函数发展史

合集下载

函数de发展史

函数de发展史

函数概念 欧拉 L.Euler 1707-1783 瑞士数学家
如果某些变量,以这样一种方式依赖于另一 些变量,即当后面这些变量变化时,前面这些变 量也随之变化,则将前面的变量称为后面变量的 函数. ————Euler
函数概念
狄利克雷 P.G.L.Dirichlet 1805-1859 德国数学家
函数概念的发展历程
函数概念
“function”一词最初由 德国数学家莱布尼兹在1692 年使用. 用“function”表示随曲 线的变化而改变的几何量, 如坐标、切线等.
莱布尼兹 G.W.Leibniz 1646-1716 德国数学家
函数概念
约翰· 伯努利(Bernoulli Johan) 1667-1748 瑞士数学家 强调函数要用公式表示.
17
47 x 16cos t 5 cos t 3 y 12si nt 3 si n 44 t 3
返回目录
现实世界是数学的丰富源泉,数 学源于生活、寓于生活、用于生活。 数学家华罗庚曾经说过:宇宙之大,粒 子之微,火箭之速,化工之巧,地球之变, 日用之繁,无处不用数学。这是对数学 与生活的精彩描述。这次学习,希望 我们体会到了数学的魅力。
如果对于x的每一个值,y总有完全确定的 值与之对应,则y是x的函数.
函数概念
李善兰 1811-1882 清朝数学家
在1859年和英国传教士伟烈亚力和译的《代 微积拾积》中首次将“function”译做“函数”.
函数的应用

