速度控制回路(增速+换速)
合集下载
速度控制回路

第6章
液压基本回路
图6-11
液压缸差动连接回路
第6章
液压基本回路
第6章
液压基本回路
双泵供油的快速回路 如图 6-12所示。图中 1为低压大流量 泵,2 为高压小流量泵。当系统 工作在空载快速状态时,由于系 统工作压力低,溢流阀5 和顺序 阀3 都处于关闭状态,此时大泵 1的流量经单向阀4和小泵2 的流 量汇合于一体共同向系统供油,以 满足快速运动的需要;当系统转 入工进状态时,系统的压力升高, 顺序阀3 打开,单向阀4 关闭, 低压大流量泵1 经顺序阀 3 卸荷, 系统只有泵2 供油,实现工作进 给。这种回路由于工进时泵1 卸 荷,减少动力消耗,因此效率高, 功率损失小,故应用较广。但结 构较复杂,成本高。
第6章
液压基本回路
⑴进口节流调速回路如图6-1a所示。该回路是把流量阀安装 在液压缸进口油路上,调节流量阀阀口的大小,便可以控制进入 液压缸的流量,节流调速回路如图6-1b所示。该回路是把流量阀 安装在液压缸出口从而达到调速的目的,来自定量泵多余的流量 经溢流阀返回油箱,泵始终是在溢流阀的设定压力下工作。 ⑵出口油路上,调节流量阀阀口的大小,便可以控制流出液 压缸的流量,也就是控制了进入液压缸的流量,从而达到调速的 目的。来自泵的供油流量中,除了液压缸所需流量外,多余的流 量经过溢流阀返回油箱。所以,出口节流调速和进口节流调速回 路一样,泵始终是在溢流阀的设定压力下工作。出口节流调速回 路是调节从执行元件流出的流量,所以不仅适合于正值负载而且 也适合于负值负载,同时还能用于微速控制的场合。但是回路效 率低。执行元件进口侧压力为溢流阀的设定压力。执行元件出口 压力(背压)随负载的变化而变化,如果负载很小或为负值负载 时,执行元件出口压力有时比泵的输出压力还要高应给予重视。
第八章流量阀及速度控制回路解读

m
几种常用的节流口形式如图所示。
针阀式
偏心槽式
轴向三角槽式
周向缝隙式
轴向缝隙式
(一)节流阀
1、结构原理
适用于: 负载和温
度变化不大或
对速度稳定性 要求不高的液
压回路中。
单向节流阀
则无节流作用。
2
3 只能控制一个方向上的流量大小, 而在另一个方向 4
1 2 3 P2 4 P1
P2
P1 P2
P1
P1
1)液压缸差动连接回路
2)采用蓄能器的快速运动回路
3)双泵供油回路
4)用电磁换向阀的快慢速转换回路
5)行程阀的快慢速换接回路
下位: 快进 上位: 工进 阀2左位:快退
优点:快慢速换接过程 较平稳,换接点的位置较准 确。 缺点:行程阀的安装位 置不能任意布置,管路连接 较为复杂。
2. 两种慢速的转换回路
1、进油节流调速回路
1)回路的组成: 定量泵、节流阀、溢流阀 和执行元件。 2)工作原理: 执行元件进油路串接一节流 阀,以调节执行元件运动速度。 正常工作的必要条件: 泵输出油液qp q1→液压缸 △q→油箱
泵出口压力pp:溢流阀调整压力(基本恒定)
2、回油(出口)节流调速回路
原理: 节流阀串联在液压缸回油 路上,通过控制缸的回油量q2 实现速度调节。 特点: 基本特性与进口节流调速 回路基本相同。
正确而迅速地阅读液压系统图,对于分析液压 系统、设计电气系统以及使用、检修、调整液压设 备都有重要的作用。
阅读液压系统图的一般方法和步骤: 1)了解液压系统的任务、工作循环、应具 备的性能和需要满足的要求; 2)查询系统图中所有的液压元件及其连接 关系,分析它们的作用及其所组成的基本回路及 功能; 3)分析系统的基本回路,了解系统的工作 原理及特点。
速度控制回路

5 4 1DT 3 2DT 2 1
双泵并联的快速运动回路
在实际应用时,常常选择一 个由低压大流量泵和高压小流量 泵并联成一体的双联泵供油,快 速运动时,双泵同时供油,慢速 运动时,高压小流量泵单独供油, 实现满进工进,这样可使液压站 结构简单而紧凑。 该回路功率利用合理,效率 高,但回路相对复杂,成本高, 常用于快慢速度差值较大的系统 中。如组合机床、注塑机等液压 系统中。
2 .容积调速回路
容积调速回路是通过改变液压泵(马达) 的排量调节执行元件的运动速度或转速的回 路。 这种回路不需节流和溢流,压力损失小, 能量利用较合理,效率高,发热少,常用于 大功率液压系统。
(1)变量泵及定量执行元件调速回路
(2)定量泵和变量马达调速回路
输出功率与马达排量无关VM、即与转速无 关——因采用定量泵——恒功率调速!
