高三数学第一轮复习单元检测卷 (7)

合集下载

2014届高三数学理科第一轮复习单元过关( 7 )—等差和等比数列

2014届高三数学理科第一轮复习单元过关( 7 )—等差和等比数列

高三数学(理科)单元过关试卷 第1页 高三数学(理科)单元过关试卷 第2页2014届高三数学理科第一轮复习单元过关( 7 )考查:等差数列和等比数列 时间:90分钟一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.)1.由11,3a d ==确定的等差数列}{n a ,当298n a =时,序号n =( ) A .99 B .100 C .96 D .1012.已知{}n a 是递增等比数列,2432,4a a a =-=,则此数列的公比q =( ) A .2 B .1- C .2或1- D .43.等比数列}{n a 的各项均为正数,且564718a a a a +=,则31323l o g l o g l o g a a a +++= ( ) A .12B .10C .8D .2+3log 54.已知数列{}n a 的前n 项和为23n s n n =++则它的通项公式是( ) A .2n a n =B .23n a n =+C .512(2)n n a n n =⎧=⎨≥⎩D . 4n a n =+5. 一个等比数列{}n a 的前n 项和记为n S ,已知510S =,1050S =,则15S = ( ) A. 60 B. 90 C. 210 D.2506.已知等差数列}{n a 中,150a =,0.6d =-,则此数列前多少项和的值最大( ).A .81B .82C .83D .847.已知等差数列{n a }中,74a π=,则tan(678a a a ++)=( )(A)3-(B)8.在等比数列{a n }中,1234,n a a a +=·164,n a -=且前n 项和62n S =,则项数n 等于( ) A .4B .5C .6D .7二、填空题: (本大题共6小题,每小5分,共30分,把答案填在答题卷中....相应横线上) 9. 等差数列}{n a 中,482=+a a ,则它的前9项和=9S ____________10.在1和9的中间插一个数,使得这三个数成等比数列,则这个数为 11.等比数列}{n a ,2=q ,前n 项和为=24a S S n ,则. 12.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈,则数列{}n a 的通项公式是n a =____.13.已知数列}{n a 中,,2121,211+==+n n a a a 则通项n a =___________ 14.图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(5)f =____; ()(1)f n f n --=__________; ()f n =___________.二、填空题(每小题5分,共30分)9.____________________. 10.___________________. 11. ____________________.12.___________________. 13. ___________________. 14.____________________.高三数学(理科)单元过关试卷 第3页 高三数学(理科)单元过关试卷 第4页三、解答题:本大题共4小题,共52分,解答应写出文字说明,证明过程或演算步骤 15.已知等差数列}{n a 的前n 项和为n S ,且35a =,15225S =. 数列}{n b 是等比数列,32325,128b a a b b =+=(其中1,2,3,n =…).(1)求数列}{n a 和{}n b 的通项公式; (2)记,{}n n n n n c a b c n T =求数列前项和.16.已知数列{}n a 的前n 项和为11,4n S a =且1112n n n S S a --=++*(2,)n n N ∈≥,数列{}n b 满足11194b =-且13n n b b n --=*(2,)n n N ∈≥.(1)求{}n a 的通项公式;(2)求证:数列{}n n b a -为等比数列;(3)求{}n b 前n 项和的最小值.17.已知二次函数()y f x =的图象经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图象上。

