暑假初二升初三数学衔接班教材完整
暑假初二升初三数学衔接班预习教材(完整版)

第一讲 一元二次方程的解法(一)【基础知识精讲】1.一元二次方程的定义:只含有一个未知数整式方程,并且都可以化为ax 2+bx+c=0 (a 、b 、c 为常数,a≠0)的形式,这样的方程叫做一元二次方程。
注意: 满足是一元二次方程的条件有:(1)必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2。
(三个条件缺一不可)2.一元二次方程的一般形式:一元二次方程的一般式是ax 2+bx+c=0 (a 、b 、c 为常数,a≠0)。
其中ax 2是二次项, a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
3.一元二次方程的解法:⑴ 直接开平方法:如果方程 (x+m )2= n (n≥0),那么就可以用两边开平方来求出方程的解。
(2) 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax 2+bx+c=0 (a ≠0)的一般步骤是: ① 化二次项系数为1,即方程两边同除以二次项系数;② 移项,即使方程的左边为二次项和一次项,右边为常数项; ③ 配方,即方程两边都加上一次项系数的绝对值一半的平方; ④ 化原方程为(x+m )2=n 的形式;⑤ 如果n≥0就可以用两边开平方来求出方程的解;如果n <0,则原方程无解. 注意:①方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4).②解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.【例题巧解点拨】(一)一元二次方程的定义:例1:1、方程①13122=-xx ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是 .A. ①和②;B.②和③ ;C. ③和④;D. ①和③2、要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则__________. A .a ≠0 B .a ≠3C .a ≠1且b ≠-1D .a ≠3且b ≠-1且c ≠03、若(m+1)(2)1m m x +-+2mx-1=0是关于x 的一元二次方程,则m 的值是________. (二)一元二次方程的一般形式:例2:一元二次方程)1(2)2)(1(2-=+-x x x 的一般形式是 ;二次项系数是 ;一次项系数是;常数项是 。
暑假初二升初三数学衔接班精品教材北师大版

第一讲一元二次方程的解法---直接开平方法、配方法第二讲一元二次方程的解法-----公式法第三讲一元二次方程根的判别式第四讲一元二次方程根与系数的关系第五讲列一元二次方程解应用题第六讲正弦与余弦(1)第七讲正弦与余弦(2)第八讲正切与余切(1)第九讲正切和余切(2)第十讲解直角三角形第十一讲解直角三角形的运用第十二讲反比例函数第十三讲反比例函数的图像和性质(1)第十四讲反比例函数的图像和性质(2)第十五讲反比例函数综合运用第十六讲综合练习训练第一讲一元二次方程的解法---直接开平方法、配方法【基础知识精讲】1.一元二次方程的定义:只含有一个未知数整式方程,并且都可以化为ax2+bx+c=0 (a、b、c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
注意:满足是一元二次方程的条件有:(1)必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2。
(三个条件缺一不可)2.一元二次方程的一般形式:一元二次方程的一般式是ax2+bx+c=0 (a、b、c为常数,a≠0)。
其中ax2是二次项,a 是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
3.一元二次方程的解法:⑴直接开平方法:如果方程 (x+m)2= n (n≥0),那么就可以用两边开平方来求出方程的解(2) 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0 (a≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n<0,则原方程无解.注意:①方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4).②解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.【例题巧解点拨】(一)一元二次方程的定义:例1:1、方程①②③④中一元二次方程是 .A. ①和②;B.②和③;C. ③和④;D. ①和③2、要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则__________.A.a≠0 B.a≠3C.a≠1且b≠-1 D.a≠3且b≠-1且c≠03、若(m+1)+2mx-1=0是关于x的一元二次方程,则m的值是________.(二)一元二次方程的一般形式:例2:一元二次方程的一般形式是;二次项系数是;一次项系数是;常数项是。