1、差动连接的快速运动回路 2、双泵供油快速运动回路 3、用蓄能器的快速运动回路
差动连接增速回路
差动增速回路系统结构简单, 在各种液压系统中得到广泛应 用。但因差动连接时的有效工 作面积为活塞杆的面积,快速 运动时,活塞杆的有效推力减 小,因此油缸负载较大时不宜 采用这种回路。 要使快进和快退速度相等则A1=2A2, 此时快进(退)速度为工进速度的2 倍。
两种慢速的换接回路
(1)调速阀串联的速度换接回路
这种回路中调速阀6的调节 流量必须小于阀5的调节流量, 即第一工进速度大于第二工进 速度,否则只能获得—种工作 速度。这种调速回路的特点除 两种工进速度可任意调节外, 因阀5始终处于工作状态,速度 切换时不会产生前冲现象,运 动比较平稳。
两种慢速的换接回路
6 4 5 K 2 3
1
7.2.3 速度换接回路
第七章7.3速度控制回路

2、两种工作进给速度的切换回路
1)两个调速阀并联的速度切 换回路 a.如右图所示,它为两个调速 阀并联的速度切换回路。一个 调速阀工作时候,另外一个调 速阀没有工作,则调速阀中的 减压阀口处于完全打开的状态。 当突然切换时,瞬间不起减压 作用,容易出现部件突然前冲 的现象。
两个调速阀并联的速度切换回路
闭式回路
变量泵—定量马达回路
液压泵和液压马达组合
定量泵—变量马达回路 变量泵—变量马达回路
1)变量泵—定量马达回路
• 阀3关闭当安全阀, 通过调整泵1的流量 来控制速度。 • 泵4为补油辅助泵, 阀5为低压溢流阀, 调节泵4的压力。
回路功率随液压马达的转速呈线性关系。
2)定量泵—变量马达回路
• 改变马达 2的排量, 从而改变 马达的输 出速度。
§7-3 速度控制回路
速度控制回路分类(调快切)
一、调速回路 • 从执行元件的工作原理可知:
液压马达的转速为 液压缸的运动速度
nm q Vm
q为输入流量, Vm为液压马达的排量, v为液压缸的运动速度, A为液压缸的有效作用面 积。
q v A
若要改变液压马达的转速或液压缸的运动速度,可通 过改变输入流量或液压马达的排量来实现。若要改变输入 流量,可通过采用流量阀或变量泵来实现。若要改变液压 马达排量,可通过采用变量液压马达来实现。因此,调速 回路主要有以下三种方式: 1、节流调速回路2、容积调速回路3、容积节流调速回路
设定小流量泵2的最高 工作压力
注意:顺序阀3的
调定压力至少应比 溢流阀5的调定压力 低10%-20%。 大流量泵1的卸 荷减少了动力消耗, 回路效率较高。这 种回路常用在执行
元件快进和工进速
度相差较大的场合, 特别是在机床中得
速度控制回路

纵,动作灵敏,便于自动化 动作灵敏, 控制。 Y 型中位机能使执行 控制 。 元件停止运动时,液压缸浮 元件停止运动时, 动,液压泵非卸荷。 液压泵非卸荷。
2 ) 调压回路 Байду номын сангаас 溢流阀单 调压回路: 级调压, 级调压,工作时起定压溢流 作用。 作用。
2.试说明图示液压系统中,存 试说明图示液压系统中,
在哪几种液压基本回路?简述 在哪几种液压基本回路? 其应用特点。 其应用特点。
答 : 3 ) 回油节流调速回路 : 回油节流调速回路:
结构简单,使用方便, 结构简单 , 使用方便 ,调速的 平稳性较高;能量损失大( 平稳性较高; 能量损失大 ( 溢 流损失+ 节流损失) 效率低。 流损失 + 节流损失 ) , 效率低 。 4 ) 电磁阀控制的快慢速 转换回路:控制操纵方便 , 转换回路 :控制操纵方便,换
速度控制回路
二、快速运动回路 1)双泵供油快速运动回路 双泵供油快速 双泵供油快速运动回路
快速运动回路
2)液压缸差动连接快速运动回 液压缸差动连接快速运动回 差动连接快速 路
快速运动回路
