用R语言做非参数和半参数回归笔记
r语言 回归参数

r语言回归参数摘要:1.R 语言与回归分析2.回归参数的概念与种类3.R 语言中回归参数的估计方法4.R 语言中回归参数的检验方法5.R 语言中回归参数的优化与选择6.总结正文:一、R 语言与回归分析R 语言是一种功能强大的数据处理与统计分析语言,被广泛应用于各个领域。
在统计学中,回归分析是一种重要的研究方法,用于分析自变量与因变量之间的关系。
R 语言为回归分析提供了丰富的函数和方法,使得回归分析在实际应用中更加高效和准确。
二、回归参数的概念与种类在回归分析中,回归参数是用于描述自变量与因变量之间关系的统计量。
回归参数通常包括两个部分:斜率(B)和截距(a)。
斜率表示自变量每变动一个单位时,因变量相应变动的数量;截距表示当自变量为0 时,因变量的取值。
在多元回归分析中,除了斜率和截距外,还可能有其他参数用于描述多个自变量与因变量之间的关系。
三、R 语言中回归参数的估计方法R 语言提供了多种回归函数用于估计回归参数,如线性回归的`lm()`函数、多项式回归的`poly()`函数、广义线性模型的`glm()`函数等。
这些函数可以方便地对数据进行回归分析,并输出回归参数的估计值。
例如,使用`lm()`函数对一组数据进行线性回归分析:```Rx <- c(1, 2, 3, 4, 5)y <- c(2, 4, 6, 8, 10)model <- lm(y ~ x, data = list(x = x, y = y))summary(model)```四、R 语言中回归参数的检验方法在得到回归参数的估计值后,需要对其进行检验以判断是否显著。
R 语言中提供了`t.test()`、`f.test()`等函数用于进行t 检验和F 检验。
例如,对上述线性回归模型的斜率进行t 检验:```Rt.test(model$coefficients[1], alternative = "two.sided", mu = 0)```五、R 语言中回归参数的优化与选择在实际应用中,回归参数的优化与选择至关重要。
r语言多组数据非参数检验

r语言多组数据非参数检验主题:R语言中多组数据的非参数检验引言:在统计学中,我们经常需要对不同组别的数据进行比较和分析。
而非参数检验是一种常用的方法,可以用于比较不同组别的数据,而不需要对数据具有特定的分布形式。
R语言是一种强大的统计分析工具,提供了多种非参数检验方法,使得我们可以轻松地进行多组数据的比较。
本文将以R语言为工具,一步一步介绍多组数据的非参数检验方法。
一、读取数据:首先,我们需要从外部文件或者直接在R中定义数据,用于后续的分析。
在R中,可以使用read.csv()函数读取csv格式的文件,或者使用read.table()函数读取其他格式的文件。
在本文中,我们假设我们已经读取了两组数据,分别命名为group1和group2。
二、描述性统计分析:在进行非参数检验之前,我们需要先对数据进行一定的描述性统计分析,以了解数据的分布状况和基本特征。
在R语言中,可以使用summary()函数来计算数据的各种统计量,如均值、中位数、四分位数等。
此外,我们还可以使用hist()函数绘制直方图,来观察数据的分布情况。
三、非参数检验方法选择:在进行非参数检验之前,我们需要根据数据的特点选择合适的非参数检验方法。
常用的非参数检验方法包括Wilcoxon秩和检验、Mann-Whitney U检验、Kruskal-Wallis单因素方差分析等。
在R语言中,可以使用wilcox.test()函数进行Wilcoxon秩和检验,使用wilcox.test()或者kruskal.test()函数进行多组数据的比较。
四、Wilcoxon秩和检验:假设我们要比较group1和group2两组数据之间的差异。
我们可以使用wilcox.test()函数进行Wilcoxon秩和检验。
该检验假设两组数据的分布形状相同,只有位置参数不同。
在R语言中,我们可以使用如下代码进行Wilcoxon秩和检验:wilcox.test(group1, group2, paired = FALSE)其中,group1和group2分别表示两组数据的向量,paired = FALSE表示两组数据是不相关的。
用R语言做非参数和半参数回归笔记学习资料

用R语言做非参数和半参数回归笔记由詹鹏整理,仅供交流和学习根据南京财经大学统计系孙瑞博副教授的课件修改,在此感谢孙老师的辛勤付出!教材为:Luke Keele: Semiparametric Regression for the Social Sciences. John Wiley & Sons, Ltd. 2008.-------------------------------------------------------------------------第一章 introduction: Global versus Local Statistic一、主要参考书目及说明1、Hardle(1994). Applied Nonparametic Regresstion. 较早的经典书2、Hardle etc (2004). Nonparametric and semiparametric models: an introduction. Springer. 结构清晰3、Li and Racine(2007). Nonparametric econometrics: Theory and Practice. Princeton. 较全面和深入的介绍,偏难4、Pagan and Ullah (1999). Nonparametric Econometrics. 