八升九数学衔接课程(培优)

八升九衔接暑期课程数学(培优教材)目录第一讲一元二次方程 (1)第二讲一元二次方程(配方法) (5)第三讲一元二次方程(公式法) (9)第四讲一元二次方程(分解因式法) (13)第五讲判别式和根与系数的关系 (17)第六讲列方程解应用题 (21)第七讲一元二次方程(综合) (25)第八讲一元二次方程检测 (30)第九讲直角三角形与勾股定理 (33)第十讲垂直平分线 (38)第十一讲角平分线定理 (43)第十二讲等腰、等边三角形 (48)第十三讲综合运用 (53)第十四讲二元一次方程(组) (58)第十五讲函数与坐标系 (63)第十六讲一次函数及其图象和性质 (67)第十七讲反比例函数 (71)第一讲 一元二次方程【学习目标】1、学会根据具体问题列出一元二次方程,培养把文字叙述的问题转换成数学语言的能力。
2、了解一元二次方程的解或近似解。
3、增进对方程解的认识,发展估算意识和能力。
【知识要点】1、一元二次方程的定义:只含有一个未知数的整式方程,并且都可以化为02=++c bx ax (a 、b 、c 、为常数,0a ≠)的形式,这样的方程叫做一元二次方程。
(1)定义解释:①一元二次方程是一个整式方程;②只含有一个未知数;③并且未知数的最高次数是2。
这三个条件必须同时满足,缺一不可。
(2)02=++c bx ax (a 、b 、c 、为常数,0a ≠)叫一元二次方程的一般形式,也叫标准形式。
(3)在02=++c bx ax (0a ≠)中,a ,b ,c 通常表示已知数。
2、一元二次方程的解:当某一x 的取值使得这个方程中的c bx ax ++2的值为0,x 的值即是一元二次方程02=++c bx ax 的解。
3、一元二次方程解的估算:当某一x 的取值使得这个方程中的c bx ax ++2的值无限接近0时,x 的值即可看做一元二次方程02=++c bx ax 的解。
【经典例题】例1、下列方程中,是一元二次方程的是 ①042=-y y ; ②0322=--x x ; ③312=x; ④bx ax =2;⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ;⑨22=-x x ;⑩)0(2≠=a bx ax 例2、(1)关于x 的方程(m -4)x 2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程.(2)如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a__________.(3)关于x 的方程135)32(12=+-++x x m m m 是一元二次方程吗?为什么?例3、把下列方程先化为一般式,再指出下列方程的二次项系数,一次项系数及常数项。
暑假八年级升九年级数学衔接班第一讲一元二次方程的解法(教案)

然而,我也发现了一些问题。在讲解重点难点时,可能由于时间安排不够合理,导致部分学生对因式分解法和求根公式的掌握不够熟练。为此,我计划在接下来的课程中,针对这些重点难点进行更加深入的讲解和练习,确保学生们能够扎实掌握。
举例:在解决行程问题时,学生需要根据问题情境,正确列出速度、时间和路程之间的关系式。
在教学过程中,教师应针对以上重点和难点进行详细讲解和示范,通过典型例题和练习题,帮助学生巩固知识,突破难点,确保学生能够熟练掌握一元二次方程的解法及其应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元二次方程的解法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(如分配问题、面积问题等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程的解法。
举例:行程问题、面积问题等。
2.教学难点
(1)因式分解法的应用:学生需要熟练掌握各种因式分解方法,如提公因式法、平方差公式、完全平方公式等,并能灵活运用。
举例:求解方程x²+5x+6=0,需要运用平方差公式或完全平方公式进行因式分解。
(2)求根公式的理解和应用:学生需要理解求根公式的推导过程,并能够熟练运用求根公式解决一元二次方程问题。
2.分析与解决问题能力:培养学生将一元二次方程应用于解决实际问题的能力,提高学生分析问题和解决问题的素养。
暑假初二升初三数学衔接班精品教材北师大版

第一讲一元二次方程的解法---直接开平方法、配方法第二讲一元二次方程的解法-----公式法第三讲一元二次方程根的判别式第四讲一元二次方程根与系数的关系第五讲列一元二次方程解应用题第六讲正弦与余弦(1)第七讲正弦与余弦(2)第八讲正切与余切(1)第九讲正切和余切(2)第十讲解直角三角形第十一讲解直角三角形的运用第十二讲反比例函数第十三讲反比例函数的图像和性质(1)第十四讲反比例函数的图像和性质(2)第十五讲反比例函数综合运用第十六讲综合练习训练第一讲一元二次方程的解法---直接开平方法、配方法【基础知识精讲】1.一元二次方程的定义:只含有一个未知数整式方程,并且都可以化为ax2+bx+c=0 (a、b、c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
