微加速度计原理与应用
举例说明mems的应用及例中mems器件的原理

举例说明mems的应用及例中mems器件的原理MEMS(微机电系统)是一种将微型机械结构与电子技术相结合的技术,它可以将传感器、执行器和其他微型器件集成在一起,以实现各种应用。
下面将以几个常见的MEMS应用为例,详细介绍其原理。
1.加速度计加速度计是一种测量物体加速度的传感器,广泛应用于智能手机、游戏手柄、汽车安全气囊等设备中。
MEMS加速度计通常由一个微型质量块和一对微型弹簧组成。
当被测试物体加速度改变时,质量块会移动,并产生微小的尺寸变化。
这种变化可以通过电容或压阻传感器来检测,从而得到加速度的值。
2.陀螺仪陀螺仪是用于测量物体角速度的传感器,常见于飞行器、导航设备等应用中。
MEMS陀螺仪通常由两个共面的振动器组成。
当物体发生旋转时,由于科里奥利力的作用,振动器之间会产生微小的力。
这种力会导致振动器的位移,通过检测振动器的位移变化,可以得到物体的角速度。
3.压力传感器压力传感器用于测量气体或液体的压力,广泛应用于医疗设备、工业自动化等领域。
MEMS压力传感器通常由一个微型薄膜和一个微型腔室组成。
当受到外部压力时,微型薄膜会发生微小的弯曲变形。
通过检测薄膜的变形,可以得到压力的值。
4.振动传感器振动传感器用于测量物体的振动或震动,常见于汽车、建筑结构监测等领域。
MEMS振动传感器通常由一个微型质量块和一个微型弹簧组成,类似于加速度计的结构。
当物体振动时,质量块会受到振动力的作用,从而产生微小的尺寸变化。
这种变化可以通过电容或压阻传感器来检测,从而得到振动的值。
总结起来,MEMS器件的原理都是基于微小的物理变化或力的作用。
通过将微型机械结构和电子技术相结合,可以实现对这种变化或力的检测和测量,从而得到各种物理量的值。
这种集成化的设计使得MEMS器件具有体积小、功耗低、响应速度快、成本低等优点,因此在越来越多的应用中得到了广泛的应用。
微加速度计的技术现状和发展趋势

微加速度计的技术现状和发展趋势微加速度计(MEMS Accelerometer)是一种利用微机电系统(MEMS)技术制造的加速度计。
它采用微小尺寸的结构和集成电路技术,具有体积小、功耗低、成本低廉等特点,因此在许多领域得到了广泛应用。
本文将详细介绍微加速度计的技术现状以及未来的发展趋势。
一、技术现状1.工作原理2.制造工艺制造微加速度计所使用的主要工艺是MEMS技术,该技术能够制造微小尺寸的结构。
通常的制造过程包括晶圆制备、光刻、薄膜沉积、刻蚀等步骤。
光刻技术用于制作微结构的图案,薄膜沉积技术主要用于制作压电材料或者电容层,刻蚀技术用于去除多余的材料。
3.主要应用领域微加速度计在许多领域得到了广泛应用。
其中最为常见的应用是运动传感器,例如智能手机、平板电脑等设备中的屏幕旋转、晃动检测等功能。
此外,微加速度计还广泛应用于汽车电子、导航系统、工业自动化、医疗设备等领域。
二、发展趋势1.功耗和敏感度的改进随着技术的不断发展,微加速度计的功耗和敏感度得到了显著的改进。
当前的微加速度计功耗已经非常低,可以非常适用于移动设备等对电池寿命要求较高的场景。
同时,新的材料和制造工艺的发展使得微加速度计的敏感度得到了提升,可以更加精确地测量加速度的变化。
2.结构的优化微加速度计的结构优化是提高其性能的关键。
当前的结构设计主要考虑到尺寸和功耗的要求,但是也存在一些局限性。
未来的发展趋势是进一步优化结构,增加输入力的量程,提高对高加速度和低加速度的响应能力,并降低温度的影响。
3.多功能集成随着对微加速度计应用场景的需求不断增加,多功能集成的趋势也逐渐明显。
未来的微加速度计可能会集成陀螺仪、磁场传感器等其他传感器,以实现更全面的运动检测和姿态跟踪功能。
此外,还可能加入无线通信模块,实现无线数据传输。
