程,当m=3时,这个关于x的方程有几个实数解? 当m=4时呢?当m=5时呢?
把 x 2 2 代入(1),得 y 2 3 .
所以,原方程组的解是
xy11
3 2;
xy22
2 3.
归纳总结:
上述解方程组的过程,与用“代入消元法”解二元 一次方程组的过程一样,这样解二元二次方程组的 方法,同样叫做代入消元法。
对于由一个二元一次方程和二元二次方程组成的二 元二次方程组来说,代入消元法是解这类方程组的 基本方法