3)蓄能器快速运动回路 蓄能器快速 快速运动回路
速度换接回路
三、速度换接回路 速度换接 换接回路
1.快慢速转换回路 快慢速转换回路 采用 行程阀 时 : 转换 平稳,位置准确, 但安装不便,管路 复杂。 复杂。 采用 电磁阀 时 : 调节 行程灵活,安装方 但平稳性差。 便,但平稳性差。
速度控制回路
主讲: 主讲:
石皋莲
速度控制回路
一、调速回路 二、快速运动回路 三、速度换接回路
一、调速回路
速度控制回路
1.节流调速回路 节流调速回路 组成:定量泵+流量阀(节流阀或调速阀) 组成:定量泵+流量阀(节流阀或调速阀)。 节流调速回路、 节流调速回路、 节流回路调速。 类型:进油节流调速回路、回油节流调速回路、旁油节流回路调速。 类型:进油节流调速回路 回油节流调速回路 旁油节流回路调速
速度控制回路(二)解析

动画演示
2.2 两种慢速的换接回路
动画演示
动画演示
2.1 快速与慢速的换接回路
慢速工进:液压缸快进,当活塞所连 接的挡块压下行程阀6时,行程阀关 闭,液压缸右腔的油液必须通过节流 阀5才能流回油箱,活塞运动速度转 变为;
快速运动:当换向阀左位接人回路 时,压力油经单向阀4进入液压缸右 腔,活塞快速向右返回。
这种回路的快慢速换接过程比较平 稳,换接点的位置比较准确。缺点是 行程阀的安装位置不能任意布置, 管路连接较为复杂。若将行程阀改 为电磁阀,安装连接比较方便,但速 度换接的平稳性、可靠性以及换向 精度都较差。
动画演示
1.3 双泵供油回路
其中大的液压泵实现快速运动, 小流量泵实现工作进给。
在快速运动时,系统由两个油 泵共同供油;在工作进给时, 系统压力升高,打开卸荷阀2 使大流量泵卸荷,系统油量由 小流量泵单独供油。
动画演示
1.4 增速缸的快速运动回路
动画原理
二、速度换接回路
速度换接回路的功能是使液压执行机构在一个工作循环中从 一种运动速度变换到另一种运动速度,因而这个转换不仅包括液压执 行元件快速到慢速的换接,而且也包括两个慢速之间的换接。实现这 些功能的回路应该具有较高的速度换接平稳性。
差动连接和非差动连接的速度之比:
v' A1 v A1 A2
动画演示
1.2 采用蓄能器的快速回路
采用蓄能器的目的是可以用流量较 小的液压泵,当系统中短期需要大 流量时,此时换向阀5处于左位或 右位位置,就有泵和蓄能器共同向 缸6供油。
当系统停止工作时,换向阀5处于 中间位置,此时泵经单向阀3向蓄 能器供油,蓄能器压力升高后,控 制溢流阀溢流。
速度控制回路(二) 教学内容
液压传动课题17速度控制回路

率高,广泛应用于大功率液压系统中。
(2)分类 1)变量泵和定量液压马达(或液压缸)容积调速回路 2)定量泵和变量液压马达容积调速回路 3)变量泵和变量液压马达容积调速回路。
课题17 速度控制回路
2、变量泵和定量液压执行元件容积调速回路
模块四
(1)组成
变量泵 +液压马达(或液压缸)
变量泵和定量液压执行元件容积调速回路
回油节流调速回路
课题17 速度控制回路
(2)比较
相同处 不同处 ∵ v—F特性基本与进口节流相似 ∴ 上述结论都适用于此 1)承受负值负载能力 ∵ 回油路节流阀使缸有一定背压
模块四
∴ 能承受负值负载,并↑v稳定性,而进油路则需在回油路 上增加背压阀方可承受,△P↑。
2)实现压力控制的方便性
∵ 进油路调速中工作台碰到死挡铁后,活塞停止,缸进油 腔油压上升至pY
(4)应用
因为速度负载特性、低速承载能力差。所以 一般用于高速、重载、 对速度平稳性要求很低的较大功率场合,如:牛头刨床主运动系统、输 送机械液压系统、大型拉床液压系统、龙门刨床液压系统等。
课题17 速度控制回路
5、采用调速阀的节流调速回路
模块四
(1)按调速阀安装位臵:进油路,回油路,旁油路