4.高温工作能力目前,微加速度计的工作温度通常在-40°C到85°C之间。
然而,在一些特殊应用场景中,例如汽车发动机的振动监测,需要更高的工作温度。
MEMS加速度计的原理及应用

MEMS加速度计的原理及应用MEMS加速度计(Microelectromechanical Systems Accelerometer)是一种基于微电子机械系统的加速度测量器件。
它利用微电子技术和微米制造工艺,将加速度的作用转化为电信号的变化,从而实现对物体的加速度测量。
MEMS加速度计的原理是利用微机械结构和微运动质量的特性。
一般来说,MEMS加速度计由微型质量块和弹簧支撑系统组成,当物体发生加速度改变时,弹簧支撑系统会受到力的作用,从而导致微型质量块产生相应的位移。
这个位移可以通过微电子传感器转化为电信号,进而进行处理和分析。
1.手机和消费电子产品:MEMS加速度计被广泛应用在手机和其他消费电子产品中,用于实现自动屏幕旋转、运动感应游戏、姿势识别和手势控制等功能。
2.汽车安全系统:MEMS加速度计可用于汽车安全系统中,如气囊部署系统。
当车辆发生碰撞或急刹车等意外情况时,加速度计可以检测到车辆的加速度变化,并触发相应的安全机制。
3.工业监测:MEMS加速度计可以用于工业监测中,如机械设备的振动监测。
通过检测设备振动的频率和幅度,可以预测设备的健康状况和可能的故障。
4.体感游戏和虚拟现实(VR)设备:MEMS加速度计可以用于体感游戏和虚拟现实设备中,如头戴式显示器。
通过感应用户的头部和身体的运动,可以实现更加真实和沉浸式的游戏和虚拟体验。
5.医疗领域:MEMS加速度计可以用于医疗监测和诊断中,如运动追踪和睡眠监测。
通过监测运动和睡眠的模式和质量,可以帮助医生评估患者的健康状况。
6.运动跟踪器:MEMS加速度计在运动跟踪器中被广泛应用,如智能手环和运动手表。
它可以实时监测用户的步数、距离、卡路里消耗和睡眠质量等信息。
总结起来,MEMS加速度计是一种基于微电子机械系统的加速度测量器件,它通过微机械结构和微运动质量的特性,将加速度的作用转化为电信号的变化。
这种技术在手机、汽车安全系统、工业监测、体感游戏、医疗领域和运动跟踪器等领域有着广泛的应用。
MEMS加速度计(accelerometer)与陀螺仪的(gyroscope)原理介绍

基本應用原理
• F:物體所受合外力 • m:物體質量 • a:物體的加速度
• k:物質的彈性係數 • x:位移量
• C:電容量 • ε:介電常數 • A:極板截面積 • d:板間距離
MEMS加速度計原理
物體的加速度=物質的彈性係數X位移量/物體質量
A A點移動到B點
距離=1/2加速度 ×時間平方
• 陀螺儀又名角速度計,利用內部振動機械結構感測物體轉動所產生角速度, 進而計算出物體移動的角度。
• 兩者看起來很接近,不過加速度計只能偵測物體的移動行為,並不具備精確 偵測物體角度改變的能力,陀螺儀可以偵測物體水平改變的狀態,但無法計 算物體移動的激烈程度。
• 用簡單的例子就是Eee Stick 體感遙控器,這是一個類似 Wii 遊戲的遙控捍 , 例如玩平衡木遊戲,當搖桿向前傾斜時,陀螺儀用來計算搖桿傾斜的角度, 三軸加速度計可以偵測搖桿晃動的劇烈程度以及搖桿是否持續朝斜下方。
MEMS陀螺儀工作原理
• MEMS陀螺儀依賴於由相互正交的振動和轉動引起的交變 科氏力。振動物體被柔軟的彈性結構懸掛在基底之上。整 體動力學系統是二維彈性阻尼系統,在這個系統中振動和 轉動誘導的科氏力把正比於角速度的能量轉移到傳感模式。