对数函数
叶形线 其解析式为:x3+y3=3axy
返回目录
李萨茹曲线
其中
-5
0 x
5
10
Байду номын сангаас

数学函数的发展历史

数学函数的发展历史

数学函数的发展历史数学函数的发展历史可以追溯到古希腊时期的数学家欧几里得和阿基米德。

欧几里得在其著作《几何原本》中首次引入了直线和曲线的概念,这可以认为是函数概念的起源之一、然而,直到十七世纪,函数的研究才真正取得了重要进展。

十七世纪的最伟大的数学家之一,法国数学家勒让德·伽洛阿是函数论的奠基人之一、伽洛阿在他的著作《分析术》中,首次提出了函数的概念。

他将函数定义为一种变量的规则,将一个数域的元素映射到另一个数域的元素。

他的著作中展示了对代数方程解的研究,这奠定了今天代数学关于解方程的基础。

在十七世纪晚期,数学家约瑟夫·路易·拉格朗日和奥古斯丁·路易·柯西对函数的理论进行了扩充。

拉格朗日在他的著作《微积分学》中对函数的性质进行了详细的研究。

他提出了拉格朗日方程和拉格朗日乘子法等重要理论,为动力学问题提供了创新的解决方法。

柯西则系统地发展了实变函数和复变函数的理论,提出了柯西序列、柯西准则和柯西-黎曼方程等重要概念。

在十九世纪,数学家高斯、魏尔斯特拉斯和韦尔斯特拉斯等人在函数论领域做出了重要贡献。

高斯提出了正切函数的首个定义,并引入了复数函数的概念。

魏尔斯特拉斯则发展了连续函数的理论,他证明了任何函数都可以用无限个三角函数的和来逼近,这被称为魏尔斯特拉斯逼近定理。

韦尔斯特拉斯研究了无穷可导函数的性质,提出了拟均一函数的概念。

十九世纪末至二十世纪初,函数论得到了进一步的拓展。

翁·费尔塞、埃里希·希尔伯特和大卫·希尔伯特等数学家在实变函数和复变函数的理论上做出了重要贡献。

翁・费尔塞证明了任何周期函数都可以用三角函数的无穷和表示,这被成为费尔塞级数。

埃里希·希尔伯特在他的著作《函数论》中系统地阐述了函数论的基本概念和理论,提出了希尔伯特空间和希尔伯特曲线等重要概念。

大卫·希尔伯特则研究了无穷维函数空间的理论,他给出了希尔伯特空间的公理化定义。

函数的发展历程

函数的发展历程

函数的发展历程一、古希腊时期古希腊数学家希腊斯科特·伯涅劳斯(Scctonius)在公元前4世纪就提出了函数的概念。

他用字母表示一个量,并用等式将这个量和另一个量联系在一起。

例如,他用f(x)表示x的平方,即f(x)=x^2。

但是,他并没有将函数作为独立的数学概念来看待,只是作为一种辅助工具。

二、17世纪17世纪是函数发展的重要时期。

著名数学家斯特林(Stevin)在其著作《五十个数学问题》中提出了函数的概念。

他指出,函数是一种可以用数学公式表示的规律,即f(x)=x^2。

三、18世纪18世纪是函数发展的关键时期。

著名数学家莫尔(Leibniz)在公元1694年提出了微积分的概念。

他认为,微积分是一种研究变化的工具,可以用来研究连续函数的变化。

这为函数研究开辟了新的天地。

四、19世纪19世纪是函数发展的全盛时期。

著名数学家高斯(Gauss)在公元1801年提出了高维空间的概念。

他认为,高维空间是一个可以用函数表示的数学模型,即可以用函数来描述多维空间的性质。

这为函数的研究提供了更加广阔的空间。

五、20世纪20世纪是函数发展的高潮时期。

著名数学家华罗庚(Huang Qiu-Guang)在公元1943年提出了泛函分析的概念。

他认为,泛函分析是一种研究函数性质的数学方法,可以用来研究连续函数和离散函数的性质。

这为函数的研究提供了更加丰富的内容。

六、21世纪21世纪是函数发展的新时期。

计算机技术的发展使得函数在计算机科学和工程领域中发挥着越来越重要的作用。

函数也被广泛用于数据挖掘和人工智能领域,为科学技术的发展做出了重要贡献。

综上,函数作为一种独立的数学概念,在古希腊时期就已经提出,但是直到17世纪才得到正式的定义。

随着时间的推移,函数在数学和工程领域的应用越来越广泛,为科学技术的发展做出了巨大贡献。

函数概念的发展历史和应用总结报告

函数概念的发展历史和应用总结报告

一、概述函数作为数学、计算机科学、工程学等多个学科领域中的重要概念,在其发展历史中扮演着至关重要的角色。

本报告将对函数概念的发展历史进行回顾,并总结其在各个领域中的应用情况,以期为相关领域的研究和教育提供参考。

二、函数概念的发展历史1. 函数的最早概念函数的最早概念可以追溯至古希腊数学家欧几里得的《几何原本》中,他将函数理解为图形和数之间的关系。

此后,函数的概念在数学中逐渐得到发展,包括勒让德、傅里叶、魏尔斯特拉斯等数学家的贡献。

2. 函数在工程学中的应用函数在工程学中的应用可以追溯至17世纪,当时牛顿和莱布尼兹分别发现了微积分学科,其中涉及了函数的概念。

自此之后,函数的应用在工程学中不断深入,成为解决工程问题的重要数学工具。

3. 函数在计算机科学中的发展函数在计算机科学中的发展可以追溯至20世纪50年代的代数逻辑理论。

随着计算机的发展,函数成为了编程和算法设计中的基础概念,如递归函数、高阶函数等。

三、函数在各领域中的应用总结1. 数学领域在数学领域中,函数的应用广泛,涉及微积分、数学分析、代数学等多个分支。

函数作为数学建模的基础,被广泛应用于科学研究和工程技术中。

2. 工程学领域在工程学领域中,函数的应用与数学领域紧密相关,包括控制系统、信号处理、电路分析等。

工程师通过函数分析和设计,解决了许多现实世界中的难题。

3. 计算机科学领域在计算机科学领域中,函数的应用涉及编程语言、算法设计、数据结构等多个方面。

函数作为计算机程序中的基本单位,对计算机科学的发展起到了至关重要的作用。

四、结语函数作为一个跨学科的概念,在数学、工程学、计算机科学等多个领域中得到了广泛的应用。

通过回顾函数概念的发展历史及其在各领域中的应用情况,我们可以更好地理解函数的重要性和作用,为今后在相关领域的研究和应用提供借鉴和指导。

希望本报告能对相关领域的研究和教育工作有所助益。

五、函数概念的发展历史和应用案例1. 函数在物理学中的应用在物理学中,函数的概念被广泛运用于描述自然界中的各种规律和现象。

函数发展史

函数发展史

函数发展简史最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.后又经历了贝努利、欧拉等人的改译。

1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数,在柯西的定义中,首先出现了自变量一词。

1834年,俄国数学家罗巴契夫斯基进一步指出了对应关系(条件)的必要性,利用这个关系以求出每一个x的对应值.康托尔自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了。