经典5、Yatchew(2003). Semiparametric Regression for the Applied Econometrician. 例子不错6、高铁梅(2009). 计量经济分析方法与建模:EVIEWS应用及实例(第二版). 清华大学出版社. (P127/143)7、李雪松(2008). 高级计量经济学. 中国社会科学出版社. (P45 ch3)8、陈强(2010). 高级计量经济学及Stata应用. 高教出版社. (ch23/24)【其他参看原ppt第一章】二、内容简介方法:——移动平均(moving average)——核光滑(Kernel smoothing)——K近邻光滑(K-NN)——局部多项式回归(Local Polynormal)——Loesss and Lowess——样条光滑(Smoothing Spline)——B-spline——Friedman Supersmoother模型:——非参数密度估计——非参数回归模型——非参数回归模型——时间序列的半参数模型——Panel data 的半参数模型——Quantile Regression三、不同的模型形式1、线性模型linear models2、Nonlinear in variables3、Nonlinear in parameters四、数据转换 Power transformation(对参数方法)In the GLM framework, models are equally prone(倾向于) to some misspecification (不规范) from an incorrect functional form.It would be prudent(谨慎的) to test that the effect of any independent variable of a model does not have a nonlinear effect. If it does have a nonlinear effect, analysts in the social science usually rely on Power Transformations to address nonlinearity. [ADD: 检验方法见Sanford Weisberg. Applied Linear Regression (Third Edition). A John Wiley & Sons, Inc., Publication.(本科的应用回归分析课教材)]----------------------------------------------------------------------------第二章 Nonparametric Density Estimation非参数密度估计一、三种方法1、直方图 Hiatogram2、Kernel density estimate3、K nearest-neighbors estimate二、Histogram 对直方图的一个数值解释Suppose x1,…xN – f(x), the density function f(x) is unknown.One can use the following function to estimate f(x)【与x的距离小于h的所有点的个数】三、Kernel density estimateBandwidth: h; Window width: 2h.1、Kernel function的条件The kernel function K(.) is a continuous function, symmetric(对称的) around zero, that integrates(积分) to unity and satisfies additional bounded conditions:(1) K() is symmetric around 0 and is continuous;(2) ,,;(3) Either(a) K(z)=0 if |z|>=z0 for z0Or(b) |z|K(z) à0 as ;(4) , where is a constant.2、主要函数形式3、置信区间其中,4、窗宽的选择实际应用中,。
R语言用nls做非线性回归以及函数模型的参数估计

R语⾔⽤nls做⾮线性回归以及函数模型的参数估计⾮线性回归是在对变量的⾮线性关系有⼀定认识前提下,对⾮线性函数的参数进⾏最优化的过程,最优化后的参数会使得模型的RSS(残差平⽅和)达到最⼩。
在R语⾔中最为常⽤的⾮线性回归建模函数是nls,下⾯以car包中的USPop数据集为例来讲解其⽤法。
数据中population表⽰⼈⼝数,year表⽰年份。
如果将⼆者绘制散点图可以发现它们之间的⾮线性关系。
在建⽴⾮线性回归模型时需要事先确定两件事,⼀个是⾮线性函数形式,另⼀个是参数初始值。
⼀、模型拟合对于⼈⼝模型可以采⽤Logistic增长函数形式,它考虑了初期的指数增长以及总资源的限制。
其函数形式如下。
⾸先载⼊car包以便读取数据,然后使⽤nls函数进⾏建模,其中theta1、theta2、theta3表⽰三个待估计参数,start设置了参数初始值,设定trace为真以显⽰迭代过程。
nls函数默认采⽤Gauss-Newton⽅法寻找极值,迭代过程中第⼀列为RSS值,后⾯三列是各参数估计值。
然后⽤summary返回回归结果。