Hale Waihona Puke 影響MEMS信號輸出因素• 透過改進設計和靜電調試使得驅動和傳感的共振頻率一致,以實現最大可能 的能量轉移,從而獲得最大靈敏度。大多數MEMS陀螺儀驅動和傳感模式完 全匹配或接近匹配,它對系統的振動參數變化極其敏感,而這些系統參數會 改變振動的固有頻率,因此需要一個好的控制架構來做修正。如果需要高的 品質因子(Q),驅動和感應的頻寬必須很窄。增加1%的頻寬可能降低20%的 信號輸出。(圖 a) 還有阻尼大小也會影響信號輸出。(圖 b)
MEMS加速度计

MEMS加速度计MEMS(Micro-Electro-Mechanical Systems)加速度计是一种集成了微电子技术、微机械技术和传感器技术的微型加速度计。
MEMS加速度计以微机电系统技术为基础,利用微型机械结构和微电子技术制作而成的一种传感器。
其结构通常包括一个质量并且可以在三个不同方向上移动的臂梁,一些感应电极以及一个基座。
当加速度计受到外部加速度作用时,质量会受力发生偏移,从而导致感应电极的电荷和电场发生变化,通过测量这些变化,就可以得到外部加速度的信息。
MEMS加速度计主要有压电加速度计和电容加速度计两种类型。
压电加速度计是利用压电效应实现加速度测量的,当受到外部加速度作用时,压电材料产生电荷,从而产生电压输出。
电容加速度计是基于电容变化原理设计的,当加速度计产生加速度时,微机械结构中的电容会发生变化,通过测量电容变化就可以得到加速度的信息。
由于压电加速度计和电容加速度计都是微型化设计,制作工艺成熟,因此MEMS加速度计具有尺寸小、功耗低、成本低和可靠性高等特点。
MEMS加速度计广泛应用于许多领域,特别是在移动设备、汽车、航空航天、智能穿戴设备和工业自动化等领域。
在移动设备方面,MEMS加速度计可用于屏幕旋转、晃动控制和跌落检测等功能。
在汽车领域,MEMS加速度计能够实现碰撞检测、车身稳定控制和自动泊车等功能。
在航空航天领域,MEMS加速度计可用于姿态测量和导航系统。
在智能穿戴设备方面,MEMS加速度计可用于步数统计、睡眠监测和运动追踪等功能。
在工业自动化领域,MEMS加速度计可用于振动检测和故障诊断等应用。
然而,MEMS加速度计也存在一些问题。
首先,由于其微小尺寸,对温度、湿度和振动等环境因素的影响较大,可能会导致测量误差。
其次,MEMS加速度计的精度和分辨率相对较低,对微小加速度的测量不够敏感。
此外,MEMS加速度计的线性度和漂移等问题也需要进一步优化和改进。
综上所述,MEMS加速度计作为一种集成了微电子技术、微机械技术和传感器技术的微型加速度计,在各个领域有着重要的应用价值。
mems电容式加速度计原理

MEMS电容式加速度计原理一、工作原理MEMS电容式加速度计是一种基于微机械加工技术制成的传感器,用于测量加速度。
其核心部分是可移动的感应质量块和固定电极,它们之间存在微小的间距。
在工作状态下,当被测物体发生加速度时,感应质量块会受到力的作用,从而产生位移。
这个位移量会改变感应质量块与固定电极之间的距离,从而引起电容值的改变。
通过测量电容值的变化,可以推导出物体的加速度。
二、结构设计MEMS电容式加速度计的典型结构包括一个可移动的感应质量块和两个对称的固定电极。
感应质量块通常采用单晶硅材料制成,形状为长方形或圆形,其两端固定在弹性梁上。
弹性梁的材料一般为氮化硅或石英,它们具有良好的弹性性能和稳定的热性能。
固定电极一般采用金属材料制成,与硅衬底形成电容器。
当加速度作用在感应质量块上时,感应质量块会沿着敏感轴方向产生位移,从而改变电容器的电容值。
三、电容变化当感应质量块发生位移时,它与固定电极之间的距离会发生变化,导致电容值的改变。
这个电容变化量可以通过外部电路检测并转换为电压信号输出。
在MEMS电容式加速度计中,通常采用差分电容检测方式来提高检测灵敏度和减小外界干扰的影响。
差分电容检测方式是将两个对称的电容器串联在一起,通过测量两个电容器的电容差值来推导出加速度值。
四、测量范围MEMS电容式加速度计的测量范围取决于其结构设计、制造工艺和材料选择等因素。