. 中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》一书时,把“function”译成函数。

优美的函数图象笛卡尔的故事当时法国正流行黑死病,笛卡儿不得不逃离法国,于是他流浪到瑞典当乞丐。

某天,他在市场乞讨时,有一群少女经过,其中一名少女发现他的口音不像是瑞典人,她对笛卡儿非常好奇,于是上前问他…… 你从哪来的啊? “法国”“你是做什么的啊?” “我是数学家。

” 这名少女叫克丽丝汀,18岁,是一个公主,她和其它女孩子不一样,并不喜欢文学,而是热衷于数学。

当她听到笛卡儿说名身份之后,感到相当大的兴趣,于是把笛卡儿邀请回宫。

笛卡儿就成了她的数学老师,将一生的研究倾囊相授给克丽丝汀。

而克丽丝汀的数学也日益进步,直角坐标当时也只有笛卡儿这对师生才懂。

后来,他们之间有了不一样的情愫,发生了喧腾一时的师生恋。

这件事传到国王耳中,让国王相当愤怒!下令将笛卡儿处死,克丽丝汀以自缢相逼,国王害怕宝贝女儿真的会想不开,于是将笛卡儿放逐回法国,并将克丽丝汀软禁。

笛卡儿一回到法国后,没多久就染上了黑死病,躺在床上奄奄一息。

笛卡儿不断地写信到瑞典给克丽丝汀,但却被国王给拦截没收。

所以克丽丝汀一直没收到笛卡儿的信…… 在笛卡儿快要死去的时候,他寄出了第13封信,当他寄出去没多久后...就气绝身亡了。

函数发展历程

函数发展历程

函数发展历程函数作为一种数学概念和计算机编程的核心概念,经历了长期的发展历程。

本文将从函数的起源、确立、扩展和应用等方面,依次介绍函数的发展历程。

函数的起源可以追溯到古希腊时期。

数学家欧几里得就曾经研究直线上的某一点与其它点之间的关系,这种对抽象关系的研究正是函数学的起源。

而其他古代数学家如阿基米德、欧拉等人也都在他们自己的研究中使用了类似函数的概念,但这些早期的函数概念尚未明确并没有统一的定义。

17世纪,数学家伯努利兄弟为数学函数确立了更加明确的定义。

他们认为,函数是一个可见量与适当的自变量之间的依赖关系,从而引入了函数的图像和变化率的概念。

这个定义为后来函数的发展奠定了基础。

18世纪,数学分析学的奠基人牛顿、莱布尼茨进一步推动了函数的发展。

他们发明了微积分学,不仅完善了函数的定义和性质,还研究了函数的极限、导数和积分等重要概念,且提出了函数的泰勒级数展开理论。

这些成果使函数概念在数学领域得到广泛应用,并为物理学、工程学等学科提供了重要工具。

随着计算机的发展,函数得到了更广泛的应用。

20世纪50年代,计算机语言FORTRAN的出现为函数在计算机编程中的应用奠定了基础。

FORTRAN语言支持用户定义函数,并且强调了函数的重复利用性。

这为以后编程语言的函数概念提供了一个先例。

从20世纪60年代开始,函数在计算机编程中的应用逐渐得到重视。

ALGOL语言提供了一种新的函数定义和调用方式,引入了块结构和局部变量的概念。

这些特性使函数的使用得到进一步简化,并使函数模块化成为可能。

在20世纪70年代,C语言的出现进一步推动了函数的发展。

C语言引入了参数传递和返回值的机制,使得函数的调用和返回更加灵活。

此外,C语言还支持递归调用,这使得函数能够实现更加复杂的功能。

随着计算机科学的不断发展,函数的应用领域也不断扩展。

从科学计算到图形学、数据库、人工智能等领域,函数都发挥着不可替代的作用。

同时,函数式编程的兴起也推动了函数的进一步发展。

函数概念发展史

函数概念发展史

函数概念发展史
函数概念的发展史可以追溯到17世纪和18世纪。

以下是函数概念的发展历程:
- 1718年,莱布尼茨的学生、瑞士数学家贝努利把函数定义为:“由某个变量及任意的一个常数结合而成的数量。

”意思是凡变量和常量构成的式子都叫做函数。

贝努利强调函数要用公式来表示。

- 1755年,瑞士数学家欧拉把函数定义为:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。

”在欧拉的定义中,就不强调函数要用公式表示了。

- 1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。

”在柯西的定义中,首先出现了自变量一词。

- 1834年,俄国数学家罗巴切夫斯基进一步提出函数的定义:“函数是这样的一个数,它对于每一个都有确定的值,并且随着一起变化。

函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法。

函数的这种依赖关系可以存在,但仍然是未知的。

”这个定义指出了对应关系(条件)的必要性,利用这个关系,可以求出每一个的对应值。

- 1837年,德国数学家狄里克雷认为怎样去建立与之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,总有一个完全确定的y值与之对应,则y是x 的函数。