library(car)pop.mod1 <- nls(population ~ theta1/(1+exp(-(theta2+theta3*year))),start=list(theta1 = 400, theta2 = -49, theta3 = 0.025), data=USPop, trace=T)summary(pop.mod) 还有⼀种更为简便的⽅法就是采⽤内置⾃启动模型(self-starting Models),此时我们只需要指定函数形式,⽽不需要指定参数初始值。
本例的logistic函数所对应的selfstarting函数名为SSlogispop.mod2 <- nls(population ~ SSlogis(year,phi1,phi2,phi3),data=USPop)⼆、判断拟合效果⾮线性回归模型建⽴后需要判断拟合效果,因为有时候参数最优化过程会捕捉到局部极值点⽽⾮全局极值点。
赖江山老师讲授R语言课程个人笔记

一、非对称分析(回归)做回归分析的前提条件:方差齐次性、独立、数据满足正态分布如果数据不正态,导致的后果平均值95%置信区间,两边不对称如果方差不等,某一边的标准差、置信区间大,有重叠回归Y定性时,整个式子叫做“分类排序”;X定性又定量时,整个方程叫“协方差分析”二、单因素方差分析(1)验证数据的正态性,零假设:均值相等,一组一组地验证:tapply(df$yield,df$Treat,shapiro.test),正态分析函数(shapiro.test),当结果P>0.05,则是一种自然分布(2)合并检验正态性:shapiro.test(resid(lm(yield~Treat,df)))(3)方差齐性检验,零假设:方差相等:bartlett.test(yield~Treat,df)(4)方差分析:fit <- aov(yield ~ Treat, df) 【“~”表示回归,aov是单因素方差分析ANOVA函数】(5)小知识:范函数:[summary.] /[plot.](6)P=1-pf(value组间方差-即组间变异幅度,Df-treat, Df-Residuals)Treat-Meansq/Treat-Value=Residuals-MeansqDf Sum Sq Mean Sq F value Pr(>F)Treat 4 301.2 75.30 11.18 0.000209 ***Residuals 15 101.0 6.73---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1(7)多重比较:安装赖老师的写的包(NEwR2),library(NEwR2),LSD多重比较:Least Significance Difference;多个t检验Install.package(‘agricolae’)(8)(9)结果P值,犯“1类错误,拒接真的原假设”的概率,正常我们说的P=0.05,就是:我们可以接受犯这个错误的概率。
非参数回归r语言实现

2010-6-22
19
2010-6-22
4
3.0
2.5
2.0
y
1.5
1.0
0.0
0.2
0.4
0.6
0.8
1.0
x
2010-6-22
5
非参数回归
• 回归函数未知,要根据观测值估计给定点的估 计值
– 假设观测为(Yi,Xi),i=1,…,n ,假设模型为
Y = f (X)+ε
2010-6-22
6
核函数法
2010-6-22
非参数回归的R语言实现
中国人民大学统计学院 陈堰平
2010-6-22
1
背景
• 回归模型
E(Y | X) = f (X)
• 回归函数形式已知---参数回归 • 回归函数形式未知---非参数回归
2010-6-22
2
参数回归
Example:
> x=sort(runif(200)) > y=2*x+1+rnorm(200,0,0.1) > fit.lin<-lm(y~x)
7
• 核函数法(Nadaraya-Watson)
2010-6-22
8
局部多项式估计
利用局部展开的思想,在待估计点,将函数泰勒展开
f (x) = f (x0 ) + f '(x0 )(x − x0 ) +⋯
用R语言做非参数和半参数回归笔记.docx

由詹鹏整理 ,仅供交流和学习根据南京财经大学统计系孙瑞博副教授的课件修改 ,在此感谢孙老师的辛勤付出!教材为:Luke Keele: Semiparametric Regression for the Social Sciences. John Wiley & Sons, Ltd. 2008.-------------------------------------------------------------------------第一章 introduction: Global versus Local Statistic一、主要参考书目及说明1、Hardle(1994). Applied Nonparametic Regresstion. 较早的经典书2、Hardle etc (2004). Nonparametric and semiparametric models: an introduction. Springer. 结构清晰3、Li and Racine(2007). Nonparametric econometrics: Theory and Practice. Princeton. 较全面和深入的介绍 ,偏难4、Pagan and Ullah (1999). Nonparametric Econometrics. 经典5、Yatchew(2003). Semiparametric Regression for the Applied Econometrician. 例子不错6、高铁梅(2009). 