一般来说,MEMS电容式加速度计的测量范围在±2g 至±10g之间。
在实际应用中,可以根据需要选择适合测量范围的加速度计。
此外,为了减小测量误差和提高测量的稳定性,可以对加速度计进行温度补偿和线性补偿等处理。
五、方向测量MEMS电容式加速度计一般只能测量单一方向的加速度值,而要实现方向测量则需要使用多个加速度计。
一般来说,将多个MEMS电容式加速度计按不同的方向布置在同一个被测物体上,每个加速度计负责测量一个方向的加速度值。
通过对这些加速度值进行处理和分析,可以获得物体在三维空间中的运动状态和方向信息。
手机中的微加速度计的原理和应用

手机中的微加速度计的原理和应用1. 引言手机中的微加速度计是一种重要的传感器,可以测量手机在空间中的加速度。
它常被应用于智能手机的倾斜感应、步数统计以及游戏控制等领域。
本文将介绍手机中微加速度计的原理和应用。
2. 微加速度计的原理手机中的微加速度计主要基于MEMS(Microelectromechanical systems)技术。
它采用微型力传感器,通过测量微小的质量加速度来确定手机在空间中的加速度。
微加速度计通常由微喷射器、微型质量块、压电传感器和信号处理电路等组成。
当手机发生加速度变化时,微喷射器会向质量块喷射精确的微量燃料,使质量块发生微小的位移。
压电传感器可以测量质量块的位移,并将其转化为电信号。
信号处理电路对电信号进行放大和滤波等处理,最终输出手机的加速度数据。
3. 微加速度计的应用3.1 倾斜感应手机中的微加速度计可以用于倾斜感应,通过测量手机的加速度变化来判断手机的倾斜角度。
例如,在游戏中,玩家可以通过倾斜手机来控制游戏角色的移动方向。
此外,倾斜感应还可以应用于手机的自动旋转屏幕功能,当手机被倾斜时,屏幕会自动旋转以适应用户的观看角度。
3.2 步数统计手机中的微加速度计可以用于步数统计。
利用手机的加速度变化,可以分析用户的步态并计算出用户的步数。
这对于健康监测和步行健身等应用非常重要。
手机中的微加速度计通常与其他传感器(如陀螺仪)协同工作,提高步数统计的准确性。
3.3 游戏控制手机中的微加速度计在游戏控制中有广泛的应用。
通过感知手机的加速度变化,玩家可以通过倾斜手机或摇晃手机的方式来控制游戏角色的行动。
这种交互方式使得游戏更加具有沉浸感,并且对于某些类型的游戏(如赛车游戏)来说尤为适用。
3.4 动作识别手机中的微加速度计可以用于动作识别。
通过分析手机的加速度变化,可以判断用户当前所处的动作状态。
这对于一些健身应用或虚拟现实应用具有重要意义。
例如,在健身应用中,可以通过手机的加速度变化来记录用户的运动情况,从而帮助用户更好地掌握运动状态。
MEMS加速度计的原理和运用

MEMS加速度计的原理和运用MEMS加速度计(Micro-Electro-Mechanical Systems Accelerometer)是一种基于微机电系统技术的加速度传感器。
它可测量物体在三个坐标轴上的加速度,并广泛应用于许多领域,如智能手机、运动追踪、汽车安全系统等。
本文将详细介绍MEMS加速度计的原理和运用。
一、MEMS加速度计原理静态感应器通常由一个固定不动的基板、附着在基板上的引力传感器,以及一个用于测量引力传感器偏转的电容器或压阻器组成。
在无外力作用时,引力传感器受到引力的作用,不会发生偏转。
移动感应器通常由一个能够相对于基板移动的质量块和一个弹簧组成。
当物体在一些方向上加速时,质量块由于惯性而相对于基板发生位移,这一位移会引起弹簧产生恢复力。
通过测量恢复力的大小,可以确定加速度的大小。
MEMS加速度计一般采用压电效应或电容效应来实现测量。
在压电效应中,当质量块位移时,压电材料会产生电荷。
而在电容效应中,质量块的位移会改变电容器的电容值。