高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题

高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题

·创 作人:历恰面 日 期: 2020年1月1日金版新学案?高考总复习配套测评卷——高三一轮数学『文科』卷(七)直线和圆的方程————————————————————————————————————— 【说明】 本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填入答题格内,第二卷可在各题后直接答题,一共150分,考试时间是是120分钟.第一卷 (选择题 一共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案个选项里面,只有一项是哪一项符合题目要求的)1.下面各组方程中,表示一样曲线的是( )A .y =x 与yx=1 B .|y |=|x |与y 2=x 2C .|y |=2x +4与y =2|x |+4D.⎩⎪⎨⎪⎧x =sin θ(θ为参数)y =cos 2θ与y =-x 2+12.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( )A .-x +2y -4=0B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=03.“a =1”是“直线x +y =0和直线x -ay =0互相垂直〞的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.过点P (5,-2),且与直线x -y +5=0相交成45°角的直线l 的方程是( )A .y =-2B .y =2,x =5C .x =5D .y =-2,x =55.假设PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),那么直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =06.假设k ,-1,b 三个数成等差数列,那么直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)7.D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为( )A.π4B.π2C.3π4D.3π28.A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎪⎫225,0D.⎝⎛⎭⎪⎫0,2259.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,假设目的函数z =ax +by (a >0,b >0)的最大值为12,那么2a +3b的最小值为( )A.256B.83C.113D .410.在平面直角坐标系中,O 为坐标原点,A (3,1),B (-1,3),假设点C 满足|+|=|-|,那么C 点的轨迹方程是( )A .x +2y -5=0B .2x -y =0C .(x -1)2+(y -2)2=5 D .3x -2y -11=011.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=012.台风中心从A 地以每小时20千米的速度向东北方向挪动,离台风中心30千米内的地区为危险区,城B 在A 的正东40千米处,那么B 城处于危险区内的时间是为( )A .小时B .1小时C .小时D .2小时第二卷 (非选择题 一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分.把答案填在题中横线上) 13.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,那么所得直线的方程为________.14.在坐标平面内,与点A (1,3)的间隔 为2,且与点B (3,1)的间隔 为32的直线一共有__________条.15.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,那么△EOF (O 为坐标原点)的面积等于________.16.在直角坐标平面上,不等式组⎩⎪⎨⎪⎧x 2+y 2-4x -6y +4≤0,|x -2|+|y -3|≥3表示的平面区域的面积是________.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤)17.(本小题满分是10分)△ABC 的两条高所在直线的方程为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.18.(本小题满分是12分)如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上.(1)求BC 边所在直线的方程.(2)圆M 是△ABC 的外接圆,求圆M 的方程.19.(本小题满分是12分)△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0.AC 边上的高BH 所在直线为x -2y -5=0.求:(1)顶点C 的坐标; (2)直线BC 的方程.20.(本小题满分是12分)甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和元/吨,乙煤矿运往东车站和西车站的运费价格分别为元/吨和元/吨.要使总运费最少,煤矿应怎样编制调运方案?21.(本小题满分是12分)圆C :x 2+y 2=r 2(r >0)经过点(1,3). (1)求圆C 的方程;(2)是否存在经过点(-1,1)的直线l ,它与圆C 相交于A ,B 两个不同点,且满足=12+32(O 为坐标原点)关系的点M 也在圆C 上?假如存在,求出直线l 的方程;假如不存在,请说明理由.22.(本小题满分是12分)圆M 的方程为:x 2+y 2-2x -2y -6=0,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E 、F 两点,圆内的动点D 使得|DE |、|DO |、|DF |成等比数列,求·的取值范围;(3)过点M 作两条直线分别与圆N 相交于A 、B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?请说明理由. 答案:卷(七)一、选择题1.B 用排除法做.A 、C 易排除,∵点坐标范围明显不一致.D 中前者x ∈[-1,1],y ∈[0,1],后者x ∈R ,y ∈(-∞,1],故排除D.2.D 选D.由题意知所求直线与2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12(x -0),即x +2y +4=0.3.C 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1〞是“直线x +y =0与直线x -ay =0互相垂直〞的充要条件. 4.D (1)假设直线l 的斜率存在,设为k ,由题意,tan 45°=⎪⎪⎪⎪⎪⎪k -11+k ,得k =0,所求l 的直线方程为y =-2.(2)假设直线l 的斜率不存在,那么直线l 的方程为x =5,且与直线x -y +5=0相交成45°角.应选D.5.B 结合圆的几何性质易知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0.6.A ∵k ,-1,b 成等差数列, ∴k +b =-2.∴当x =1时,y =k +b =-2. 即直线过定点(1,-2).7.B 如图阴影局部表示⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,确定的平面区域,所以劣弧AB 的弧长即为所求.∵k OB =-13,k OA =12,∴tan ∠BOA =12-⎝ ⎛⎭⎪⎫-131+12×⎝ ⎛⎭⎪⎫-13=1,∴∠BOA =π4.∴劣弧A B 的长度为2×π4=π2.8.B 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.9.A 不等式组表示的平面区域如下图阴影局部,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目的函数z =ax +by (a >0,b >0)获得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b=⎝ ⎛⎭⎪⎫2a +3b ·2a +3b 6 =136+⎝ ⎛⎭⎪⎫b a +a b ≥136+2 =256, 应选A10.C 由|+|=|-|知⊥,所以C 点的轨迹是以两个端点A 、B 为直径的圆,圆心坐标为线段AB 的中点(1,2),半径等于5,所以C 点的轨迹方程是(x -1)2+(y -2)2=5.11.D 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直, 设圆心为O ,那么O (2,0), ∴K OM =2-01-2=-2.∴直线l 的斜率k =12,∴l 的方程为y -2=12(x -1).即x -2y +3=0.12.B 如图,以A 为坐标原点,建立平面直角坐标系,那么B (40,0),台风中心挪动的轨迹为射线y =x (x ≥0),而点B 到射线y =x 的间隔 d =402=202<30,故l =2302-(202)2=20,故B 城处于危险区内的时间是为1小时. 二、填空题13.【解析】 直线y =x +3-1的斜率为1,故倾斜角为45°,旋转后的直线的倾斜角为60°,斜率为3,故所求直线方程为y -3=3(x -1),即3x -y =0.【答案】3x -y =014.【解析】 以A (1,3)为圆心,以2为半径作圆A ,以B (3,1)为圆心,以32为半径作圆B .∵|AB |=(1-3)2+(3-1)2=22=32-2, ∴两圆内切, 公切线只有一条. 【答案】 1 15.【解析】 如图圆心O 1(2,-3)到直线l :x -2y -3=0的间隔 为5,那么|EF |=29-5=4,O 到l 的间隔 d =35,故S △OEF =12d |EF |=655.【答案】65516.【解析】 区域为圆面(x -2)2+(y -3)2=9内挖去了一个内接正方形. 【答案】 9π-18三、解答题17.【解析】 可以判断A 不在所给的两条高所在的直线上,那么可设AB ,AC 边上的高所在的直线方程分别为2x -3y +1=0,x +y =0,那么可求得AB ,AC 所在的直线方程为y-2=-32(x -1),y -2=x -1,即3x +2y -7=0,y -x -1=0.由⎩⎪⎨⎪⎧3x +2y -7=0x +y =0得B (7,-7),由⎩⎪⎨⎪⎧y -x -1=02x -3y +1=0得C (-2,-1),所以直线BC 的方程为2x +3y +7=0. 18.【解析】 (1)设C (x 0,0), 那么k AB =-220-(-2)=- 2.k BC =0+22x 0-0=22x 0. ∵AB ⊥BC ,∴k AB ·k BC =-1, 即-2×22x 0=-1,∴x 0=4,∴C (4,0),∴k BC =22, ∴直线BC 的方程为y -0=22(x -4),即y =22x -2 2. (2)圆M 以线段AC 为直径,AC 的中点M 的坐标为(1,0),半径为3, ∴圆M 的方程为x 2+y 2-2x -8=0. 19.【解析】 直线AC 的方程为:y -1=-2(x -5),即2x +y -11=0,解方程组⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得⎩⎪⎨⎪⎧ x =4,y =3,那么C 点坐标为(4,3).设B (m ,n ),那么M (m +52,n +12),⎩⎪⎨⎪⎧ 2m +52-n +12-5=0m -2n -5=0, 整理得⎩⎪⎨⎪⎧ 2m -n -1=0m -2n -5=0, 解得⎩⎪⎨⎪⎧ m =-1n =-3那么B 点坐标为(-1,-3)直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.20.【解析】 设甲煤矿向东车站运x 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +1.5(200-x )+y +1.6(300-y )(万元),即z =780-x -y . x 、y 应满足⎩⎪⎨⎪⎧x ≥0,y ≥0,200-x ≥0,300-y ≥0,x +y ≤280,200-x +(300-y )≤360, 作出上面的不等式组所表示的平面区域如下图.设直线x +y =280与y 轴的交点为M ,那么M (0,280),把直线l :x +y =0向上平移至经过点M 时,z 的值最小. ∵点M 的坐标为(0,280),∴甲煤矿消费的煤全部运往西车站,乙煤矿向东车站运280万吨、向西车站运20万吨时,总运费最少. 21.【解析】 (1)由圆C :x 2+y 2=r 2,再由点(1,3)在圆C 上,得r 2=12+(3)2=4所以圆C 的方程为 x 2+y 2=4;(2)假设直线l 存在,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)①假设直线l 的斜率存在,设直线l 的方程为:y -1=k (x +1),联立⎩⎪⎨⎪⎧ y =k (x +1)+1x 2+y 2-4=0消去y 得,(1+k 2)x 2+2k (k +1)x +k 2+2k -3=0,由韦达定理得x 1+x 2=-2k (k +1)1+k 2=-2+2-2k 1+k 2,x 1x 2=k 2+2k -31+k 2=1+2k -41+k 2, y 1y 2=k 2x 1x 2+k (k +1)(x 1+x 2)+(k +1)2=2k +41+k 2-3, 因为点A (x 1,y 1),B (x 2,y 2)在圆C 上,因此,得x 21+y 21=4,x 22+y 22=4, 由=12+32得x 0 =x 1+3x 22,y 0=y 1+3y 22,由于点M 也在圆C 上,那么⎝ ⎛⎭⎪⎫x 1+3x 222+⎝ ⎛⎭⎪⎫y 1+3y 222 =4,整理得,x 21+y 214+3x 22+y 224+32x 1x 2+123y 1y 2=4, 即x 1x 2+y 1y 2=0,所以1+2k -41+k 2+(2k +41+k2-3)=0, 从而得,k 2-2k +1=0,即k =1,因此,直线l 的方程为 y -1=x +1,即x -y +2=0,②假设直线l 的斜率不存在,那么A (-1,3),B (-1,-3),M ⎝ ⎛⎭⎪⎫-1-32,3-32 ⎝ ⎛⎭⎪⎫-1-322+⎝ ⎛⎭⎪⎫3-322 =4-3≠4,故点M 不在圆上与题设矛盾综上所知:k =1,直线方程为x -y +2=022.【解析】 圆M 的方程可整理为:(x -1)2+(y -1)2=8,故圆心M (1,1),半径R =2 2.(1)圆N 的圆心为(0,0),因为|MN |=2<22,所以点N 在圆M 内,故圆N 只能内切于圆M .设其半径为r .因为圆N 内切于圆M ,所以有:|MN |=R -r , 即2=22-r ,解得r = 2.所以圆N 的方程为x 2+y 2=2.(2)由题意可知:E (-2,0),F (2,0).设D (x ,y ),由|DE |、|DO |、|DF |成等比数列,得|DO |2=|DE |×|DF |, 即:(x +2)2+y 2×(x -2)2+y 2=x 2+y 2,整理得:x 2-y 2=1.而=(-2-x ,-y ),=(2-x ,-y ),·=(-2-x )(2-x )+(-y )(-y )=x 2+y 2-2=2y 2-1,由于点D 在圆N 内,故有⎩⎪⎨⎪⎧ x 2+y 2<2x 2-y 2=1,由此得y 2<12,所以·∈[-1,0). (3)因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,那么直线MB 的斜率为-k .故直线MA 的方程为y -1=k (x -1),直线MB 的方程为 y -1=-k (x -1),由⎩⎪⎨⎪⎧ y -1=k (x -1)x 2+y 2=2, 得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点M 在圆N 上,故其横坐标x =1一定是该方程的解,可得x A =k 2-2k -11+k 2, 同理可得:x B =k 2+2k -11+k 2, 所以k AB =y B -y A x B -x A= -k (x B -1)-k (x A -1)x B -x A= 2k -k (x B +x A )x B -x A=1=k MN . 所以,直线AB 和MN 一定平行.。