计量经济分析方法与建模:EVIEWS应用及实例(第二版). 清华大学出版社. (P127/143)7、李雪松(2008). 高级计量经济学. 中国社会科学出版社. (P45 ch3)8、陈强(2010). 高级计量经济学及Stata应用. 高教出版社. (ch23/24)【其他参看原ppt第一章】二、内容简介方法:——移动平均(moving average)——核光滑(Kernel smoothing)——K近邻光滑(K-NN)——局部多项式回归(Local Polynormal)——Loesss and Lowess——样条光滑(Smoothing Spline)——B-spline——Friedman Supersmoother模型:——非参数密度估计——非参数回归模型——非参数回归模型——时间序列的半参数模型——Panel data 的半参数模型——Quantile Regression三、不同的模型形式1、线性模型linear models2、Nonlinear in variables3、Nonlinear in parameters四、数据转换 Power transformation(对参数方法)In the GLM framework, models are equally prone(倾向于) to some misspecification (不规范) from an incorrect functional form.It would be prudent(谨慎的) to test that the effect of any independent variable of a model does not have a nonlinear effect. If it does have a nonlinear effect, analysts in the social science usually rely on Power Transformations to address nonlinearity.[ADD: 检验方法见Sanford Weisberg. Applied Linear Regression (Third Edition). A John Wiley & Sons, Inc., Publication.(本科的应用回归分析课教材)]----------------------------------------------------------------------------第二章Nonparametric Density Estimation非参数密度估计一、三种方法1、直方图 Hiatogram2、Kernel density estimate3、K nearest-neighbors estimate二、Histogram 对直方图的一个数值解释Suppose x1,…xN – f(x), the density function f(x) is unknown.One can use the following function to estimate f(x)【与x的距离小于h的所有点的个数】三、Kernel density estimateBandwidth: h; Window width: 2h.1、Kernel function的条件The kernel function K(.) is a continuous function, symmetric(对称的) around zero, that integrates(积分) to unity and satisfies additional bounded conditions:(1) K() is symmetric around 0 and is continuous;(2) ,,;(3) Either(a) K(z)=0 if |z|>=z0 for z0Or(b) |z|K(z) à0 as;(4) , where is a constant.2、主要函数形式3、置信区间其中 ,4、窗宽的选择实际应用中 ,。
非参数回归 r语言-概述说明以及解释

非参数回归r语言-概述说明以及解释1.引言1.1 概述非参数回归是一种不依赖于特定函数形式的回归分析方法,它不需要对数据的分布做出假设。
相比于传统的参数回归方法,非参数回归更加灵活,能够更好地拟合复杂的数据模式。
在实际应用中,非参数回归可以有效地处理非线性关系、异常值和数据噪音等问题,因此受到越来越多研究者和数据分析师的青睐。
本文将重点介绍在R语言中如何进行非参数回归分析,包括常用的非参数回归方法、分析步骤以及如何利用R语言中的工具进行非参数回归分析。
同时,我们将讨论非参数回归的优缺点,以及对R语言在非参数回归中的意义和展望非参数回归的发展。
希望本文能够帮助读者更加深入地了解非参数回归方法,并在实践中灵活运用。
1.2 文章结构本文分为引言、正文和结论三部分。
在引言部分,将包括概述、文章结构和目的等内容,为读者提供对非参数回归和R语言的整体了解。
在正文部分,将介绍什么是非参数回归、在R语言中如何进行非参数回归分析以及非参数回归的优缺点。
最后,在结论部分将对非参数回归的应用进行总结,探讨R语言在非参数回归中的意义,以及展望非参数回归的发展前景。
通过以上结构,读者将逐步深入了解非参数回归和R语言在该领域的应用和发展。
1.3 目的本文旨在探讨非参数回归在数据分析中的应用,特别是在R语言环境下的实现方法。
通过深入了解非参数回归的概念、原理和优缺点,读者可以更全面地了解这一方法在处理不确定性较大、数据分布不规律的情况下的优势和局限性。