通过测量电荷或电容的改变,可以确定加速度的大小。
二、MEMS加速度计的运用1.智能手机和移动设备MEMS加速度计广泛应用于智能手机和移动设备中。
它可以检测手机的姿态、方向和动作。
例如,当手机倾斜时,加速度计可以检测到这一变化,并通过软件算法实现屏幕自动旋转功能。
此外,加速度计还用于运动游戏和步数计数等应用。
2.运动追踪3.汽车安全系统4.工业应用5.医疗设备6.飞行器和航天器总结:MEMS加速度计基于质量的惯性效应实现加速度测量,通常采用压电效应或电容效应来实现。
它在智能手机、运动追踪、汽车安全系统、工业应用、医疗设备和航天领域等方面都有广泛的应用。
随着技术的不断进步和成本的降低,MEMS加速度计的应用将更加普及和多样化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微加速度计原理与应用a在20 世纪40 年代初,由德国人研制了世界上第一只摆式陀螺加速度计。
此后的半个多世纪以来,由于航天、航空和航海领域对惯性测量元件的需求,各种新型加速度计应运而生,性能和精度也有了很大的完善和提高。
加速度计面世后作为最重要的惯性仪表之一,用在惯性导航和惯性制导系统中,与海陆空天运载体的自动驾驶及高技术武器的高精度制导联系在一起。
这时候的加速度计整个都很昂贵,使其他领域对它很少问津。
直到微机械加速度计的问世,这种状况才发生了改变。
随着MEMS技术的发展,惯性传感器件在过去的几年中成为最成功,应用最广泛的微机电系统器件之一,而微加速度计就是惯性传感器件的杰出代表。
微加速度计的理论基础就是牛顿第二定律,根据基本的物理原理,在一个系统内部,速度是无法测量的,但却可以测量其加速度。
如果初速度已知,就可以通过积分计算出线速度,进而可以计算出直线位移。
结合陀螺仪(用来测角速度),就可以对物体进行精确定位。
根据这一原理,人们很早就利用加速度计和陀螺进行轮船,飞机和航天器的导航,近年来,人们又把这项技术用于汽车的自动驾驶和导弹的制导。
汽车工业的迅速发展又给加速度计找到了新的应用领域,汽车的防撞气囊就是利用加速度计来控制的。
微加速度计的工作原理微加速度计的结构模型如图所示:它采用质量块-弹簧-阻尼器系统来感应加速度。
图中只画出了一个基本单元。
它是利用比较成熟的硅加工工艺在硅片内形成的立体结构。
图中的质量块是微加速度计的执行器,与质量块相连的是可动臂;与可动臂相对的是固定臂。
可动臂和固定臂形成了电容结构,作为微加速度计的感应器。
其中的弹簧并非真正的弹簧,而是由硅材料经过立体加工形成的一种力学结构,它在加速度计中的作用相当于弹簧。
当加速度计连同外界物体(该物体的加速度就是待测的加速度)一起加速运动时,质量块就受到惯性力的作用向相反的方向运动。
质量块发生的位移受到弹簧和阻尼器的限制。
显然该位移与外界加速度具有一一对应的关系:外界加速度固定时,质量块具有确定的位移;外界加速度变化时(只要变化不是很快),质量块的位移也发生相应的变化。
另一方面,当质量块的发生位移时,可动臂和固定臂(即感应器)之间的电容就会发生相应的变化;如果测得感应器输出电压的变化,就等同于测得了执行器(质量块)的位移。
既然执行器的位移与待测加速度具有确定的一一对应关系,那么输出电压与外界加速度也就有了确定的关系,即通过输出电压就能测得外界加速度。
(a)执行器的力学结构示意图,(b)感应器的电学原理图。
具体地说,以Vm表示输入电压信号,Vs表示输出电压,Cs1与Cs2分别表示固定臂与可动臂之间的两个电容(见图6),则输入信号和输出信号之间的关系可表示为:微加速度计的发展微加速度计是微机电系统领域研究最早的器件之一。
早在1979年Roylance和Angell就开始了微机械压阻式加速度计的研制,随后各种结构的压阻式加速度计相继出现,并且增加了自检功能和集成CMOS电路,测量方向也从单轴逐渐向多轴集成测量发展。