高三数学理科一轮复习试卷详解_第7单元不等式

高三数学理科一轮复习试卷详解_第7单元不等式

高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.单元检测七 不等式第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(·深圳第二次调研)设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3 B.1a <1b C .a b >1D .lg(b -a )<02.已知(a 2-1)x 2-(a -1)x -1<0的解集是R ,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-∞,-35∪(1,+∞) B.⎝⎛⎭⎫-35,1 C.⎣⎡⎦⎤-35,1 D.⎝⎛⎦⎤-35,1 3.(·江西百所重点中学诊断)已知m >0,n >0,且2m +3n =5,则2m +3n 的最小值是( )A .25 B.52 C .4D .54.(·合肥第二次质检)已知f (x )是偶函数,当x ∈⎣⎡⎦⎤0,π2时,f (x )=x sin x ,若a =f (cos 1),b =f (cos 2),c =f (cos 3),则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .c <b <aD .b <c <a5.某公司一年购买某种货物400 t ,每次都购买x t ,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 的值为( ) A .20 B .40 C .60D .806.(·北京)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1 C.32D .27.(·湖北七市联考)若不等式x 2+2x <a b +16ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( ) A .(-2,0) B .(-∞,-2)∪(0,+∞) C .(-4,2)D .(-∞,-4)∪(2,+∞)8.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a 的值为( ) A .-5 B .3 C .5D .79.若不等式|x -m |<1成立的充分不必要条件是13<x <12,则实数m 的取值范围是( )A.⎝⎛⎭⎫-12,13 B.⎣⎡⎦⎤-12,43 C.⎣⎡⎦⎤12,43D .(-1,3)10.(·渭南模拟)若直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 为半径的圆的面积的最小值为( ) A .π B .2π C .4πD.π211.(·浙江杭州二中第一次月考)若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞)D .(-∞,-1)12.(·郑州第一次质量预测)定义在(-1,1)上的函数f (x )满足:f (x )-f (y )=f ⎝⎛⎭⎪⎫x -y 1-xy ,当x ∈(-1,0)时,有f (x )>0.若P =f ⎝⎛⎭⎫15+f ⎝⎛⎭⎫111,Q =f ⎝⎛⎭⎫12,R =f (0),则P ,Q ,R 的大小关系为( ) A .R >Q >P B .R >P >Q C .P >R >QD .Q >P >R第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =________. 14.(·四川资阳第一次诊断)已知点A 是不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x ≥1所表示的平面区域内的一个动点,点B (-1,1),O 为坐标原点,则OA →·OB →的取值范围是____________.15.(·青岛第一次模拟)已知x ,y 均为正实数,且xy =x +y +3,则xy 的最小值为________. 16.(·湖南师大附中第三次月考)设正实数a ,b 满足等式2a +b =1,且有2ab -4a 2-b 2≤t -12恒成立,则实数t 的取值范围是____________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)(·河北高阳中学第二次模拟考试)已知集合A ={x |(x -2)[x -(3a +1)]<0},B =⎩⎨⎧⎭⎬⎫x |x -2a x -(a 2+1)<0. (1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围.18.(12分)已知a ,b 是正常数,x ,y ∈R +,且a +b =10,a x +b y =1,x +y 的最小值为18,求a ,b 的值.19.(12分)解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).20.(12分)如图所示,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km ,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2 (k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.21.(12分)(·江西宜春四校联考)变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =yx ,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.22.(12分)已知函数f (x )=ln x -14x +34x -1,g (x )=-x 2+2bx -4,若对任意的x 1∈(0,2),x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,求实数b 的取值范围.答案解析1.D [对于A ,构造幂函数y =x 3,其在R 上为单调递增函数,因为0<a <b <1,根据其单调性可知a 3<b 3,故A 错误;对于B ,1a -1b =b -a ab ,因为0<a <b <1,所以ab >0,b -a >0,故1a -1b =b -a ab >0,所以1a >1b ,故B 错误;对于C ,构造指数函数y =a x ,因为0<a <b <1,所以a b <1,故C 错误;对于D ,构造对数函数y =lg x ,因为0<a <b <1,所以0<b -a <1,故lg(b -a )<0,故D 正确.]2.D [a =1显然满足题意,a =-1时不满足题意,若a ≠±1,则该不等式为一元二次不等式,则必有a 2<1,且Δ=(a -1)2+4(a 2-1)<0,解得-35<a <1.综上可知-35<a ≤1.]3.D [因为m >0,n >0,2m +3n =5,所以(2m +3n )·(2m +3n )=13+6⎝⎛⎭⎫m n +n m ≥13+12m n ·n m=25(当且仅当m =n =1时等号成立),所以2m +3n≥5,故选D.]4.B [由于函数为偶函数,故b =f (cos 2)=f (-cos 2),c =f (cos 3)=f (-cos 3),由于x ∈⎣⎡⎦⎤0,π2,f ′(x )=sin x +x cos x >0,即函数在区间⎣⎡⎦⎤0,π2上为增函数,据单位圆三角函数线易得0≤-cos 2<cos 1<-cos 3≤π2,根据函数单调性可得f (-cos 2)<f (cos 1)<f (-cos 3),故选B.]5.A [某公司一年购买某种货物400 t ,每次都购买x t ,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用之和为⎝⎛⎭⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.]6.D [可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.]7.C [x 2+2x <⎝⎛⎭⎫a b +16b a min ,而a b +16b a≥2a b ·16b a =8,当且仅当a b =16ba,即a =4b 时,等号成立.因此x 2+2x <8,即x 2+2x -8<0,解不等式得-4<x <2.]8.D [直线ax -y +1=0过点(0,1),作出可行域如图知可行域由点A (1,0),B (1,a +1),C (0,1)组成的三角形的内部(包括边界),且a >-1,则其面积等于12×(a +1)×1=4,解得a =7.]9.B [根据题意,得不等式|x -m |<1的解集是m -1<x <m +1,设此命题为p ,命题13<x <12为q ,则p 的充分不必要条件是q ,即q 表示的集合是p 表示的集合的真子集,则有⎩⎨⎧m -1≤13,m +1≥12,(等号不同时成立).解得-12≤m ≤43.]10.A [因为直线ax +by =1过点A (b ,a ),所以2ab =1,因为|OA |=a 2+b 2,所以以坐标原点O 为圆心,OA 为半径的圆的面积为π(a 2+b 2)≥2πab =π,当且仅当a =b 时等号成立,故选A.]11.A [x 2+ax -2>0在[1,5]上有解可转化为a >2x -x 在[1,5]上有解.而⎝⎛⎭⎫2x -x min =25-5=-235,∴a >-235.]12.B [令x =y =0,得f (0)-f (0)=f (0)=0,再令x =0,可得f (0)-f (y )=f (-y )⇒-f (y )=f (-y ),即函数为奇函数.若-1<x <y <1,则x -y 1-xy <0,故由已知得f ⎝ ⎛⎭⎪⎫x -y 1-xy >0,即f (x )-f (y )=f ⎝⎛⎭⎪⎫x -y 1-xy >0,故函数在区间(-1,1)上为减函数.又P =f ⎝⎛⎭⎫15+f ⎝⎛⎭⎫111=f ⎝⎛⎭⎫15-f ⎝⎛⎭⎫-111=f ⎝ ⎛⎭⎪⎫15+1111+15×111=f ⎝⎛⎭⎫27,而0<27<12,由单调性可得R =f (0)>f ⎝⎛⎭⎫27=P >f ⎝⎛⎭⎫12=Q ,故选B.] 13.32解析 对a 进行分类讨论,通过构造函数,利用数形结合解决.(1)当a =1时,不等式可化为:x >0时均有x 2-x -1≤0,由二次函数的图象知,显然不成立,∴a ≠1.(2)当a <1时,∵x >0, ∴(a -1)x -1<0,不等式可化为 x >0时均有x 2-ax -1≤0,∵二次函数y =x 2-ax -1的图象开口向上,∴不等式x 2-ax -1≤0在x ∈(0,+∞)上不能均成立, ∴a <1不成立.(3)当a >1时,令f (x )=(a -1)x -1,g (x )=x 2-ax -1,两函数的图象均过定点(0,-1), ∵a >1,∴f (x )在x ∈(0,+∞)上单调递增, 且与x 轴交点为⎝⎛⎭⎫1a -1,0,即当x ∈⎝⎛⎭⎫0,1a -1时,f (x )<0,当x ∈⎝⎛⎭⎫1a -1,+∞时,f (x )>0.又∵二次函数g (x )=x 2-ax -1的对称轴为x =a2>0,则只需g (x )=x 2-ax -1与x 轴的右交点与点⎝⎛⎭⎫1a -1,0重合,如图所示,则命题成立,即⎝⎛⎭⎫1a -1,0在g (x )图象上,所以有⎝⎛⎭⎫1a -12-aa -1-1=0, 整理得2a 2-3a =0,解得a =32,a =0(舍去).综上可知a =32.14.[-1,1]解析 作出不等式组表示的平面区域,如图所示.设A (x ,y ),z =OA →·OB →=-x +y ,则y =x +z 表示斜率为1,纵截距为z 的一组平行直线,平移直线y =x +z ,知当直线过点D (2,1)时,直线y =x +z 的截距最小,z min =-2+1=-1;当直线y =x +z 过点E (1,2)时,直线y =x +z 的截距最大,z max =-1+2=1,所以OA →·OB →的取值范围是[-1,1].15.9解析 因为x ,y 均为正实数,且xy =x +y +3,所以xy =x +y +3≥2xy +3,解得xy ≥3或xy ≤-1(舍去),所以xy ≥9,当且仅当x =y =3时取等号.故xy 的最小值为9. 16.⎣⎡⎭⎫22,+∞ 解析 ∵2a +b =1,∴4a 2+b 2=(2a +b )2-4ab =1-4ab .而2a +b =1≥22ab ,∴ab ≤24,当且仅当2a =b ,即a =14,b =12时等号成立.∴2ab -4a 2-b 2=2ab +4ab -1,令ab =u ∈⎝⎛⎦⎤0,24,f (u )=4u 2+2u -1,∴f (u )的最大值为f ⎝⎛⎭⎫24=2-12,故只需t -12≥2-12,即t ≥22. 17.解 (1)当a =2时,A =(2,7),B =(4,5), ∴A ∩B =(4,5). (2)B =(2a ,a 2+1),当a <13时,A =(3a +1,2),要使B ⊆A ,必须⎩⎪⎨⎪⎧2a ≥3a +1,a 2+1≤2,此时a =-1; 当a =13时,A =∅,使B ⊆A 的a 不存在;当a >13时,A =(2,3a +1),要使B ⊆A ,必须⎩⎪⎨⎪⎧2a ≥2,a 2+1≤3a +1,此时1≤a ≤3.综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}. 18.解 ∵x +y =(x +y )⎝⎛⎭⎫a x +b y =a +b +bx y +ayx ≥a +b +2ab ,当且仅当bx 2=ay 2时等号成立. ∴x +y 的最小值为a +b +2ab =18. 又a +b =10.∴2ab =8,∴ab =16.由a +b =10,ab =16可得a =2,b =8或a =8,b =2. 19.解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)(x -1a )<0,根据不等式的性质,这个不等式等价于(x-2)(x -1a )<0.因为方程(x -2)(x -1a )=0的两个根分别是2,1a ,所以当0<a <12时,2<1a ,则原不等式的解集是{x |2<x <1a };当a =12时,原不等式的解集是∅;当a >12时,1a <2,则原不等式的解集是{x |1a<x <2}.(2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)(x -1a )<0,根据不等式的性质,这个不等式等价于(x-2)(x -1a )>0,由于1a <2,故原不等式的解集是{x |x <1a 或x >2}.综上所述,当a <0时,不等式的解集为{x |x <1a或x >2};当a=0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为{x |2<x <1a };当a =12时,不等式的解集为∅;当a >12时,不等式的解集为{x |1a <x <2}.20.解 (1)令y =0,得kx -120(1+k 2)x 2=0. 由实际意义和题设条件知x >0,k >0,由x =20k 1+k 2=20k +1k ≤202=10,当且仅当k =1时取等号.所以炮的最大射程为10 km.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔Δ=(-20a )2-4a 2(a 2+64)≥0⇔0<a ≤6. 所以当a 不超过6 km 时,可击中目标.21.解 由约束条件⎩⎪⎨⎪⎧ x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图中阴影部分所示.由⎩⎪⎨⎪⎧ x =1,3x +5y -25=0,解得A (1,225). 由⎩⎪⎨⎪⎧x =1,x -4y +3=0,解得C (1,1). 由⎩⎪⎨⎪⎧ x -4y +3=0,3x +5y -25=0,解得B (5,2). (1)∵z =y x =y -0x -0,∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29,故z 的取值范围是[2,29].(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =(-3-5)2+(2-2)2=8.故z 的取值范围是[16,64].22.解 问题等价于f (x )在(0,2)上的最小值恒大于或等于g (x )在[1,2]上的最大值.因为f (x )=ln x -14x +34x-1, 所以f (x )的定义域为(0,+∞),所以f ′(x )=1x -14-34x 2=4x -x 2-34x 2. 若f ′(x )>0,则x 2-4x +3<0,解得1<x <3,故函数f (x )的单调递增区间是[1,3],同理得f (x )的单调递减区间是(0,1]和[3,+∞),故在区间(0,2)上,x =1是函数f (x )的极小值点,这个极小值点是唯一的,故也是最小值点,所以f (x )min =f (1)=-12.由于函数g (x )=-x 2+2bx -4,x ∈[1,2].当b <1时,g (x )max =g (1)=2b -5;当1≤b ≤2时,g (x )max =g (b )=b 2-4;当b >2时,g (x )max =g (2)=4b -8.故问题等价于⎩⎪⎨⎪⎧ b <1,-12≥2b -5或⎩⎪⎨⎪⎧ 1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8. 解第一个不等式组得b <1,解第二个不等式组得1≤b ≤142,第三个不等式组无解. 综上所述,b 的取值范围是⎝⎛⎦⎤-∞,142.。

