用R语言做非参数和半参数回归笔记学习资料
R语言用nls做非线性回归以及函数模型的参数估计

R语⾔⽤nls做⾮线性回归以及函数模型的参数估计⾮线性回归是在对变量的⾮线性关系有⼀定认识前提下,对⾮线性函数的参数进⾏最优化的过程,最优化后的参数会使得模型的RSS(残差平⽅和)达到最⼩。
在R语⾔中最为常⽤的⾮线性回归建模函数是nls,下⾯以car包中的USPop数据集为例来讲解其⽤法。
数据中population表⽰⼈⼝数,year表⽰年份。
如果将⼆者绘制散点图可以发现它们之间的⾮线性关系。
在建⽴⾮线性回归模型时需要事先确定两件事,⼀个是⾮线性函数形式,另⼀个是参数初始值。
⼀、模型拟合对于⼈⼝模型可以采⽤Logistic增长函数形式,它考虑了初期的指数增长以及总资源的限制。
其函数形式如下。
⾸先载⼊car包以便读取数据,然后使⽤nls函数进⾏建模,其中theta1、theta2、theta3表⽰三个待估计参数,start设置了参数初始值,设定trace为真以显⽰迭代过程。
nls函数默认采⽤Gauss-Newton⽅法寻找极值,迭代过程中第⼀列为RSS值,后⾯三列是各参数估计值。
然后⽤summary返回回归结果。
library(car)pop.mod1 <- nls(population ~ theta1/(1+exp(-(theta2+theta3*year))),start=list(theta1 = 400, theta2 = -49, theta3 = 0.025), data=USPop, trace=T)summary(pop.mod) 还有⼀种更为简便的⽅法就是采⽤内置⾃启动模型(self-starting Models),此时我们只需要指定函数形式,⽽不需要指定参数初始值。
本例的logistic函数所对应的selfstarting函数名为SSlogispop.mod2 <- nls(population ~ SSlogis(year,phi1,phi2,phi3),data=USPop)⼆、判断拟合效果⾮线性回归模型建⽴后需要判断拟合效果,因为有时候参数最优化过程会捕捉到局部极值点⽽⾮全局极值点。
R语言学习系列32-回归分析

27. 回归分析回归分析是研究一个或多个变量(因变量)与另一些变量(自变量)之间关系的统计方法。
主要思想是用最小二乘法原理拟合因变量与自变量间的最佳回归模型(得到确定的表达式关系)。
其作用是对因变量做解释、控制、或预测。
回归与拟合的区别:拟合侧重于调整曲线的参数,使得与数据相符;而回归重在研究两个变量或多个变量之间的关系。
它可以用拟合的手法来研究两个变量的关系,以及出现的误差。
回归分析的步骤:(1)获取自变量和因变量的观测值;(2)绘制散点图,并对异常数据做修正;(3)写出带未知参数的回归方程;(4)确定回归方程中参数值;(5)假设检验,判断回归方程的拟合优度;(6)进行解释、控制、或预测。
(一)一元线性回归一、原理概述1. 一元线性回归模型:Y=0+1X+ε其中X是自变量,Y是因变量,0,1是待求的未知参数,0也称为截距;ε是随机误差项,也称为残差,通常要求ε满足:① ε的均值为0;② ε的方差为 2;③ 协方差COV(εi , εj )=0,当i≠j 时。
即对所有的i≠j, εi 与εj 互不相关。
用最小二乘法原理,得到最佳拟合效果的01ˆˆ,ββ值: 1121()()ˆ()n i i i nii x x y y x x β==--=-∑∑, 01ˆˆy x ββ=- 2.模型检验(1) 拟合优度检验计算R 2,反映了自变量所能解释的方差占总方差的百分比,值越大说明模型拟合效果越好。
通常可以认为当R 2大于0.9时,所得到的回归直线拟合得较好,而当R 2小于0.5时,所得到的回归直线很难说明变量之间的依赖关系。
(2) 回归方程参数的检验回归方程反应了因变量Y 随自变量X 变化而变化的规律,若 1=0,则Y 不随X 变化,此时回归方程无意义。
所以,要做如下假设检验:H 0: 1=0, H 1: 1≠0;① F 检验若 1=0为真,则回归平方和RSS 与残差平方和ESS/(N-2)都是 2的无偏估计,因而采用F 统计量:来检验原假设β1=0是否为真。
赖江山老师讲授R语言课程个人笔记

一、非对称分析(回归)做回归分析的前提条件:方差齐次性、独立、数据满足正态分布如果数据不正态,导致的后果平均值95%置信区间,两边不对称如果方差不等,某一边的标准差、置信区间大,有重叠回归Y定性时,整个式子叫做“分类排序”;X定性又定量时,整个方程叫“协方差分析”二、单因素方差分析(1)验证数据的正态性,零假设:均值相等,一组一组地验证:tapply(df$yield,df$Treat,shapiro.test),正态分析函数(shapiro.test),当结果P>0.05,则是一种自然分布(2)合并检验正态性:shapiro.test(resid(lm(yield~Treat,df)))(3)方差齐性检验,零假设:方差相等:bartlett.test(yield~Treat,df)(4)方差分析:fit <- aov(yield ~ Treat, df) 【“~”表示回归,aov是单因素方差分析ANOVA函数】(5)小知识:范函数:[summary.] /[plot.](6)P=1-pf(value组间方差-即组间变异幅度,Df-treat, Df-Residuals)Treat-Meansq/Treat-Value=Residuals-MeansqDf Sum Sq Mean Sq F value Pr(>F)Treat 4 301.2 75.30 11.18 0.000209 ***Residuals 15 101.0 6.73---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1(7)多重比较:安装赖老师的写的包(NEwR2),library(NEwR2),LSD多重比较:Least Significance Difference;多个t检验Install.package(‘agricolae’)(8)(9)结果P值,犯“1类错误,拒接真的原假设”的概率,正常我们说的P=0.05,就是:我们可以接受犯这个错误的概率。