另外,多轴单片集成加速度仍然是微机电加速度计研究的热点,自从Takao和Lemkin分别于1997年提出了采用体硅工艺和表面工艺的三轴集成检测方法以来,在单片三轴集成方面国外陆续做了不少的研究,但目前尚未有商业化产品。
鉴于惯性器件所具有的优点,现已研制出大量的振动惯性器件及二次仪表,例如微型惯性测量组合。
由于微型惯性测量组合主要用于军事场合,涉及国家安全的领域,可见的报道较少,美国Draper实验室的微型惯性测量组合采用三个微硅陀螺、三个微硅加速计和附加电子电路构成的MIMU.使研究把加速度计和陀螺仪集成在一个单芯片上,减小微型惯性测量组合的耦合误差,缩小体积,提高其综合性能。
目前,微加速度计的研究主要集中在硅材料范围,然而由于硅压敏材料的压阻效应受温度影响较大,一定程度上限制了其灵敏度的提高,所以有待于寻找一种新的材料来突破硅微机电器件的极限,而GaAs 材料最有可能成为硅的替代材料,因为它具有一些比硅更加优越的特性[3],研究表明GaAs 材料不仅具有很好的力学特性和电学特性,而且基于GaAs 压阻薄膜具有较高的压阻灵敏度,因此结合GaAs 材料特性的表面微加工技术和体微加工技术、有望制造出具有较高灵敏度、线性度等特性的微加速度计结构。
微加速度计的主要种类微机械加速度计以集成电路工艺和微机械加工工艺为基础,将电子原件和机械原件集成在一块芯片上,具有体积小、质量轻、成本低、能耗低、集成度高等一系列的优点。
微加速度计的种类较多,主要如下:1、按照质量的运动方式来划分的微机械加速度计分类如下:2、按照检测质量的支承方式来划分的为机械加速度计分类如下:3、按照信号检测的方式来划分的为机械加速度计分类如下:4、按照控制方式来划分的为机械加速度计分类如下:5、按照加工工艺来划分的为机械加速度计分类如下:6、按照结构形式划分的微机械加速度计分类如下:7、按照材料划分的微机械加速度计分类如下:8、按照敏感轴的数量划分的微机械加速度计分类如下:几种典型的微加速度计比较压阻式压阻式加速度传感器通常采用压敏电阻作为敏感元件。
压敏电阻的电阻率变化与质量块的位移有关。
其工作原理是将被测加速度转换为硅材料的电阻率变化来进行加速度的测量。
首次报道的微加速度传感器为压阻式,其示意图如图所示。
最先商业化的微加速度传感器也为压阻式。
压阻式加速度传感器的结构通常很简单,加工工艺与IC 技术兼容,具有良好的直流响应特性。
但是灵敏度很小(在20~50g 量程下约为1~2mV/g) ,温度效应严重,动态范围有限。
电容式电容式加速度传感器的敏感元件为固定电极和可动电极之间的电容器,是目前研究最多的一类加速度传感器,一般采用悬臂梁、固支梁或挠性轴结构,支撑一个当作电容动板电极的质量块,质量块与一个固定极板构成一个平板电容。
其工作原理是在外部加速度作用下,校验质量块产生位移,这样就会改变质量块和电极之间的电容,将这种变化量用外围电路检测出来就可测量加速度的大小。
一种电容式微加速度传感器的示意图如图所示。
电容式加速度传感器有许多优点,比如高灵敏度、良好的直流响应特性、低温度效应和低功率耗散。
但是,由于传感器输出的高阻抗,电容式加速度传感器易受电磁干扰影响。
压电式压电式加速度传感器的敏感元件是压电材料,压电材料直接将作用于质量块的力转换为电信号。
压电式微加速度传感器的工作原理如图 3 所示。
加速度传感器的质量块与压电材料相连,当输入加速度时,加速度通过质量块形成的惯性力加在压电材料上,使压电材料产生变形,压电材料产生的变形和由此产生的电荷(电压)与加速度成正比,输出电量经放大后就可检测出加速度大小。
压电式加速度传感器被认为是测量绝对振动的最好工具,因为与其他已知类型的加速度传感器相比,压电式加速度传感器有如下优点:动态范围宽,在全部动态范围内线性度好,频率范围宽,质量轻。