甘肃省兰州大学附中2014届高三上学期一轮复习数学(理)单元验收试题(7)

甘肃省兰州大学附中2014届高三上学期一轮复习数学(理)单元验收试题(7)

兰州大学附中2013—2014学年度上学期高三一轮复习【新课标】数学(理)单元验收试题(7)命题范围:三角函数说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分;答题时间120分钟。

第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。

1.(2013年上海市春季高考数学试卷(含答案))既是偶函数又在区间(0 )π,上单调递减的函数是( )A .sin y x =B .cos y x =C .sin 2y x =D .cos 2y x =2.(2013年普通高等学校招生统一考试浙江数学(理)试题)已知210cos 2sin ,=+∈αααR ,则=α2t a n ( )A .34 B .43 C .43- D .34-3.(2013年普通高等学校招生统一考试山东数学(理)试题)将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .34π B . 4π C .0 D .4π-4.(2013年高考陕西卷(理))设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,若c o s c o s s i n b C c B a A +=,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定5.函数f(x)=xx xx cos sin 1cos sin ++的值域是( )。

A .[-2-1,1]∪[-1,2-1]B .[-212+,212-] C .[-22-1, 22-1]D .[-212+,-1)∪(-1, 212-] 6.对任意的锐角α,β,下列不等关系中正确的是( )A .sin(α+β)>sinα+sinβB .sin(α+β)>cosα+cosβC .cos(α+β)<sinα+sinβD .cos(α+β)<cosα+cosβ7.如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A .10 B .10 C .10 D .158.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案)已知函数()=cos sin 2f x x x ,下列结论中错误的是( )A .()y f x =的图像关于(),0π中心对称B .()y f x =的图像关于直线2x π=对称C .()f x 的最大值为2D .()f x 既奇函数,又是周期函数9.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于( )A .12π B .6π C .4π D .3π 10.(2013年山东数学(理)试题)函数cos sin y x x x =+的图象大致为( )11.(2013年高考四川卷(理))函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A .2,3π-B .2,6π-C .4,6π-D .4,3π12.已知2cos sin cos )(2ax x b x a x f --=的最大值是21,且43)3(f =π,则=π-)3(f ( )A .21B .43-C .4321或-D .430-或第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。

高三数学一轮复习 周测试卷七 试题

高三数学一轮复习 周测试卷七 试题

监利县第一中学2021届高三数学一轮复习 周测试卷〔七〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日本套试卷满分是一共150分,考试时间是是120分钟考前须知:〔1〕答第一卷前,请所有考生必须将姓名,考号,班级填写上在第二卷上;〔2〕第一卷之答案填写上在第二卷的相应位置,写在第一卷上之答案无效,在在考试完毕之后以后,考生只交第二卷。

第一卷一、选择题:本大题一一共10小题,每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,把答案填在第二卷的相应位置上. 1、设集合{}|1A x y x ==-,{}|lg ,1100B y y x x ==≤≤那么A B =〔 〕 A 、[]1,100 B 、[]1,2 C 、[]0,2 D 、[)0,10 2、33()sin 9(,)f x x a x b x a b R =+-+∈,且(2013)7f -=那么(2013)f =〔 〕 A 、11 B 、12 C 、13 D 、14 3、函数()log ||1(01)a f x x a =+<<的图象大致为〔 〕4、定义运算a b *为:()()a ab a b b a b ≤⎧*=⎨>⎩例如232*=那么13x *的取值范围是〔 〕A 、(]0,2B 、(]30,C 、(]0,1D 、[]1,25、假设函数()sin()f x x ωϕ=+的图象〔局部〕如图示,那么ω和ϕ的取值可以是〔 〕 A 、34ω= 4πϕ= B 、1,3πωϕ==- C 、126πωϕ== D 、3,43πωϕ==- 6、以下命题中,真命题是〔 〕 A 、假设1sin 2A =那么30A ︒= B 、2012x y +≠是1006x ≠或者1006y ≠的充分不必要条件 C 、存在实数,(0,)a b ∈+∞当1a b +=时1172a b += D 、假设0m >那么20x x m ++=有实根7、将水注入深为4米上口直径为4米的锥形漏斗容器中,注水速度为每秒1立方米,那么当水深为2米时,其水面上升的速度为〔 〕 A 、1πB 、12π C 、2π D 、3π8、函数x x f 2sin1)(π+=,假设有四个不同的正数i x 满足M x f i =)(〔M 为常数〕,且8<i x ,)4,3,2,1(=i ,那么4321x x x x +++的值是〔 〕 A 、10 B 、14 C 、12 D 、12或者209、函数()f x 定义在R 上的奇函数,当0x <时,()(1)x f x e x =+,给出以下命题:〔 〕 ①当0x >时,()(1);x f x e x =- ②函数()f x 有2个零点③()0f x >的解集为(1,0)(1,)-+∞ ④12,x x R ∀∈,都有12|()()|2f x f x -< 其中正确命题个数是:A 、1B 、2C 、3D 、410、定义在R 上的函数1,2|2|()1,2x x f x x ⎧≠⎪-=⎨⎪=⎩假设关于x 的方程2()()3f x af x b ++=有三个不同的实数解1x ,2x ,3x ,且123x x x <<,那么以下结论错误的选项是〔 〕A 、22212314x x x ++= B 、2a b += C 、134x x += D 、1322x x x +>二、填空题:本大题一一共5小题,每一小题5分,一共25分. 把答案填在第二卷的相应位置上.11、420|4|x dx -=⎰ .12、集合{}(,)|1,,A x y x y x R y R =+=∈∈对于集合A 中任何一个元素〔x , y 〕法那么f 使得〔x , y 〕与()3,3x y 对应,在法那么f 作用下集合A 的象的集合是 . 13、1cos 7α=,11cos()14αβ+=-且(0,),(,)22ππααβπ∈+∈,求cos β的值 . 14、假设函数31()3f x x x =-在2(,10)m m -上有最小值,那么实数m 的取值范围是 . 15、函数,函数g(x)=一2a +2(a >0),假设存在x 1,x 2 ∈ [0,1],使得f (x 1〕=g(x 2〕成立,那么实数a 的取值范围是 . 三、解答题(本大题6小题,一共75分, 解容许写出文字说明、证明过程或者演算步骤) 16、〔本小题满分是12分〕己知函数f 〔x 〕=〔1〕化简函数f 〔x 〕的解祈式;〔2〕假设0θπ≤≤,求θ,使函数了f 〔x 〕为偶函数;17、〔本小题满分是12分〕设有两个命题:命题p :不等式|1||3|x x a -+->对一实在数x 都成立;命题q :函数32()f x mx nx =+的图象在点(1,2)-处的切线恰好与直线21x y +=平行,且()f x 在[],1a a +上单调递减.,假设命题p 或者q 为真,务实数a 的取值范围.18、〔本小题满分是12分〕设△ABC 的内角A 、B 、C 所对的边长分别为a. b, c , 且〔1〕求角A 的大小: 〔2〕假设角B =6π,角A 的平分线交方BC 于M ,且AM 7,求AB 的长和△ABC 的面积。