注意:满足是一元二次方程的条件有:(1)必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2。
(三个条件缺一不可)2.一元二次方程的一般形式:一元二次方程的一般式是ax2+bx+c=0 (a、b、c为常数,a≠0)。
其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。
3.一元二次方程的解法:⑴直接开平方法:如果方程 (x+m)2= n (n≥0),那么就可以用两边开平方来求出方程的解(2) 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax 2+bx+c=0 (a ≠0)的一般步骤是:① 化二次项系数为1,即方程两边同除以二次项系数;② 移项,即使方程的左边为二次项和一次项,右边为常数项;③ 配方,即方程两边都加上一次项系数的绝对值一半的平方;④ 化原方程为(x+m )2=n 的形式;⑤ 如果n≥0就可以用两边开平方来求出方程的解;如果n <0,则原方程无解.注意:①方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4).②解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法. 【例题巧解点拨】(一)一元二次方程的定义:例1:1、方程①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是 .A. ①和②;B.②和③ ;C. ③和④;D. ①和③2、要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则__________.A .a ≠0B .a ≠3C .a ≠1且b ≠-1D .a ≠3且b ≠-1且c ≠03、若(m+1)(2)1m m x +-+2mx-1=0是关于x 的一元二次方程,则m 的值是________.(二)一元二次方程的一般形式:例2:一元二次方程)1(2)2)(1(2-=+-x x x 的一般形式是 ;二次项系数是 ;一次项系数是;常数项是 。
(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。
初二升初三暑假衔接 版本

目录第一讲一元一次方程的概念、根的意义、直接开平方法第二讲配方法、判别式第三讲公式法、分解因式法第四讲一元二次方程应用题第五讲根与系数的关系第六讲与方程有关的综合问题(一)第七讲与方程有关的综合问题(二)第八讲阶段性复习与测试(一)第九讲成比例线段第十讲平行线分线段成比例第十一讲探索三角形相似的条件第十二讲相似三角形的性质与应用(一)第十三讲相似三角形的性质与应用(二)第十四讲相似三角形综合复习第十五讲阶段性复习与测试(二)第一讲一元二次方程的概念、根的意义、直接开平方法知识点1:例1、下列方程中,哪些是一元二次方程?哪些不是?__________________2222(1) x =3; (2) x -5x=12+x ; (3) x +2xy-3=0变式练习:1、下列关于x 的方程中,是关于x 的一元二次方程的是_________(填写序号)①2k +5k+6=0;②23310;3412x x --=③22(3)320;m x x ++-=④2(1)(1)1;k x k x k ---=-例2、将一元二次方程化成一般形式,并指出它的二次项系数,一次项系数和常数项。
(1)2345;x x -=-(2)2(1)24x mx --=变式练习:1、将下列一元二次方程化成一般形式,并指出它的二次项系数,一次项系数和常数项。
(1)24535;x x -=--(2)222456112;x x x x --=-+(3)2.ax bx c +=3,+=-22例、m为何值时,方程mx nx 5x 4是关于x的一元二次方程,m n满足什么条件时,方程式关于x的一元一次方程?变式练习:1、m 1若方程(m-1)x 2x 3是关于x的一元二次方程,则m的值是________.+-=知识点2:例4、2(1)已知1是方程3x 3x (2m)0的根,则m=_______.-+--=(2)22若a是方程2x -x-3=0的一个解,则6a -3a=_______.变式练习:x 012221、关于的一元二次方程(a-1)x +x+a -1=0的一个根是,则a的值为( )A、-1B、1C、-1或1D、-+=22222、若a,b,c是非零实数,且a b c 0,则有一个根是1的方程是( )A、ax +bx+c=0B、ax -bx+c=0C、ax +bx-c=0D、ax -bx-c=0知识点3:例5、用直接开平方法解方程:()x ;()x ;()(x ).=-=--=22214236035110变式练习:1、解方程:()x ;()x ;()(x ).==+=2221823723313知识点4:例6、-++--=2m 1已知关于x的方程(m 3)x 2(m 1)x 10.(1)m 为何值时,原方程是一元二次方程?(2)m 为何值时,原方程是一元一次方程?例7、解方程:(1)();x +=223417(2)(x )(x ).+=-222332变式练习:解方程:(1)(x );+=232116(2)(x )(x ).