但是,由于电荷泄漏,压电式加速度传感器不适于测量线(零频)加速度,将压电薄膜与泄漏路径绝缘,可以达到接近零频率的平坦响应。
而且由于压电效应,压电式加速度传感器温度效应严重,使用差动敏感器件可以减小这种温度效应。
由南加州大学的Q.Zou等人开发的单轴和三轴压电双晶加速度传感器,其中单轴灵敏度为7.0mV/g,最小可探测信号为0.01g;三轴的加速度传感器X,Y 和Z 轴的非放大灵敏度分别为0.9,1.13 和0.88mV/g。
此三轴加速度传感器采用一种高度对称的四梁双压电晶片结构支撑一个质量块,使十字轴灵敏度减小。
澳大利亚Meltal 公司生产的MS2100 系列压电式加速度传感器产品采用晶体电路,没有移动部件,因此不会产生磨损和退化,使用寿命很长,并且可以垂直、水平或以任何角度安装,可应用于要求对壳体加速度进行测量的关键旋转机械的绝对振动,如位移、速度、加速度等。
隧道电流式隧道电流式微加速度传感器由于其潜在的高性能和广阔的应用需求,一直以来成为研究的热点。
隧道电流式微加速度传感器的工作原理是利用电子势垒隧道效应,把输入的加速度转换为质量块的相对位移,再通过隧道效应将位移量转换为隧道电流的变化,最后用检测电路测出电流变化量从而获得相应加速度的大小。
图为一种隧道电流式微加速度传感器。
隧道电流式微加速度传感器是加速度传感器在高灵敏度、高可靠性方面应用的一个典型代表,其频带宽、灵敏度极高,大约在10-9g 左右,温度效应小,又由于质量块的机械活动范围小,因而线性度好,可靠性高。
但是隧道电流式微加速度传感器信号噪声大,工作电压高,加工难度大,成品率不高。
国内外许多研究机构在进一步增大隧道电流式微加速度传感器的灵敏度等方面做了很多研究工作,如H.Dong 等人采用双面ICP 制作了一种面外隧道电流式加速度传感器,降低了在面外方向由于ICP 侵蚀构造产生的高虎克常数,从而增大了传感器的灵敏度。
谐振式谐振式微加速度传感器的工作原理是利用加速度使谐振频率发生变化,从而测量出加速度。
当传感器的平行梁形状改变时,刚度也会改变,两对谐振器分别感应惯性力,这会在谐振频率的变化上显示出来,使二者频率改变,比较这两个频率就可以测量出加速度的大小。
谐振式微加速度传感器的独特优点是可以直接输出数字,测量精度极高,是一种很有前途和应用价值的微加速度传感器,但是制作工艺复杂。
谐振式微加速度传感器能够满足某些领域如汽车行业对加速度传感器的高性能要求。
其结构简图如图所示。
微加速度计的主要应用微机械加速度计以其尺寸小、成本低的诱人特点不仅在传统应用领域得到的应用,而且在商业领域占据了广泛的市场。
低成本加速度计的商业应用领域主要有:民用航空、车辆控制、高速铁路、机器人、工业自动化、探矿、玩具等等。
汽车安全装置微机械加速度计在汽车上的应用包括安全控制功能,如车轮的操纵和自动刹车、气囊开启和防抱死系统等,从而组成高级安全汽车。
安全气囊是提高汽车行驶安全性的重要部件,是一种辅助的约束装置。
微机械加速度计在汽车发生碰撞使加速度测量值急剧增大时发出控制信号,加速度计立即给气囊发送指令并及时弹出气囊使其迅速充气,置于司机、乘员与挡风玻璃或汽车车身之间,以保护车上的人员。
汽车防滑系统是微机械加速度计用于汽车安全的又一重要应用,该系统包括制动防抱死系统(ABS)、加速防滑控制系统(ASR)和牵引控制系统(TCS)。
汽车在雨雪天气中的山路上行驶,容易发生侧滑而造成车毁人亡。
如果在汽车上装有加速度计,一旦发生侧滑,在驾驶员反应之前,加速度信号可先通过汽车刹车系统进行紧急刹车。
此外,加速度计还可以用于汽车定位测量系统、自动导航系统、车速控制系统、车体移动防盗报警以及节油系统等方面,如今加速度计己经成为汽车中一个重要的零部件。