高三数学一轮复习高效测评卷 第七章 立体几何 理 试题

高三数学一轮复习高效测评卷 第七章 立体几何 理  试题

金版新学案?高三一轮总复习[B师大]数学理科高效测评卷(七)制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日第七章立体几何—————————————————————————————————————【说明】本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填入答题格内,第二卷可在各题后直接答题,一共150分,考试时间是是120分钟.第一卷(选择题一共60分)个选项里面,只有一项是哪一项符合题目要求的)1.在空间中,“两条直线没有公一共点〞是“这两条直线平行〞的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.以下四个命题中,真命题的个数为( )①假如两个平面有三个公一共点,那么这两个平面重合②两条直线可以确定一个平面③假设M∈α,M∈β,α∩β=l,那么M∈l④空间中,相交于同一点的三条直线在同一平面内A.1 B.2C.3 D.43.一个空间几何体的主视图、左视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的外表积为( )A.2 3 B.4 3C.4 D.84.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A.54 B.54πC.58 D.58π5.设三条不同的直线a、b、c,两个不同的平面α,β,bα,c⃘α.那么以下命题不成立的是( )A.假设α∥β,c⊥α,那么c⊥βB.“假设b⊥β,那么α⊥β〞的逆命题C.假设a是c在α的射影,b⊥a,那么c⊥bD.“假设b∥c,那么c∥α〞的逆否命题6.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为( )A.23B.33C.23D.637.设P是平面α外一点,且P到平面α内的四边形的四条边的间隔都相等,那么四边形是( )A.梯形B.圆外切四边形C.圆内接四边形D.任意四边形8.用a,b,c表示三条不同的直线,γ表示平面,给出以下命题:①假设a∥b,b∥c,那么a∥c;②假设a⊥b,b⊥c,那么a⊥c;③假设a∥γ,b∥γ,那么a∥b;④假设a⊥γ,b⊥γ,那么a∥b.其中真命题的序号是( )A.①②B.②③C.①④D.③④9.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,那么该球的外表积为( )A.πa2 B.73πa2C.113πa2D.5πa210.正四棱柱ABCD-A 1B1C1D1中,AB=3,BB1=4,长为1的线段PQ在棱AA1上挪动,长为3的线段MN在棱CC1上挪动,点R在棱BB1上挪动,那么四棱锥R-PQMN的体积是( )A.6 B.10C.12 D.不确定11.平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m ∥α,m∥β,那么以下四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β12.设α,β,γ是三个互不重合的平面,m,n是直线,给出以下命题:①α⊥β,β⊥γ,那么α⊥γ;②假设α∥β,m⃘β,m∥α,那么m∥β;③假设m,n在γ内的射影互相垂直,那么m⊥n;④假设m∥α,n∥β,α⊥β,那么m⊥n.其中正确命题的个数为( )A.0 B.1C.2 D.3第二卷(非选择题一共90分)题号第一卷第Ⅱ总分二1718192021 22得分横线上)13.如图,一个空间几何体的主视图左视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么该几何体的体积是________.14.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,那么空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的图的序号).15.如图,在长方体ABCD-A1B1C1D1中,AB=6,AD=4,AA1=3,分别过BC,A1D1的两个平行截面将长方体分成三局部,其体积分别记为V1=VAEA1-DFD1,V2=VEBE1A1-FCF1D1,V3=VB1E1B-C1F1C.假设V1∶V2∶V3=1∶4∶1,那么截面A1EFD1的面积为________.16.如图,在棱长为a的正方体ABCD-A1B1C1D1中,点E为AA1的中点,在对角面BDD1B1上取一点M,使AM+ME最小,其最小值为________.三、解答题(本大题一一共6小题,一共74分.解答时应写出必要的文字说明、证明过程或者演算步骤)17.(12分)一几何体的三视图如下:(1)画出它的直观图,并求其体积;(2)你能发现该几何体的哪些面互相垂直?试一一列出.18.(12分)直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=CB=AA1=2,D是AB的中点.(1)求证:CD⊥平面ABB1A1;(2)求二面角D-A1C-A的正切值.19.(12分)如下图,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S获得最大值?并求出该最大值(结果准确到0.01平方米);(2)假设要制作一个如图放置的、底面半径为的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).20.(12分)如下图,四棱锥P-ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD ,PA =AD =AB =12CD =1,M 为PB 的中点.(1)试在CD 上确定一点N ,使得MN ∥平面PAD ;(2)点N 在满足(1)的条件下,求直线MN 与平面PAB 所成角的正弦值.21.(12分)如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点,四面体P -BCG 的体积为83.(1)求异面直线GE 与PC 所成的角的余弦值; (2)求点D 到平面PBG 的间隔 ;(3)假设F 点是棱PC 上一点,且DF ⊥GC ,求PF FC的值.【解析方法代码108001100】22.(14分)如图,M 、N 、P 分别是正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 、DD 1上的点. (1)假设BM MA =BNNC,求证:无论点P 在D 1D 上如何挪动,总有BP ⊥MN ;(2)假设D 1P ∶PD =1∶2,且PB ⊥平面B 1MN ,求二面角M -B 1N -B 的余弦值;(3)棱DD 1上是否总存在这样的点P ,使得平面APC 1⊥平面ACC 1?证明你的结论.【解析方法代码108001101】答案一、选择题1.B 在空间中,两条直线没有公一共点,可能是两条直线平行,也可能是两条直线异面,两条直线平行那么两条直线没有公一共点,∴“两条直线没有公一共点〞是“这两条直线平行〞的必要不充分条件.2.A ①两个平面有三个公一共点,假设这三个公一共点一共线,那么这两个平面相交,故①不正确;两异面直线不能确定一个平面,故②不正确;在空间交于一点的三条直线不一定一共面(如墙角),故④不正确;据平面的性质可知③正确.3.C 由几何体的三视图可得,此几何体是由两个正四棱锥底面重合在一起组成的,由主视图的面积为32,得菱形的边长为1,此几何体的外表积为S =8×12×1×1=4. 4.A 设圆台的上、下底面半径分别为r ,R ,截去的圆锥与原圆锥的高分别为h ,H ,那么r R =h H,又πR 2=9·πr 2,∴R =3r , ∴H =3h .∴13πR 2·H -13πr 2h =52. 即13πR 2·H -13π·19R 2·13H =52,∴13πR 2H =54. 5.B 命题C 即为三垂线定理;命题D 中的原命题即为线面平行的断定定理,所以D 正确;命题A 显然成立;对于命题B ,假设α⊥β,那么b 与β的位置关系都有可能.6.D 如图,连接BD 交AC 于O ,连接D 1O ,由于BB 1∥DD 1, ∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1所成的角,易知∠DD 1O 即为所求.设正方体的棱长为1,那么DD 1=1,DO =22,D 1O =62, ∴cos∠DD 1O =DD 1D 1O =26=63. ∴BB 1与平面ACD 1所成角的余弦值为63. 7.B P 到平面α内的四边形的四条边的间隔 都相等,那么P 在平面α内的射影到四边形的四条边的间隔 也都相等,故四边形有内切圆.8.C 由平行公理可知①正确;②不正确,假设三条直线在同一平面内,那么a ∥c ;③不正确,a 与b 有可能平行,也有可能异面或者相交;由线面垂直的性质可知④正确.9.B 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a . 如图,设O 、O 1分别为下、上底面中心,且球心O 2为O 1O 的中点,又AD =32a ,AO =33a ,OO 2=a 2, 设球的半径为R ,那么R 2=AO 22=13a 2+14a 2=712a 2. ∴S 球=4πR 2=4π×712a 2=73πa 2.10.A 四棱锥R -PQMN 的底面积为S =S △PQM +S △MNP=12PQ ·AC +12MN ·AC =12(PQ +MN )·AC =12(1+3)×32=6 2. 