此外,本文还旨在介绍R语言中如何进行非参数回归分析,帮助读者学习如何利用这一工具进行数据建模和预测分析。
最终,通过对非参数回归的应用和发展的展望,希望能够激发更多的研究者和数据分析师对于这一领域的兴趣,推动非参数回归方法在实际应用中的进一步发展和创新。
2.正文2.1 什么是非参数回归非参数回归是一种用于建立数据之间关系的统计方法,它不对数据的分布做出任何假设。
在传统的参数回归中,我们通常会假设数据服从某种特定的分布,比如正态分布,然后通过参数估计来拟合模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由詹鹏整理,仅供交流和学习根据南京财经大学统计系孙瑞博副教授的课件修改,在此感谢孙老师的辛勤付出!教材为:Luke Keele: Semiparametric Regression for the Social Sciences. John Wiley & Sons, Ltd. 2008.-------------------------------------------------------------------------第一章introduction: Global versus Local Statistic一、主要参考书目及说明1、Hardle(1994). Applied Nonparametic Regresstion. 较早的经典书2、Hardle etc (2004). Nonparametric and semiparametric models: an introduction. Springer. 结构清晰3、Li and Racine(2007). Nonparametric econometrics: Theory and Practice. Princeton. 较全面和深入的介绍,偏难4、Pagan and Ullah (1999). Nonparametric Econometrics. 经典5、Yatchew(2003). Semiparametric Regression for the Applied Econometrician. 例子不错6、高铁梅(2009). 计量经济分析方法与建模:EVIEWS应用及实例(第二版). 清华大学出版社. (P127/143)7、李雪松(2008). 高级计量经济学. 中国社会科学出版社. (P45 ch3)8、陈强(2010). 高级计量经济学及Stata应用. 高教出版社. (ch23/24)【其他参看原ppt第一章】二、内容简介方法:——移动平均(moving average)——核光滑(Kernel smoothing)——K近邻光滑(K-NN)——局部多项式回归(Local Polynormal)——Loesss and Lowess——样条光滑(Smoothing Spline)——B-spline——Friedman Supersmoother模型:——非参数密度估计——非参数回归模型——非参数回归模型——时间序列的半参数模型——Panel data 的半参数模型——Quantile Regression三、不同的模型形式1、线性模型linear models2、Nonlinear in variables3、Nonlinear in parameters四、数据转换Power transformation(对参数方法)In the GLM framework, models are equally prone(倾向于) to some misspecification(不规范)from an incorrect functional form.It would be prudent(谨慎的)to test that the effect of any independent variable of a model does not have a nonlinear effect. If it does have a nonlinear effect, analysts in the social science usually rely on Power Transformations to address nonlinearity.[ADD: 检验方法见Sanford Weisberg. Applied Linear Regression (Third Edition). A John Wiley & Sons, Inc., Publication.(本科的应用回归分析课教材)]----------------------------------------------------------------------------第二章 Nonparametric Density Estimation非参数密度估计一、三种方法1、直方图Hiatogram2、Kernel density estimate3、K nearest-neighbors estimate二、Histogram 对直方图的一个数值解释Suppose x1,…xN – f(x), the density function f(x) is unknown.One can use the following function to estimate f(x)【与x的距离小于h的所有点的个数】三、Kernel density estimateBandwidth: h; Window width: 2h.1、Kernel function的条件The kernel function K(.) is a continuous function, symmetric(对称的) around zero, that integrates(积分) to unity and satisfies additional bounded conditions:(1) K() is symmetric around 0 and is continuous;(2) ,,;(3) Either(a) K(z)=0 if |z|>=z0 for z0Or(b) |z|K(z) à0 as ;(4) , where is a constant.2、主要函数形式3、置信区间其中,4、窗宽的选择实际应用中,。