-=+222552补充试题:()++21221、关于x的方程a x m b=0的解是x =-2,x =1(a,m,b均为常数,a≠0),则方程a(x+m+2)+b的解是____________.222、证明关于x的方程(a -8a+20)x +2ax+1=0,不论a为何实数,该方程总是一元二次方程.2m 13、试分析关于x的方程(2m +m-3)x +5x=13能是一元二次方程吗?为什么?+达标训练:1、把方程(x-1)2+2=2x(x-3)化为一般形式是,其中二次项是,一次项系数是.2、某药品经过两次降价,每瓶零售价由162元降为128元,已知两次降价的百分率相同,设每次降价的百分率为x,则根据题意可得方程.3、方程2x-4=0的解也是关于方程220++=的解,则m的值为.x mx若x+mx-15=(x+3)(x+n),则m-n的值是________.5、222第二讲配方法、判别式知识点1:例1、用配方法解下列方程:2(2)2x4x30.+-= (1)x4x30;++=2变式练习:用配方法解下列方程:2+-=(2)2x8x30.(1)x6x30;++=2-+=例2、用配方法解关于x的方程:2x2x m0变式练习:用配方法解关于x 的方程:(0)++=ax bx c a ≠20知识点2:例3、不解方程,判断下列方程的根的情况:+=2(1)5x -7x 50;2(2)5x -5=7x ;-2(3)x =6x 9.变式练习:不解方程,判断下列方程的根的情况:-=2(1)4x -3x 20;2(2)4x +1=-3x ;2(3)4x +1=-4x .例4、-+=2已知关于x的方程x mx 20有两个相等的实数根,求m的值.变式练习:-+-=2271、已知关于x的方程x (2k-1)x k 0有两个相等的实数根,求k的值.4+=22、当t取什么值时,关于x的一元二次方程2x +tx 20有两个相等的实数根.-+=22例5、(1)关于x的方程x (2m-2)x m 0有两个不相等的实数根,求m的取值范围.++=2(2)若关于x的方程ax (2a+2)x a 0有实数解,求a的取值范围.变式练习:--=21、关于x的一元二次方程(1-k)x 2x 10有两个不相等的实数根,求k的取值范围.+=22、关于x的方程x +2kx 10有两个不相等的实数根,求k的取值范围。
暑假初二升初三数学衔接班精品教材北师大版

第一讲一元二次方程的解法---直接开平方法、配方法第二讲一元二次方程的解法-----公式法第三讲一元二次方程根的判别式第四讲一元二次方程根与系数的关系第五讲列一元二次方程解应用题第六讲正弦与余弦(1)第七讲正弦与余弦(2)第八讲正切与余切(1)第九讲正切和余切(2)第十讲解直角三角形第十一讲解直角三角形的运用第十二讲反比例函数第十三讲反比例函数的图像和性质(1)第十四讲反比例函数的图像和性质(2)第十五讲反比例函数综合运用第十六讲综合练习训练第一讲一元二次方程的解法---直接开平方法、配方法【基础知识精讲】1.一元二次方程的定义:只含有一个未知数整式方程,并且都可以化为ax2+bx+c=0 (a、b、c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
注意:满足是一元二次方程的条件有:(1)必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2。
(三个条件缺一不可)2.一元二次方程的一般形式:一元二次方程的一般式是ax2+bx+c=0 (a、b、c为常数,a≠0)。
其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。
3.一元二次方程的解法:⑴直接开平方法:如果方程 (x+m)2= n (n≥0),那么就可以用两边开平方来求出方程的解(2) 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax 2+bx+c=0 (a ≠0)的一般步骤是:① 化二次项系数为1,即方程两边同除以二次项系数;② 移项,即使方程的左边为二次项和一次项,右边为常数项;③ 配方,即方程两边都加上一次项系数的绝对值一半的平方;④ 化原方程为(x+m )2=n 的形式;⑤ 如果n≥0就可以用两边开平方来求出方程的解;如果n <0,则原方程无解.注意:①方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4).②解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法. 【例题巧解点拨】(一)一元二次方程的定义:例1:1、方程①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是 .A. ①和②;B.②和③ ;C. ③和④;D. ①和③2、要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则__________.A .a ≠0B .a ≠3C .a ≠1且b ≠-1D .a ≠3且b ≠-1且c ≠03、若(m+1)(2)1m m x +-+2mx-1=0是关于x 的一元二次方程,则m 的值是________.(二)一元二次方程的一般形式:例2:一元二次方程)1(2)2)(1(2-=+-x x x 的一般形式是 ;二次项系数是 ;一次项系数是;常数项是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲一元二次方程的解法(一)【基础知识精讲】1.一元二次方程的定义:只含有一个未知数整式方程,并且都可以化为ax2+bx+c=0 (a、b、c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