其高h =322,V R -PQMN =13Sh =13×62×322=6.11.D ∵m ∥α,m ∥β,α∩β=l ,∴m ∥l .∵AB ∥l ,∴AB ∥m .故A 一定正确. ∵AC ⊥l ,m ∥l ,∴AC ⊥m .从而B 一定正确. ∵A ∈α,AB ∥l ,l α,∴B ∈α. ∴A B ⃘β,l β.∴AB ∥β.故C 也正确.∵AC ⊥l ,当点C 在平面α内时,AC ⊥β成立,当点C 不在平面α内时,AC ⊥β不成立.故D 不一定成立.12.B 此题为线面位置关系的断定,注意对线面平行与垂直的断定定理与性质定理的应用.①错,当两平面同时垂直于一个平面时,这两个平面也可以平行,如正方体相对的两个平面;②正确,不妨过直线m 作一平面与α,β同时相交,交线分别为a ,b ,由α∥β知a ∥b ,又m ∥α⇒m ∥a ,∴m ∥b ,又m ⊄β,∴m ∥β;③错,不妨设该直线为正方体的两对角线,其在底面的射影为正方形的两对角线,它们是互相垂直的,但正方体的两对角线不垂直;④错,以正方形两平行棱,或者一条棱及与其相交的面对角线为例,可找到反例.二、填空题13.解析: 由三视图知该几何体是底面半径为1,高为3的圆锥. 因此,其体积V =13π·12×3=33π.答案:33π 14.解析: 图①为空间四边形D ′OEF 在前面(或者后面)上的投影.图②为空间四边形D ′OEF 在左面(或者右面)上的投影.图③为空间四边形D ′OEF 在上面(或者下面)上的投影.答案: ①②③15.解析: 设AE =x ,BE =6-x ,V 1=VAEA 1-DFD 1,V 2=VEBE 1A 1-FCF 1D 1,V 3=VB 1E 1B -C 1F 1C ,且V 1∶V 2∶V 3=1∶4∶1,所以12×(3x )×4∶(6-x )×3×4∶12×(3x )×4=1∶4∶1,解得x =AE =2,∴A 1E =A 1A 2+AE 2=13, ∴SA 1EFD 1=413. 答案: 41316.解析: 取CC 1的中点F ,连接EF ,EF 交平面BB 1D 1D 于点N ,且EN =FN , 所以F 点是E 点关于平面BB 1D 1D 的对称点, 那么AM +ME =AM +MF ,所以当A ,M ,F 三点一共线时,AM +MF 最小,即AM +ME 最小, 此时AM +MF =AF =AC 2+⎝ ⎛⎭⎪⎫CC 122=3a2. 答案: 32a三、解答题17.解析: (1)该几何体的直观图如图,棱锥P -ABC ,其中PC ⊥面ABC ,∠ABC =90°,△ABC 斜边AC 上的高为125cm ,PC =6 cm ,AC =5 cm ,∴V P -ABC =13×12×5×125×6=12(cm 3).(2)互相垂直的面分别有:面PAC ⊥面ABC ,面PBC ⊥面ABC ,面PBC ⊥面PAB .18.解析: (1)证明:因为AC =CB ,∠ACB =90°,D 是AB 的中点, 所以CD ⊥AB ,又因为ABC -A 1B 1C 1是直三棱柱,所以CD ⊥AA 1, 又∵AB ∩AA 1=A , ∴CD ⊥平面ABB 1A 1.(2)建立如下图的空间直角坐标系, ∵AC =CB =AA 1=2,∴A (2,0,0),A 1(2,0,2),D (1,1,0),C (0,0,0),C 1(0,0,2). 显然平面A 1AC 的法向量为m =(0,1,0), 设平面A 1CD 的法向量为n =(x ,y ,z ), 那么⎩⎪⎨⎪⎧A 1D →·n =0A 1C →·n =0,即⎩⎪⎨⎪⎧-x +y -2z =02x +2z =0,令x =1,那么n =(1,-1,-1), 令m ,n 的夹角为θ,那么cos θ=m ·n |m ||n |=-33, ∴二面角D -A 1C -A 的余弦值为33,其正切值为 2. 19.解析: (1)由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r )=πr 2r -4πr 2=-3πr 2r =-3π(r 2r ). ∴当r =0.4时,S 有最大值,约为.(2)假设灯笼底面半径为,那么高为1.2-2×0.3=0.6(米). 制作灯笼的三视图如图.20.解析: 方法一:(1)过点M 作ME ∥AB 交PA 于E 点,连接DE .要使MN ∥平面PAD ,那么MN ∥ED , ∴四边形MNDE 为平行四边形, ∴EM 綊DN .又∵EM 綊12AB ,而AB =12CD ,∴DN =14CD ,∴DN =12.(2)∵MN ∥ED ,∴直线MN 与平面PAB 所成的角即为直线ED 与平面PAB 所成的角. ∵PA ⊥面ABCD ,∴PA ⊥AD , 而AB ⊥AD ,∴DA ⊥面PAB ,∴∠DEA 为直线ED 与平面PAB 所成的角. 由题设计算得DE =52, ∴sin ∠DEA =AD DE =255.方法二:过点M 作ME ∥AB 交PA 于E 点,连接DE .要使MN ∥平面PAD ,那么MN ∥ED ,∴四边形MNDE 为平行四边形.以AD 、AB 、AP 所在直线分别为x 、y 、z 轴,建立空间直角坐标系A —xyz ,如下图.那么由题意得A (0,0,0)、B (0,1,0)、D (1,0,0)、C (1,2,0)、P (0,0,1)、M ⎝ ⎛⎭⎪⎫0,12,12、N ⎝⎛⎭⎪⎫1,12,0.(1)∵D N →=⎝ ⎛⎭⎪⎫0,12,0,∴|D N →|=12.(2)∵PA ⊥面ABCD ,∴PA ⊥AD , 而AB ⊥AD ,∴DA ⊥面PAB . 又∵N M →=⎝ ⎛⎭⎪⎫-1,0,12,D A →=(-1,0,0),∴cos 〈N M →,D A →〉=NM →·DA →|NM →|·|DA →|=152·1=255,∴直线MN 与平面PAB 所成的角的正弦值为255.21.解析: (1)由V P -BGC =13S △BCG ·PG =13·12BG ·CG ·PG =83,∴PG =4,如下图,以G 点为原点建立空间直角坐标系O -xyz , 那么B (2,0,0),C (0,2,0),P (0,0,4),故E (1,1,0),GE →=(1,1,0), PC →=(0,2,-4),cos 〈GE →,PC →〉=GE →·PC →|G E →|·|P C →|=22×20=1010,∴异面直线GE 与PC 所成的角的余弦值为1010. (2)平面PBG 的单位法向量n 0=(0,±1,0), ∵GD →=34A D →=34BC →,B (2,0,0),C (0,2,0),∴GD →=⎝ ⎛⎭⎪⎫-32,32,0,∴点D 到平面PBG 的间隔 为|GD →·n 0|=32.(3)设F (0,y ,z ),那么DF →=OF →-OD →=(0,y ,z )-⎝ ⎛⎭⎪⎫-32,32,0=⎝ ⎛⎭⎪⎫32,y -32,z ,GC →=(0,2,0).∵DF →⊥GC →,∴DF →·GC →=0, ∴⎝ ⎛⎭⎪⎫32,y -32,z ·(0,2,0)=2⎝ ⎛⎭⎪⎫y -32=0, ∴y =32.在平面PGC 内过F 点作FM ⊥GC ,M 为垂足,那么GM =32,MC =12,∴PF FC =GMMC=3. 22.解析: (1)证明:连接AC 、BD ,那么BD ⊥AC ,∵BM MA =BN NC, ∴MN ∥AC ,∴BD ⊥MN . 又∵DD 1⊥平面ABCD , ∴DD 1⊥MN , ∵BD ∩DD 1=D , ∴MN ⊥平面BDD 1.又P 无论在DD 1上如何挪动,总有BP ⊂平面BDD 1, ∴无论点P 在D 1D 上如何挪动,总有BP ⊥MN .(2)以D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,z 轴,建立如下图的坐标系.设正方体的棱长为1,AM =NC =t ,那么M (1,t,0),N (t,1,0),B 1(1,1,1),P (0,0,23),B (1,1,0),A (1,0,0),∵MB 1→=(0,1-t,1), B P →=⎝ ⎛⎭⎪⎫-1,-1,23.又∵BP ⊥平面MNB 1, ∴MB 1→·B P →=0, 即t -1+23=0,∴t =13,∴MB 1→=⎝ ⎛⎭⎪⎫0,23,1,M N →=⎝ ⎛⎭⎪⎫-23,23,0.设平面MNB 1的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧MB 1→·n =0M N →·n =0,得x =y ,z =-23y .令y =3,那么n =(3,3,-2). ∵AB ⊥平面BB 1N ,∴A B →是平面BB 1N 的一个法向量,A B →=(0,1,0).设二面角M -B 1N -B 的大小为θ, ∴cos 〈n ,A B →〉 =|3,3,-2·0,1,0|22=32222.那么二面角M -B 1N -B 的余弦值为32222.(3)存在点P ,且P 为DD 1的中点, 使得平面APC 1⊥平面ACC 1. 证明:∵BD ⊥AC ,BD ⊥CC 1, ∴BD ⊥平面ACC 1.取BD 1的中点E ,连接PE , 那么PE ∥BD , ∴PE ⊥平面ACC 1. ∵PE ⊂平面APC 1, ∴平面APC 1⊥平面ACC 1.制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。