”这个定义抓住了概念的本质属性,变量y称为x的函数,只须有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的值和它对应就行了,不管这个。

函数发展史

函数发展史

函数发展史1。

函数的起源现在,我们所用到的函数多是从无到有的。

最早使用“函数”一词的是文艺复兴时期的意大利数学家莱布尼兹。

他在1536年发表的《关于“切线”和“求极大量”的论文》一文中首先使用了“函数”一词。

他将自变量取自方程,因变量是含x, y的一个未知数,并把这种方程称为“增量方程”,也就是说,自变量在方程两端,因变量是一个数。

这种“增量方程”是与二元一次方程组联系着的,这个定义反映了当时人们对函数性质的认识。

由于现在各种高科技的发展,人们又陆续发明了另外一些函数。

下面让我来介绍几种比较常见的函数吧。

1。

对数函数是以自然对数e为底,以自然对数e的对数(以底数)为顶角的函数。

这个函数有许多特殊值。

在某一点处,它的单调增加;而在某一点处,它的单调减少。

因此我们称这个函数为减函数。

例如:当自然对数等于1时,它就成为“正”函数。

2。

指数函数以自然对数e为底,以e的对数f(以底数)为顶角的函数。

记作: exp(记住要把f读成大写的“ e”,而不是小写的“ e”),又叫“指数”函数。

通俗地说,这个函数是把自然对数的底数乘以e以后再除以2。

这个函数也有很多特殊值。

当它的值等于1时,它就成为“正”函数。

3。

对数指数函数这个函数的图像是一条直线,所以我们把它简称为“直线函数”。

第一代,主要是建立在莱布尼兹的“函数”基础上的。

是对“函数”的认识。

2。

第二代,指数函数。

这一阶段,有“柯西”。

伽罗瓦。

阿贝尔等人对“函数”做出了贡献。

3。

第三代,幂函数。

这个阶段,是与计算机有关的。

到了电脑普及的今天,函数就不仅限于人类使用,各种专业都开始运用电脑来解决问题。

函数的发展史已经过去,但它带给我们的东西却不会消失。

从现在开始,一个更广阔的世界向我们打开了大门。

“函数”这个名字随着时间的流逝被更广泛地接受了,并被加入到了各个领域之中。

在教育领域中,我相信“函数”的身影会越来越多。

在我们的生活中,“函数”带给我们的好处会越来越多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考: |y| = ±x 能不能说‘y是x的函数’?
ቤተ መጻሕፍቲ ባይዱ
终于出了一个像样的

1821年,法国数学家柯西给 出了类似现在中学课本的函数 对应关系(条件)是 定义:“在某些变数间存在着 必要的,要利用这个 关系以求出每一个x 一定的关系,当一经给定其中 的对应值。 某一变数的值,其他变数的可 随着而确定时,则将最初的变 数叫自变量,其他各变数叫做 函数。”
Long long ago,

最早提出函数概念的,是1 7世纪德国数学家莱 布尼茨。1673年, 莱布尼兹首次使用 函数一词表示“幂” 由此可以看出,函数 一词最初的数学含义是相当 广泛而较为模糊的。
函数就是描述曲线的 一个相关量,如曲线 的斜率或者曲线上的 某一点。
有一个大胆的人定义了函数
• 1755 年欧拉把函数定义为 “如果 1718 年约翰· 伯努利对函数概念 某些变量,以某一种方式依赖于 进行了定义:“由任一变量和常 另一些变量,即当后面这些变量 数的任一形式所构成的量。”他 变化时,前面这些变量也随着变 的意思是凡变量x和常量构成的 化,我们把前面的变量称为后面 式子都叫做x的函数,并强调函 变量的函数。 ” 数要用公式来表示。
罗巴契夫斯基
现代概念终究出炉了
罗巴契夫斯基

康托尔
欧拉
狄利克雷
在某个坐标变化过程中,如果有 两个变量x和y,对每一个给定的 x 柯西 值,y都有唯一确定的值与它对应, 确定y=x的函数。x=自变量,y作 为x的因变量。 傅里叶
贝努利 莱布尼茨
|y| = ±x 能不能说‘y是x的函数’? 答:
相关文档
最新文档