(2)特点 1)在负载变化较大,v稳定性要求较高的场合,则用调速阀替代节流 阀,当△P > △P min,q不随△P而变化,所以速度刚性明显优于节流阀 调速。
模块四
在这种回路中,液压泵转速和液压马达排量都是恒量,改变液压泵排量就可 使液压马达转速和输出功率随成正比地变化。而马达的输出转矩是由负载决定的, 不因调速而发生变化,所以这种回路通常叫做恒转矩调速回路。这种调速回路的 调速范围很大。
速度控制回路

液压、液力与气压传动技术
用于各种类型液压操作系统中。 缺点:压力油通过节流口和从旁路流回油箱均有能量损失,导致
系统发热和效率降低。 (1)进口节流调速回路
进口节流调速回路如图7.14所示。
Page ▪ 3
速度控制回路
节流阀串接在液压缸的进油路 上,用它来控制进入液压缸的流 量,调节液压缸的运动速度。多 余流量经溢流阀流回油箱。泵的 供油压力由溢流阀调定。
图3 用行程阀的快慢速换接回路
速度控制回路
2、两种慢速的换接回路
图4所示为二调速阀串 联的两次工进速度切 换回路。
Page ▪ 19
图4 二调速阀串联的两工进速度换接回路
速度控制回路
图5所示为二调速阀并联的两工进速度换接回路。
Page ▪ 20
图5二调速阀并联的两工进速度换接回路 1.主换向阀;2,3.阀;A,B.调速阀
图2 蓄能器供油快速运动回路
速度控制回路
1.3速度换接回路
1、快速与慢速的切换回路 图3所示的是一种采用行程阀的快慢速换接回路。 优点:回路的快慢速换接比较平稳,换接点的位置比较准确。 缺点:是不能任意改变快慢行程的位置,管路连接较为复杂。
Page ▪ 17
Page ▪ 18
速度控制回路
1.液压泵; 2.换向阀; 3.液压缸; 4.行程阀; 5.单向阀; 6.节流阀。
此外无背压,同样不能承受负值载荷,工作平稳性也差。
Page ▪ 6
速度控制回路
上述三种回路速度均存在速 度受负载影响大,变载荷下的 运动平稳性都比较差的缺点。 为了克服这个缺点,回路中的 节流阀可由调速阀来代替。
Page ▪ 7
图7.16 旁路节流调速回路
速度控制回路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有时仍不能满足快速运动的要求,常常要求 和其它方法(如限压式变量泵)联合使用。
液压缸差动连接的快速运动回路
液压与气动技术
2、双泵供油增速回路
当换向阀6处于图示位置,并且 由于外负载很小,使系统压力低于顺 序阀3的调定压力时,两个泵同时向
系统供油,活塞快速 向右运动;
设定双泵供油时系统的最 高工作压力
于是无杆腔排出的油液与泵1输出的油液合 流进入无杆腔,即在不增加泵流量的前提下增加 了供给无杆腔的油液量,使活塞快速向右运动。
液压缸差动连接的快速运动回路
液压与气动技术
差动连接增速回路
这种回路比较简单也比较经济,但液压缸的
速度加快有限,差动连接与非差动连接的速度之
比为:
1'
A1
1 ( A1 A2 )
A
DT1 P DT2
B B
采用电磁阀的快慢速换接回路
液压与气动技术 两种慢速(工进)换接回路
1、调速阀串联的换接回路
特点:v1 > v2,否则2不起作用
液压与气动技术 两种慢速(工进)换接回路
2、调速阀并联的换接回路1
特点:v1、v2互不影响,但因A、
B任意一个工作时,另一个减压阀 阀口最大,一旦换接易前冲。
双泵供油的快速运动回路
低压大流量泵1和高 压小流量泵2组成的 双联泵作为系统的动 力源。
液压与气动技术
双泵供油增速回路
换向阀6的电磁铁通电后, 缸有杆腔经 节流阀7回油箱,系统压力升高,达到顺序 阀3的调定压力后,大流量泵1通过阀3卸荷, 单向阀4自动关闭,只有小流量泵2单独向系
统供油,活塞慢速 向右运动.