高考数学一轮复习第七章立体几何阶段检测试题(含解析)文(new)

高考数学一轮复习第七章立体几何阶段检测试题(含解析)文(new)

第七章立体几何阶段检测试题时间:120分钟分值:150分一、选择题(每小题5分,共60分)1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案:B2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1C,EF∩D1C=F,则A1B与EF相交.答案:A3.(2017·嘉兴月考)对于空间的两条直线m,n和一个平面α,下列命题中的真命题是( )A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n解析:对A,直线m,n可能平行、异面或相交,故选项A错误;对B,直线m与n可能平行,也可能异面,故选项B错误;对C,m与n垂直而非平行,故选项C错误;对D,垂直于同一平面的两直线平行,故选项D正确.答案:D4.设P是异面直线a,b外的一点,则过点P与a,b都平行的平面()A.有且只有一个B.恰有两个C.不存在或只有一个D.有无数个解析:过点P作a1∥a,b1∥b,若过a1,b1的平面不经过a,b,则存在一个平面同时与a,b平行;若过a,b1的平面经过a或b,则不存在这样的平面同时与a,b平行.1答案:C5.若平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析:由平面α∥平面β知,直线AC与BD无公共点,则直线AC∥直线BD的充要条件是A,B,C,D四点共面.答案:D6.已知a,b为两条不同的直线,α,β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a,b相交,则α,β相交D.若α,β相交,则a,b相交解析:若α,β相交,则a,b可能相交,也可能异面,故D为假命题.答案:D7.一个几何体的侧视图和俯视图如图所示,若该几何体的体积为错误!,则它的正视图为()解析:由几何体的侧视图和俯视图,可知几何体为组合体,由几何体的体积为错误!,可知上方为棱锥,下方为正方体.由俯视图可得,棱锥顶点在底面上的射影为正方形一边上的中点,顶点到正方体上底面的距离为1,所以选B.答案:B8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.27-错误!B.18-错误!C.27-3πD.18-3π解析:由几何体的三视图可知该几何体可以看成是底面是梯形的四棱柱挖去了半个圆柱,所以所求体积为错误!×(2+4)×2×3-错误!π×12×3=18-错误!。

【2020届高三一轮单元训练卷(理数)】第7单元:数列 A卷(解析版)

【2020届高三一轮单元训练卷(理数)】第7单元:数列 A卷(解析版)

2020届高三一轮复习单元训练卷▪理科数学(A )第7单元 数列注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前n 项和为S n ,若a 1=12,S 5=90,则等差数列{a n }公差d =( ) A .2 B .32C .3D .4【答案】C【解析】∵a 1=12,S 5=90,∴54512902d ⨯⨯+=,解得d =3,故选C . 2.在正项等比数列{}n a 中,已知42a =,818a =,则5a 的值为( )A .14B .14- C .1- D .1【答案】D【解析】由题意,正项等比数列{}n a 中,且42a =,818a =,可得484116a q a ==, 又因为0q >,所以12q =,则541212a a q =⋅=⨯=,故选D . 3.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72 B .60C .48D .36【答案】B【解析】根据等差数列的性质可知:513994024020a a a a +=⇒=⇒=,89109992360a a a a a a ==++=+,故本题选B .4.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7天,共走了700里,则这匹马第7天所走的路程等于( ) A .700127里 B .35063里 C .28051里 D .350127里 【答案】A【解析】设马每天所走的路程是127,,.....a a a ,是公比为12的等比数列, 这些项的和为700,717111()647002*********a S a ⎛⎫- ⎪⨯⎝⎭==⇒=-, 671700127a a q ==,故答案为A . 5.已知等差数列{}n a 的前n 项和n S 有最大值,且651a a <-,则满足0n S >的最大正整数n 的值 为( ) A .6 B .7C .10D .12【答案】C【解析】设等差数列{}n a 的公差为d ,因为等差数列{}n a 的前n 项和n S 有最大值,所以0d <, 又651a a <-,所以50a >,60a <,且560a a +>, 所以110101105610()5()5()02a a a S a a a +==+=+>,11111611()1102a a S a +==<,所以满足0n S >的最大正整数n 的值为10.6.已知等差数列{}n a 的公差不为零,n S 为其前n 项和,39S =,且21a -,31a -,51a -构成 等比数列,则5S =( ) A .15B .15-C .30D .25【答案】D【解析】设等差数列{}n a 的公差为()0d d ≠,由题意()()()1211133921141a d a d a d a d +=⎧⎪⎨+-=+-+-⎪⎩,解得112a d =⎧⎨=⎩. ∴554251252S ⨯⨯=⨯+=.故选D . 7.在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于( ) A .66 B .132C .66-D .132-【答案】D【解析】因为3a ,9a 是方程224120x x ++=的两根,所以3924a a +=-, 又396242a a a +=-=,所以612a =-,61111111211()13222a a a S ⨯⨯+===-,故选D .8.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )A .110B .114C .124D .125【答案】B【解析】由题意,n 次二项式系数对应的杨辉三角形的第1n +行, 令1x =,可得二项展开式的二项式系数的和2n , 其中第1行为02,第2行为12,第3行为22,以此类推,即每一行的数字之和构成首项为1,公比为2的对边数列,则杨辉三角形中前n 行的数字之和为122112nn n S -==--,若除去所有为1的项,则剩下的每一行的数字的个数为1,2,3,4,,可以看成构成一个首项为1,公差为2的等差数列,则(1)2n n n T +=, 令(1)152n n +=,解得5n =, 所以前15项的和表示前7行的数列之和,减去所有的1,即()72113114--=, 即前15项的数字之和为114,故选B .9.已知数列{}n a 的前n 项和为n S ,满足2=31n n S a -,则通项公式n a 等于( )A .12n n a -=B .2nn a =C .13-=n n aD .3nn a =【答案】C【解析】当1n =时,11231S a =-,11a ∴=, 当2n ≥且n ∈*N 时,11231n n S a --=-,则111222313133n n n n n n n S S a a a a a ----==--+=-,即13n n a a -=,∴数列{}n a 是以1为首项,3为公比的等比数列13n n a -∴=,本题正确选项C .10.已知数列满足,且,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当时,,排除A ; 当时,,B 符合题意; 当时,,排除C ; 当时,,排除D ,故选B .11.已知数列:11212312342334445555++++++⋯,,,,,那么数列{}11n n n b a a +⎧⎫=⎨⎬⎩⎭前项和为( ) A .111n -+ B .1411n ⎛⎫⨯-⎪+⎝⎭C .11421n ⎛⎫⨯-⎪+⎝⎭D .1121n -+【答案】B【解析】由题意可知:()1122112n n n n n a n n +++⋅⋅⋅+===++,()111411411122n n n b n n a a n n n n +⎛⎫∴====⨯- ⎪+++⎝⎭⋅, 1111111141412233411n S n n n ⎛⎫⎛⎫∴=⨯-+-+-+⋅⋅⋅+-=⨯- ⎪ ⎪++⎝⎭⎝⎭,本题正确选项B .12.已知数列{}n a 满足递推关系:11n n n a a a +=+,112a =,则2017a =( ) A .12016B .12017 C .12018D .12019【答案】C 【解析】∵11n n n a a a +=+,112a =,∴1111n n a a +-=. ∴数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,首项为2,公差为1.∴20171220162018a =+=,则201712018a =.故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.已知等比数列{}n a 满足112a =,且2434(1)a a a =-,则5a =_______. 【答案】8【解析】∵2434(1)a a a =-,∴2334(1)a a =-,则32a =, ∴223512812a a a ===,故答案为8.14.若三数成等比数列,其积为8,首末两数之和为4,则公比q 的值为_______. 【答案】1【解析】三数成等比数列,设公比为q ,可设三数为a q ,a ,aq ,可得384a a aq q⎧=⎪⎨+=⎪⎩, 求出21a q =⎧⎨=⎩,公比q 的值为1.15.在数列{}n a 中,11a =,133nn na a a +=+()n ∈*N 猜想数列的通项公式为________. 【答案】32n + 【解析】由133n n n a a a +=+,11a =,可得1213334a a a ==+,2323335a a a ==+,3433336a a a ==+,……,∴猜想数列的通项公式为32n a n =+,本题正确结果32n +. 16.已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a,使得1a =,则91m n+的最小值为__________. 【答案】2 【解析】正项等比数列{}n a 满足5432a a a +=,432111=+2a q a q a q ∴,整理得210+2q q -=,又0q >,解得12q =, 存在两项m a ,n a使得1a =,2221164m n a q a +-∴=,整理得8m n +=,91191191()10102888m n m n m n m n n m ⎛⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,则91m n+的最小值为2,当且仅当9m nn m =取等号,但此时m ,n ∉*N .又8m n +=,所以只有当6m =,2n =时,取得最小值是2. 故答案为2.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知等差数列{}n a 的公差不为0,13a =,且247,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求2462n a a a a ++++.【答案】(1)2n a n =+;(2)23n n +. 【解析】(1)24,,a a 7a 成等比数列,2427a a a ∴=,即2111(3)()(6)a d a d a d +=++,化简得1(3)0a d d -=,∵公差0d ≠,13a d ∴=,13a =,1d ∴=,1(1)2n a a n d n ∴=+-=+.(2)由(1)知222n a n =+,故2{}n a 是首项为4、公差为2的等差数列, 所以2222462()(422)322n n n a a n n a a a a n n +++++++===+.18.(12分)已知公差不为零的等差数列{}n a 满足535S =,且2a ,7a ,22a 成等比数列. (1)求数列{}n a 的通项公式; (2)若()()413n n n b a a =-+,且数列{}n b 的前n 项和为n T ,求证:34n T <. 【答案】(1)21n a n =+;(2)见详解.【解析】(1)设等差数列{}n a 的公差为d (0d ≠),由题意得52722235S a a a =⎧⎨=⎩,则()()12111545352(6)21a d a d a d a d ⨯⎧+=⎪⎨⎪+=++⎩,化简得112723a d a d +=⎧⎨=⎩,解得132a d =⎧⎨=⎩,所以()32121n a n n =+-=+.(2)证明:()()()()44111113224222n n n b a a n n n n n n ⎛⎫====- ⎪-++++⎝⎭,所以111111111112132435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭1111311131221242124n n n n ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭.19.(12分)已知数列{}n a 的前n 项和为n S 且21()n n S a n =-∈*N .(1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n T .【答案】(1)12n n a -=;(2)221n n n T n =⋅-+.【解析】(1)因为21n n S a =-,当2n ≥时,1121n n S a --=-, 两式相减可得1122n n n n S S a a ---=-,即122n n n a a a -=-, 整理可得12n n a a -=,11121a S a ==-,解得11a =,所以数列{}n a 为首项为1,公比为2的等比数列,12n na -∴=.(2)由题意可得:0112222nn T n =⨯+⨯+⋅⋅⋅+⋅, 所以12121222(1)22n nn T n n -=⨯+⨯+⋅⋅⋅+-+⋅,两式相减可得1211212222221212nn nn n n n T n n n ---=+++⋅⋅⋅+-⋅=-⋅=--⋅-,∴221n nn T n =⋅-+.20.(12分)已知数列{}n a 满足11a =,121n n a a +=+,n ∈*N . (1)求证数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)设()221log 1n n b a +=+,数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T ,求证:11156n T ≤<. 【答案】(1)证明见解析,()21nn a n =-∈*N;(2)见解析. 【解析】(1)由121n n a a +=+,得()1121n n a a ++=+,即1121n n a a ++=+,且112a +=, ∴数列{}1n a +是以2为首项,2为公比的等比数列,11222n n n a -∴+=⨯=,∴数列{}n a 的通项公式为()21n n a n =-∈*N .(2)由(1)得:()()212212log 1log 21121n n n b a n ++=+=-+=+,()()111111212322123n n b b n n n n +⎛⎫∴==- ⎪++++⎝⎭, ()111111123557212311646n n n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ∴=-⎪⎢⎥++⎝∈+⎭⎝⎭⎝⎭⎣⎦*N , 又1104610n <≤+,1101046n ∴-≤-<+,1111156466n ∴≤-<+,即11156n T ≤<. 21.(12分)已知等差数列的前项和为,且是与的等差中项.(1)求的通项公式;(2)设数列满足sin2πn n n a b a =,求的前项和.【答案】(1);(2)()()()2,21123 ,2123n n n k k T n n k k -+=-=⎧⎪=⎨==⎪⎩,,,,,,.【解析】(1)由条件,得()3715724a a S S ⎧=+=+⎪⎨⎪⎩,即112724a d a d +==+⎧⎨⎩,132a d ==⎧⎨⎩,所以{a n }的通项公式是.(2)由(1)知,()()21πsin sin πcos π22πn nn n n b a an a n +⎛⎫==+= ⎪⎝⎭,(1)当21n k =-(k =1,2,3,…)即n 为奇数时,n n b a =-,11n n b a ++=,()123111222n n n n T a a a a a a n --=-+-++-=-+-=--; (2)当2n k =(k =1,2,3,…):即n 为偶数时,n n b a =,11n n b a --=-,123122n n n nT a a a a a n -=-+-+⋯-+=⋅=,综上所述,()()()2,21123 ,2123n n n k k T n n k k -+=-=⎧⎪=⎨==⎪⎩,,,,,,.22.(12分)设正项数列的前n 项和为,已知.(1)求证:数列是等差数列,并求其通项公式;(2)设数列的前n 项和为,且14n n n b a a +=⋅,若对任意都成立,求实数的取值范围.【答案】(1)见证明,;(2). 【解析】(1)证明:∵,且,当时,,解得. 当时,有,即,即. 于是,即.∵,∴为常数,∴数列是为首项,为公差的等差数列,∴.(2)由(1)可得()11111n b n n n n ==-++,∴11111111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, ,即()121nn n n λ<+-⋅+对任意都成立()()()()min1121n n n n n n λ⎡⎤++-⋅+⇔<∈⎢⎥⎢⎥⎣⎦*N ,①当为偶数时,()()21n n nλ++<恒成立,令()()()2123n n f n n nn++==++,11()()()()12101n n f n f n n n +-+-=>+,在上为增函数,; ②当为奇数时,()()21n n n λ-+<恒成立,又()()2121n n n n n-+=--,()2f n n n =-易知:在为增函数,, ∴由①②可知:, 综上所述的取值范围为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021胡文老师学年高三第一轮复习单元检测卷3函数的性质一、填空题:1.函数y __________2.函数(f x 满足)()213f x f x ⋅+=,若()12f =,则()99f =_____3.若函数f(x)=x 3(x ∈R),则函数y=f(-x)在其定义域上是______ A .单调递减的偶函数 B.单调递减的奇函数 C .单调递增的偶函数 D .单调递增的奇函数4.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =___.5.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=__________ 6.已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为________7.已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则,f (6)的值为_______8.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f , 则使得0)(<x f 的x 的取值范围是__________9.)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f ,则方程)(x f =0 在区间(0,6)内解的个数的最小值是 ____________ 10.函数111--=x y 的图象是_____________11.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是_______________12.设集合A 和B 都是坐标平面上的点集(){}R y R x y x ∈∈,|,,映射B A f →:把集合A 中的元素()y x ,映射成集合B 中的元素()y x y x -+ ,,则在映射f 下,象()1,2的原象是__________13.设函数(1)()()x x a f x x ++=为奇函数,则a =.14.函数xx x f -++=211)(的定义域为.15.已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=,则 当sA .sssB .C .D .),0(∞+∈x 时,=)(x f16.函数)R x (1x x y 22∈+=的值域是____________. 17.定义在R 上的函数f(x )满足f(x)=⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为_____18.已知函数()f x ,()g x 分别由下表给出则三、解答题:(每小题满分分别为15分,计60分)19.已知定义域为R 的函数12()2x x bf x a +-+=+是奇函数。