注意:满足是一元二次方程的条件有:(1)必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2。
(三个条件缺一不可)2.一元二次方程的一般形式:一元二次方程的一般式是ax2+bx+c=0 (a、b、c为常数,a≠0)。
其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。
3.一元二次方程的解法:⑴ 直接开平方法:如果方程 (x+m)2= n (n≥0),那么就可以用两边开平方来求出方程的解。
(2) 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0 (a≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;② 移项,即使方程的左边为二次项和一次项,右边为常数项;③ 配方,即方程两边都加上一次项系数的绝对值一半的平方;④ 化原方程为(x+m )2=n 的形式;⑤ 如果n≥0就可以用两边开平方来求出方程的解;如果n <0,则原方程无解.注意:①方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4).②解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.【例题巧解点拨】(一)一元二次方程的定义: 例1:1、方程①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是 .A. ①和②;B.②和③ ;C. ③和④;D. ①和③2、要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则__________.A .a ≠0B .a ≠3C .a ≠1且b ≠-1D .a ≠3且b ≠-1且c ≠03、若(m+1)(2)1m m x +-+2mx-1=0是关于x 的一元二次方程,则m 的值是________.(二)一元二次方程的一般形式:例2:一元二次方程)1(2)2)(1(2-=+-x x x 的一般形式是 ;二次项系数是 ;一次项系数是;常数项是 。
(三)一元二次方程的解法:例3:判断下列括号里的数哪个是方程的解。
(1))0,2,1(232x x = (2))4,5,5(0252-=-x例4:若1-=x 是关于x 的一元二次方程)0(02≠=++a c bx ax 的一个根, 求代数式)(c b a +-2008的值。
例5:解方程:用直接开平方法解一元二次方程:(1)0252=-x (2) 900)12(16002=-x(3)32=y (4)08)12(212=--x ) 用配方法解一元二次方程:(1)(2012 荆州)0342=+-x x (2)015122=-+x x(3)161442=++x x (4)1622=+x x例6:(开放题)关于x 的方程1322-=+x bx ax 一定是一元二次方程吗?若是,写出一个符合条件的a 值。
【随堂练习】A 组一、填空题:1.在4(1)(2)5x x -+=,221x y +=,25100x -=,2280x x +=,0,213x x=+,22=a ,223213x x x +=-,22)12)(3(x x x =-+中,是一元二次方程有_________个 。
2.关于x 的方程是(m 2–1)x 2+(m –1)x –2=0,那么当m 时,方程为一元二次方程;当m 时,方程为一元一次方程.3.把方程9)2)(2()1(3+-+=-x x x x 化成一般式为____________________.二次项系数是_____、一次项系数是_______、常数项是是_________.4.关于的x 的一元二次方程方程(a-1)x 2+x+a 2-1=0的一个根是0, 则a 的值是___________.5.223____(_____)x x x -+=-; 2226____2(_____)x x x -+=-6. 一元二次方程20ax bx c ++=若有两根1和-1,那么a b c ++=________,a b c -+= 。
二、按要求解下列方程:1.223)52(=-a (直接开平方法)2.0362=+-x x (配方法)B 组一、填空题:1.当_____m =时, 关于x 的方程2(80m m x mx -+=是一元二次方程.2.如果关于x 的方程(k 2-1)x 2+2kx+1=0中,当k=±1时方程为____________方程.3.已知256y x x =-+,当x=_______时,y=0; 当y=_______时,x=0.4.当220b c ++=时,则20ax bx c ++=的解为____________________.5. 方程2230x x --=的解是_______________________二、用配方法解下列方程:1.(1)(3)12x x -+= 2.01)32(2)32(2=++-+x x3.01442=--x x 4.04)12()12(22=+++-a x a x 三、解答题。