非参数回归模型及半参数回归模型

非参数回归模型及半参数回归模型非参数回归模型是一种可以适应任意数据分布的回归方法。
在非参数回归中,不对模型的具体形式进行假设,而是利用样本数据去估计未知的函数形式。
这个函数形式可以用其中一种核函数进行近似,通过核函数的变换,使得样本点在空间中有一定的波动,从而将研究对象与有关因素的关系表达出来。
常见的非参数回归模型有局部加权回归(LOESS)和核回归模型。
局部加权回归是一种常见的非参数回归方法。
它通过给样本中的每个点分配不同的权重来拟合回归曲线。
每个点的权重根据其距离目标点的远近来确定,越近的点权重越大,越远的点权重越小。
这种方法在回归分析中可以较好地处理非线性关系和异方差性问题。
核回归模型是另一种常见的非参数回归方法。
它基于核函数的变换,通过将样本点的权重表示为核函数在目标点的取值,来拟合回归曲线。
核函数通常具有对称性和非负性的特点,常用的核函数有高斯核、Epanechikov核和三角核等。
核回归模型在处理非线性关系和异方差性问题时也具有较好的性能。
相比之下,半参数回归模型是在非参数回归的基础上引入一些参数的回归模型。
它假设一些参数具有一定的形式,并利用样本数据进行估计。
半参数模型可以更好地描述数据之间的关系,同时也可以提供关于参数的统计推断。
半参数回归模型有很多不同的形式,其中一个常见的半参数回归模型是广义加性模型(GAM)。
广义加性模型是通过将各个变量的函数关系进行加总,构建整体的回归模型。
这些函数关系可以是线性的也可以是非线性的,可以是参数化的也可以是非参数化的。
广义加性模型在回归分析中可以同时考虑到线性和非线性关系,广泛应用于各个领域。
在实际应用中,选择使用非参数回归模型还是半参数回归模型需要根据具体情况来决定。
非参数回归模型适用于对数据分布没有先验假设,并且希望对数据进行较为灵活的建模的情况。
半参数回归模型适用于对一些参数有一定假设的情况,可以更好地描述数据之间的关系,并提供统计推断的信息。
非参数回归r语言实现

2010-6-22
19
2010-6-22
4
3.0
2.5
2.0
y
1.5
1.0
0.0
0.2
0.4
0.6
0.8
1.0
x
2010-6-22
5
非参数回归
• 回归函数未知,要根据观测值估计给定点的估 计值
– 假设观测为(Yi,Xi),i=1,…,n ,假设模型为
Y = f (X)+ε
2010-6-22
6
核函数法
2010-6-22
非参数回归的R语言实现
中国人民大学统计学院 陈堰平
2010-6-22
1
背景
• 回归模型
E(Y | X) = f (X)
• 回归函数形式已知---参数回归 • 回归函数形式未知---非参数回归
2010-6-22
2
参数回归
Example:
> x=sort(runif(200)) > y=2*x+1+rnorm(200,0,0.1) > fit.lin<-lm(y~x)
7
• 核函数法(Nadaraya-Watson)
2010-6-22
8
局部多项式估计
利用局部展开的思想,在待估计点,将函数泰勒展开
f (x) = f (x0 ) + f '(x0 )(x − x0 ) +⋯
用R语言做非参数和半参数回归笔记.docx

由詹鹏整理 ,仅供交流和学习根据南京财经大学统计系孙瑞博副教授的课件修改 ,在此感谢孙老师的辛勤付出!教材为:Luke Keele: Semiparametric Regression for the Social Sciences. John Wiley & Sons, Ltd. 2008.-------------------------------------------------------------------------第一章 introduction: Global versus Local Statistic一、主要参考书目及说明1、Hardle(1994). Applied Nonparametic Regresstion. 较早的经典书2、Hardle etc (2004). Nonparametric and semiparametric models: an introduction. Springer. 结构清晰3、Li and Racine(2007). Nonparametric econometrics: Theory and Practice. Princeton. 较全面和深入的介绍 ,偏难4、Pagan and Ullah (1999). Nonparametric Econometrics. 经典5、Yatchew(2003). Semiparametric Regression for the Applied Econometrician. 例子不错6、高铁梅(2009). 计量经济分析方法与建模:EVIEWS应用及实例(第二版). 清华大学出版社. (P127/143)7、李雪松(2008). 高级计量经济学. 中国社会科学出版社. (P45 ch3)8、陈强(2010). 高级计量经济学及Stata应用. 