(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;20.已知函数0()(2≠+=x xa x x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.21.已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[-1,1]上有零点,求a 的取值范围.22.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。

(Ⅰ)写出图一表示的市场售价与时间的函数关系式)(t f p =; 写出图二表示的种植成本与时间的函数关系式)(t g Q =;(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)3.函数的性质 一.填空题:13.-1; 14.[)()+∞⋃-,22,1; 15.4x x --; 16. [)1,0; 17.(1,4); 18.1,2; 三、解答题:19.解:(Ⅰ)因为()f x 是奇函数,所以(0)f =0,即111201()22xx b b f x a a +--=⇒=∴=++ 又由f (1)= -f (-1)知11122 2.41a a a --=-⇒=++(Ⅱ)解法一:由(Ⅰ)知11211()22221x x xf x +-==-+++,易知()f x 在(,)-∞+∞上 为减函数。

又因()f x 是奇函数,从而不等式: 22(2)(2)0f t t f t k -+-<等价于222(2)(2)(2)f t t f t k f k t -<--=-,因()f x 为减函数,由上式推得:2222t t k t ->-.即对一切t R ∈有:2320t t k -->,从而判别式14120.3k k ∆=+<⇒<-解法二:由(Ⅰ)知112()22xx f x +-=+.又由题设条件得:2222222121121202222t t t k t t t k ---+-+--=<++, 即:2222212212(22)(12)(22)(12)0t k t tt t t k-+--+-+-++-<,整理得 23221,t t k-->因底数2>1,故:2320t t k -->上式对一切t R ∈均成立,从而判别式14120.3k k ∆=+<⇒<-20. 解:(1)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)(1)f f f f ∴-≠--≠,,∴函数)(x f 既不是奇函数,也不是偶函数.(2)解法一:设122x x <≤,22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立.121204x x x x -<>,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x .a ∴的取值范围是(16]-∞,. 解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数x a 在[2)+∞,为增函数,xa x x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.21.解:当a=0时,函数为f (x)=2x -3,其零点x=23不在区间[-1,1]上。

当a ≠0时,函数f (x) 在区间[-1,1]分为两种情况:①函数在区间[─1,1]上只有一个零点,此时0)1(f )1(f <-或⎩⎨⎧<=-0)1(af 0)1(f 或⎩⎨⎧<-=0)1(af 0)1(f 或⎪⎩⎪⎨⎧≤-≤-=---=∆12a 110)a 3(8a 4 解得1≤a <5或a=273+-②函数在区间[─1,1]上有两个零点,此时⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-<-<->++=∆)1(af 0)1(af 12a 110424a 8a 2解得a ≥5或a<273+- 综上所述,如果函数在区间[─1,1]上有零点,那么实数a 的取值范围为(-∞,273+-]∪[1, +∞) (别解:222230(21)32ax x a x a x +--=⇔-=-,题意转化为知[1,1]x ∈-求23221x a x -=-的值域, 令32[1,5]t x =-∈得276a t t=+-,[]5,1t ∈,转化为求该函数的值域问题.22. 解:(I )由图一可得市场售价与时间的函数关系为由图二可得种植成本与时间的函数关系为(II )设t 时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t),即当0≤t ≤200时,配方整理得所以,当t=50时,h(t)取得区间[0,200]上的最大值100; 当200<t ≤300时,配方整理得所以,当t=300时,h(t)取得区间[200,300]上的最大值87.5。

综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大。

相关文档
最新文档