液压与气动技术 快速与慢速的换接回路
2、采用电磁阀的快慢速换接回路
特点:安装连接方便,结合电气控
制可实现自动化,但速度换接平稳 性、动作可靠性和换接精度较差。
AB PT
A
B
DT1
P DT2 B
采用电磁阀的快慢速换接回路
液压与气动技术
快速与慢速的换接回路
1、采用电磁阀的快慢速换接回路
电磁铁动作顺序表:
实质上是一种分级(或有级)调速回路,但速度是根据需要事先 调好的,这是和调速回路的不同之处。
分类:快速与慢速的换接、两种慢速的换接
液压与气动技术
快速与慢速的换接回路
1、采用行程阀的快慢速换接回路
作用:在一个工作循环中,实现不同速
度的转换。
特点:速度换接平稳,动作可靠,
换接精度较好,但行程阀必须安 装在液压缸附近。
(电磁铁通电、行程阀压下时,表中记 “+”号;反之,记“-”号)
动作\电磁铁
DT1
DT2
快进
-
+
工进
-
-
快退
+
-
停止
-
-
A
P DT2
B B
AB DT1
PT
采用电磁阀的快慢速换接回路
液压与气动技术
1、采用电磁阀的快慢速换接回路
A
P DT2
B B
AB DT1
PT
AB DT1
PT
A
P DT2
B B
AB PT
干这行,爱这行
液压与气动技术
--速度控制回路(增速+换速)
扬州市职业大学 郝欣妮
目 录
1
增速回路
2 速度换接回路
3
小结
1 增速回路
液压与气动技术
增速回路(快速运动回路)
功用:在于使执行元件获得尽可能大的工作速度,以提高劳动生产
率并使功率得到合理的利用。实现快速运动可以有几种方法。
差动连接增速回路
增速回路
双泵供油增速回路 蓄能器供油增速回路
变量泵供油增速回路
液压与气动技术
1、差动连接增速回路
换向阀2处于原位时,液压泵1输出的液压 油同时与液压缸3的左右两腔相通,两腔压力相 等。由于液压缸无杆腔的有效面积A1大于有杆 腔的有效面积A2,使活塞受到的向右作用力大 于向左的作用力,导致活塞向右运动。
液压与气动技术 两种慢速(工进)换接回路
2、调速阀并联的换接回路2
特点: v1、v2互不影响,而且可
以避免前冲Байду номын сангаас但△P↑。
液压与气动技术 小结
1
增速回路
2
速度换接回路
注意:顺序阀3的调定压 力至少应比溢流阀5的调 定压力低10%-20%。
大流量泵1的卸荷减少了动力消耗,回路效率 较高。这种回路常用在执行元件快进和工进速度 相差较大的场合,特别是在机床中得到了广泛的 应用。
设定小流量泵2 的最高工作压力
2 速度换接回路
液压与气动技术
速度换接回路
作用:完成系统中执行元件依次实现几种速度的换接。