高教出版社. (ch23/24)【其他参看原ppt第一章】二、内容简介方法:——移动平均(moving average)——核光滑(Kernel smoothing)——K近邻光滑(K-NN)——局部多项式回归(Local Polynormal)——Loesss and Lowess——样条光滑(Smoothing Spline)——B-spline——Friedman Supersmoother模型:——非参数密度估计——非参数回归模型——非参数回归模型——时间序列的半参数模型——Panel data 的半参数模型——Quantile Regression三、不同的模型形式1、线性模型linear models2、Nonlinear in variables3、Nonlinear in parameters四、数据转换 Power transformation(对参数方法)In the GLM framework, models are equally prone(倾向于) to some misspecification (不规范) from an incorrect functional form.It would be prudent(谨慎的) to test that the effect of any independent variable of a model does not have a nonlinear effect. If it does have a nonlinear effect, analysts in the social science usually rely on Power Transformations to address nonlinearity.[ADD: 检验方法见Sanford Weisberg. Applied Linear Regression (Third Edition). A John Wiley & Sons, Inc., Publication.(本科的应用回归分析课教材)]----------------------------------------------------------------------------第二章Nonparametric Density Estimation非参数密度估计一、三种方法1、直方图 Hiatogram2、Kernel density estimate3、K nearest-neighbors estimate二、Histogram 对直方图的一个数值解释Suppose x1,…xN – f(x), the density function f(x) is unknown.One can use the following function to estimate f(x)【与x的距离小于h的所有点的个数】三、Kernel density estimateBandwidth: h; Window width: 2h.1、Kernel function的条件The kernel function K(.) is a continuous function, symmetric(对称的) around zero, that integrates(积分) to unity and satisfies additional bounded conditions:(1) K() is symmetric around 0 and is continuous;(2) ,,;(3) Either(a) K(z)=0 if |z|>=z0 for z0Or(b) |z|K(z) à0 as;(4) , where is a constant.2、主要函数形式3、置信区间其中 ,4、窗宽的选择实际应用中 ,。
非参数回归 r语言-概述说明以及解释

非参数回归r语言-概述说明以及解释1.引言1.1 概述非参数回归是一种不依赖于特定函数形式的回归分析方法,它不需要对数据的分布做出假设。
相比于传统的参数回归方法,非参数回归更加灵活,能够更好地拟合复杂的数据模式。
在实际应用中,非参数回归可以有效地处理非线性关系、异常值和数据噪音等问题,因此受到越来越多研究者和数据分析师的青睐。
本文将重点介绍在R语言中如何进行非参数回归分析,包括常用的非参数回归方法、分析步骤以及如何利用R语言中的工具进行非参数回归分析。
同时,我们将讨论非参数回归的优缺点,以及对R语言在非参数回归中的意义和展望非参数回归的发展。
希望本文能够帮助读者更加深入地了解非参数回归方法,并在实践中灵活运用。
1.2 文章结构本文分为引言、正文和结论三部分。
在引言部分,将包括概述、文章结构和目的等内容,为读者提供对非参数回归和R语言的整体了解。
在正文部分,将介绍什么是非参数回归、在R语言中如何进行非参数回归分析以及非参数回归的优缺点。
最后,在结论部分将对非参数回归的应用进行总结,探讨R语言在非参数回归中的意义,以及展望非参数回归的发展前景。
通过以上结构,读者将逐步深入了解非参数回归和R语言在该领域的应用和发展。
1.3 目的本文旨在探讨非参数回归在数据分析中的应用,特别是在R语言环境下的实现方法。
通过深入了解非参数回归的概念、原理和优缺点,读者可以更全面地了解这一方法在处理不确定性较大、数据分布不规律的情况下的优势和局限性。
此外,本文还旨在介绍R语言中如何进行非参数回归分析,帮助读者学习如何利用这一工具进行数据建模和预测分析。
最终,通过对非参数回归的应用和发展的展望,希望能够激发更多的研究者和数据分析师对于这一领域的兴趣,推动非参数回归方法在实际应用中的进一步发展和创新。
2.正文2.1 什么是非参数回归非参数回归是一种用于建立数据之间关系的统计方法,它不对数据的分布做出任何假设。
在传统的参数回归中,我们通常会假设数据服从某种特定的分布,比如正态分布,然后通过参数估计来拟合模型。
用R语言做非参数

用R语言做非参数非参数统计是一种统计学方法,不依赖于数据的分布假设。
相比于参数统计,非参数统计更加灵活,可以处理各种类型的数据。
在R语言中,有很多函数和包可以用来进行非参数统计分析。
首先,我们可以使用Wilcoxon秩和检验(Mann-Whitney U检验)来比较两组独立样本的中位数差异。
Wilcoxon秩和检验是一种非参数的假设检验方法,适用于两组样本的中位数比较。
在R语言中,使用wilcox.test(函数可以进行Wilcoxon秩和检验。
例如,假设我们有两组样本x和y,我们可以使用以下代码进行Wilcoxon秩和检验:```Rx<-c(1,2,3,4,5)y<-c(6,7,8,9,10)result <- wilcox.test(x, y)print(result)```这段代码将计算两组样本的Wilcoxon秩和检验结果,并打印输出。