其中,s是样本标准差,iqr是样本分位数级差(interquartile range)四、K nearest-neighbors estimate五、R语言部分lines(den5,lty=1,col="blue")----------------------------------------------------------------------------第三章 smoothing and local regression一、简单光滑估计法 Simple Smoothing1、Local Averaging 局部均值按照x排序,将样本分成若干部分(intervals or “bins”);将每部分x对应的y值的均值作为f(x)的估计。
三种不同方法:(1)相同的宽度(equal width bins):uniformly distributed.(2)相同的观察值个数(equal no. of observations bins):k-nearest neighbor.(3)移动平均(moving average)K-NN:等窗宽:2、kernel smoothing 核光滑其中,二、局部多项式估计Local Polynomial Regression1、主要结构局部多项式估计是核光滑的扩展,也是基于局部加权均值构造。
——local constant regression——local linear regression——lowess (Cleveland, 1979)——loess (Cleveland, 1988)【本部分可参考:Takezana(2006). Introduction to Nonparametric Regression.(P185 3.7 and P195 3.9) Chambers and Hastie(1993). Statistical models in S. (P312 ch8)】2、方法思路(1)对于每个xi,以该点为中心,按照预定宽度构造一个区间;(2)在每个结点区域内,采用加权最小二乘法(WLS)估计其参数,并用得到的模型估计该结点对应的x值对应y值,作为y|xi的估计值(只要这一个点的估计值);(3)估计下一个点xj;(4)将每个y|xi的估计值连接起来。
【R操作library(KernSmooth) #函数locpoly()library(locpol) #locpol(); locCteSmootherC()library(locfit) #locfit()#weight funciton: kernel=”tcub”. And “rect”, “trwt”, “tria”, “epan”, “bisq”, “gauss”】3、每个方法对应的估计形式(1)变量个数p=0, local constant regression (kernel smoothing)min(2)变量个数p=1, local linear regressionmin(3)Lowess (Local Weighted scatterplot smoothing)p=1:min【还有个加权修正的过程,这里略,详见原书或者PPT】(4)Loess (Local regression)p=1,2:min【还有个加权修正的过程,这里略,详见原书或者PPT】(5)Friedman supersmoothersymmetric k-NN, using local linear fit,varying span, which is determined by local CV,not robust to outliers, fast to computesupsmu( ) in R三、模型选择需要选择的内容:(1)窗宽the span;(2)多项式的度the degree of polynomial for the local regression models;(3)权重函数the weight functions。
【其他略】四、R语言部分----------------------------------------------------------------------------第四章样条估计spline一、基本思想按照x将样本分成多个区间,对每个区间分别进行估计。
不同于核估计,这里不用移动计算,从而减小了计算量。
二、最简单的形式Linear Spline with k knots:其中,,三、其他样条模型1、p次样条估计——二次样条Quadratic Spline (basis functions with k knots)——三次样条Cubic Spline (with k knots, use quadratic basis functions)——p-order spline (with k knots)2、B-splines (with k knots cubic B-spline basis)其中,3、Natural Splines以上估计方法对结点(knots)之间的估计比较准确,但对边界的拟合效果较差。