1.(2012 昆明)已知a 是方程0120042=+-x x 的一个根,试求12004200322++-a a a 的值。
2.(学科内综合题)一元二次方程02=++c bx ax 的一个根是1,且a,b 满足等式122--+-=a a b ,求此一元二次方程。
家庭作业校区: 姓名:_________科目: 数学 第 1 次课 作业等级:______第一部分:1.(2012教材1+1)下列方程,是一元二次方程的是( )A. 08692=--x xB. 065=+aC. 01742=+-y xD. 0862=--x x2.(2007,广州)方程8652-=a a 化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )A. 5,6,-8B. 5,-6,-8C. 5,-6,8D. 6,5,-8第二部分:3.(2012,哈尔滨)若关于x 的方程012122=-++-k x x k )(的一个根是0,则 k= 。
4.(2011,山西)请你写出一个有一根为1的一元二次方程: 。
5.(2009,丽水)用配方法解方程542=-x x 时,方程的两边同加上 ,使得方程左边配成一个完全平方式。
第三部分:6.解下列方程:(1)22)6()2(x x -=-(直接开平方法) (2)(2012,义乌)2220x x --=(用配方法)(3)(2011,兰州)用配方法解次方程:x x 3122=+7.(2012,潮州)当a 为何值时,关于x 的方程036132=-++ax x a )(是一元一次方程?当a 为何值时,原方程是一元二次方程?第二讲 一元二次方程的解法(二)【基础知识精讲】一元二次方程的解法:⑴ 直接开平方法:(2) 配方法:⑶ 公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的. 一元二次方程的求根公式是a ac b b x 242-±-= (b 2-4ac≥0)应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a 、b 、c 的值;③求出b 2-4ac 的值;④若b 2-4ac≥0,则代人求根公式,求出x 1 ,x 2.若b 2-4a <0,则方程无解.(4) 因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.注意:①方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4)②解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.(5)换元法:【例题巧解点拨】(一)知识回顾例1:对于关于x 的方程,)(2n m x =+它的解的正确表达式是( )A.用直接开平方法,解得n x ±=B.当0≥n 时,n m x ±=C .当0≥n 时,m n x -±= D.当0≥n 时,m n x -±= 例2 :用配方法解方程:)0(02≠=++a c bx ax (探索求根公式)(二)用公式法解一元二次方程例3:用公式法解方程:(1)0232=--x x (2)52)2)(1(+=++x x x 练习:(1)0822=--x x (2)02722=+-x x(三)用因式分解法解一元二次方程例4:利用因式分解解方程:(1)0232=+-x x (2) 01762=+-x x 练习:(1) x x 32= (2) 0822=--x x 例5:用适当的方法解下列方程:(1)0442=++y y (2))5(2)5(32x x -=- (310)1)(2(=-+x x ) (4)0222=--x x【同步达纲练习】A 组一、按要求解下列方程: 1. 816435-2=)(x (直接开平方法) 2. 0672=+-x x (因式分解法)3. 0362=+-x x (配方法)4. 2230x x +-= (求根公式法)二、用适当的方法解下列各题:5.(1)(3)12x x -+= 6.x x -=-6)2(27.2(23)3(23)40x x +-+-= 8.0825702=+-x x三、填空题:1. 方程:①230x -=, ②291210x x --=, ③2121225x x += ,④22(51)3(51)x x -=-,较简便的解法_________。
A .依次为直接开平方法,配方法,公式法和因式分解法B.①用直接开平方法,②用公式法,③④用因式分解法C. 依次为因式分解法,公式法,配方法和直接开平方法D. ①用直接开平方法,②③用公式法,④用因式分解法2.(2009 云南) 一元二次方程0252=-x x 的解是_____________________。
3.(2012东营)设b a ,是一个直角三角形两条直角边的长,且12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为 。
4.已知三角形的两边长分别是3和4,笫三边的长是方程x 2-6x+5=0的根,三角形的形状为_________。