除了Wilcoxon秩和检验,我们还可以使用Kruskal-Wallis检验来比较多组样本的中位数差异。
Kruskal-Wallis检验是一种非参数的方差分析方法,适用于多组样本的中位数比较。
在R语言中,使用kruskal.test(函数可以进行Kruskal-Wallis检验。
例如,假设我们有三组样本x、y和z,我们可以使用以下代码进行Kruskal-Wallis检验:```Rx<-c(1,2,3,4,5)y<-c(6,7,8,9,10)z<-c(11,12,13,14,15)result <- kruskal.test(list(x, y, z))print(result)```这段代码将计算三组样本的Kruskal-Wallis检验结果,并打印输出。
另外,对于变量间的相关性检验,我们可以使用Spearman秩相关系数。
Spearman秩相关系数是一种非参数的相关性分析方法,适用于非线性关系的变量间的相关性分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用R语言做非参数和半参数回归笔记由詹鹏整理,仅供交流和学习根据南京财经大学统计系孙瑞博副教授的课件修改,在此感谢孙老师的辛勤付出!教材为:Luke Keele: Semiparametric Regression for the Social Sciences. John Wiley & Sons, Ltd. 2008.-------------------------------------------------------------------------第一章 introduction: Global versus Local Statistic一、主要参考书目及说明1、Hardle(1994). Applied Nonparametic Regresstion. 较早的经典书2、Hardle etc (2004). Nonparametric and semiparametric models: an introduction. Springer. 结构清晰3、Li and Racine(2007). Nonparametric econometrics: Theory and Practice. Princeton. 较全面和深入的介绍,偏难4、Pagan and Ullah (1999). Nonparametric Econometrics. 经典5、Yatchew(2003). Semiparametric Regression for the Applied Econometrician. 例子不错6、高铁梅(2009). 计量经济分析方法与建模:EVIEWS应用及实例(第二版). 清华大学出版社. (P127/143)7、李雪松(2008). 高级计量经济学. 中国社会科学出版社. (P45 ch3)8、陈强(2010). 高级计量经济学及Stata应用. 高教出版社. (ch23/24)【其他参看原ppt第一章】二、内容简介方法:——移动平均(moving average)——核光滑(Kernel smoothing)——K近邻光滑(K-NN)——局部多项式回归(Local Polynormal)——Loesss and Lowess——样条光滑(Smoothing Spline)——B-spline——Friedman Supersmoother模型:——非参数密度估计——非参数回归模型——非参数回归模型——时间序列的半参数模型——Panel data 的半参数模型——Quantile Regression三、不同的模型形式1、线性模型linear models2、Nonlinear in variables3、Nonlinear in parameters四、数据转换 Power transformation(对参数方法)In the GLM framework, models are equally prone(倾向于) to some misspecification (不规范) from an incorrect functional form.It would be prudent(谨慎的) to test that the effect of any independent variable of a model does not have a nonlinear effect. If it does have a nonlinear effect, analysts in the social science usually rely on Power Transformations to address nonlinearity. [ADD: 检验方法见Sanford Weisberg. Applied Linear Regression (Third Edition). A John Wiley & Sons, Inc., Publication.(本科的应用回归分析课教材)]----------------------------------------------------------------------------第二章 Nonparametric Density Estimation非参数密度估计一、三种方法1、直方图 Hiatogram2、Kernel density estimate3、K nearest-neighbors estimate二、Histogram 对直方图的一个数值解释Suppose x1,…xN – f(x), the density function f(x) is unknown.One can use the following function to estimate f(x)【与x的距离小于h的所有点的个数】三、Kernel density estimateBandwidth: h; Window width: 2h.1、Kernel function的条件The kernel function K(.) is a continuous function, symmetric(对称的) around zero, that integrates(积分) to unity and satisfies additional bounded conditions:(1) K() is symmetric around 0 and is continuous;(2) ,,;(3) Either(a) K(z)=0 if |z|>=z0 for z0Or(b) |z|K(z) à0 as ;(4) , where is a constant.2、主要函数形式3、置信区间其中,4、窗宽的选择实际应用中,。
其中,s是样本标准差,iqr 是样本分位数级差(interquartile range)四、K nearest-neighbors estimate五、R语言部分----------------------------------------------------------------------------第三章 smoothing and local regression一、简单光滑估计法 Simple Smoothing1、Local Averaging 局部均值按照x排序,将样本分成若干部分(intervals or “bins”);将每部分x对应的y 值的均值作为f(x)的估计。
三种不同方法:(1)相同的宽度(equal width bins):uniformly distributed.(2)相同的观察值个数(equal no. of observations bins):k-nearest neighbor.(3)移动平均(moving average)K-NN:等窗宽:2、kernel smoothing 核光滑其中,二、局部多项式估计Local Polynomial Regression1、主要结构局部多项式估计是核光滑的扩展,也是基于局部加权均值构造。
——local constant regression——local linear regression——lowess (Cleveland, 1979)——loess (Cleveland, 1988)【本部分可参考:Takezana(2006). Introduction to Nonparametric Regression.(P185 3.7 and P195 3.9)Chambers and Hastie(1993). Statistical models in S. (P312 ch8)】2、方法思路(1)对于每个xi,以该点为中心,按照预定宽度构造一个区间;(2)在每个结点区域内,采用加权最小二乘法(WLS)估计其参数,并用得到的模型估计该结点对应的x值对应y值,作为y|xi的估计值(只要这一个点的估计值);(3)估计下一个点xj;(4)将每个y|xi的估计值连接起来。
【R操作library(KernSmooth) #函数locpoly()library(locpol) #locpol(); locCteSmootherC()library(locfit) #locfit()#weight funciton: kernel=”tcub”. And “rect”, “trwt”, “tria”, “epan”, “bisq”, “gauss”】3、每个方法对应的估计形式(1)变量个数p=0, local constant regression (kernel smoothing)min(2)变量个数p=1, local linear regressionmin(3)Lowess (Local Weighted scatterplot smoothing)p=1:min【还有个加权修正的过程,这里略,详见原书或者PPT】(4)Loess (Local regression)p=1,2:min【还有个加权修正的过程,这里略,详见原书或者PPT】(5)Friedman supersmoothersymmetric k-NN, using local linear fit,varying span, which is determined by local CV,not robust to outliers, fast to computesupsmu( ) in R三、模型选择需要选择的内容:(1)窗宽the span;(2)多项式的度the degree of polynomial for the local regression models;(3)权重函数the weight functions。
【其他略】四、R语言部分---------------------------------------------------------------------------- 第四章样条估计spline一、基本思想按照x将样本分成多个区间,对每个区间分别进行估计。
不同于核估计,这里不用移动计算,从而减小了计算量。
二、最简单的形式Linear Spline with k knots:其中,,三、其他样条模型1、p次样条估计——二次样条Quadratic Spline (basis functions with k knots)——三次样条Cubic Spline (with k knots, use quadratic basis functions)——p-order spline (with k knots)2、B-splines (with k knots cubic B-spline basis)其中,3、Natural Splines以上估计方法对结点(knots)之间的估计比较准确,但对边界的拟合效果较差。