【高考数学导学案】第七章 立体几何 45分钟阶段测试(九)
高考数学一轮复习第七章 立体几何答案

第七章 立体几何第33讲 空间几何体的表面积与体积链教材·夯基固本 激活思维 1.B【解析】设圆柱的直径为2R ,则高为2R ,由题意得4R 2=8,所以R =2,则圆柱表面积为π×(2)2×2+2×2π×22=12π.故选B. 2.B【解析】设底面半径为r cm ,因为S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,所以r 2=4,所以r =2.3. A 【解析】 底面边长为2,高为1的正三棱柱的体积是V =Sh =12×2×2sin60°×1=3.4. C 【解析】 由题意,正方体的对角线就是球的直径,所以2R =3×23=6,所以R =3,S =4πR 2=36π.5.C【解析】设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为h ′,则依题意有⎩⎪⎨⎪⎧h2=12ah ′,h2=h ′2-⎝ ⎛⎭⎪⎪⎫a 22,因此有h ′2-⎝ ⎛⎭⎪⎪⎫a 22=12ah ′,4⎝ ⎛⎭⎪⎪⎫h ′a 2-2⎝ ⎛⎭⎪⎪⎫h ′a -1=0,解得h ′a =5+14(负值舍去).知识聚焦1. (1) 平行且相等 全等 多边形 公共点 平行于底面 相似 (2) 任一边任一直角边 垂直于底边的腰 直径2. 2πrl πrl π(r 1+r 2)l3. Sh 4πR 2研题型·融会贯通 分类解析【答案】 C【解析】 对于A ,通过圆台侧面上一点只能做出1条母线,故A 错误;对于B ,直角三角形绕其直角边所在直线旋转一周得到的几何体是圆锥,绕其斜边旋转一周,得到的是两个圆锥的组合体,故B 错误;对于C ,由圆柱的定义得圆柱的上底面、下底面互相平行,故C 正确; 对于D ,五棱锥有十条棱,故D 错误.(1) 【答案】 D 【解析】因为在梯形ABCD 中,∠ABC =π2,AD∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC =2的圆柱减去一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥的组合体,所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.(2) 【答案】 B【解析】 由题知三棱锥P -ABC 的四个顶点都在球O 上, 故该球为三棱锥P -ABC 的外接球. 在△ABC 中,BC =3,∠BAC =60°, 根据三角形的外接圆半径公式r =a2sin A ,可得△ABC 的外接圆半径r =12·332=3,设点P 在平面ABC 内的射影为D ,则AD =r =3.又球心O 在PD 上,在Rt△PAD 中,PA 2=PD 2+AD 2,则PD =3.设三棱锥P -ABC 外接球半径为R ,如图,在Rt △ODA 中,OA 2=OD 2+AD 2,即(3-R )2+(3)2=R 2,解得R =2.根据球体的表面积公式S =4πR 2,可得球O 的表面积为S =4π×22=16π.(例2(2))(1) 【答案】 12【解析】设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×3×h =23,所以h =1,所以斜高h ′=12+(3)2=2, 所以S 侧=6×12×2×2=12.(2) 【答案】 C 【解析】 如图所示,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,设球O 的半径为R ,此时V O -ABC =V C -AOB =13×12×R 2×R =16R 3=36,故R =6,则球O 的表面积为4πR 2=144π.(变式)【答案】 43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.(1) 【答案】 C 【解析】过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.(变式(1))(2) 【答案】 61π 【解析】由圆台的下底面半径为5,知下底面在外接球的大圆上,如图所示,设球的球心为O ,圆台上底面的圆心为O ′,则圆台的高OO ′=OQ2-O ′Q2=52-42=3,所以圆台的体积V =13π×3×(52+5×4+42)=61π.(变式(2))【答案】 C【解析】 因为正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4,“牟合方盖”的体积为18,所以正方体的内切球的体积V 球=π4×18=92π,设正方体内切球半径为r ,则43πr 3=92π, 解得r =32,所以正方体的棱长为2r =3.【答案】 C【解析】 如图所示,过球心O 作平面ABC 的垂线, 则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎪⎫522+62=132.(变式)课堂评价 1.3π【解析】 设圆锥的底面半径为r ,母线为l ,高为h ,则由题意可得l =2r .因为S 侧=πrl =2πr 2=6π,所以r =3,l =23,则h =l2-r2=12-3=3,所以圆锥的体积为V =13πr 2h =13π×3×3=3π.2.29π【解析】根据题意可知三棱锥P -ABC 可看作长方体的一个角,如图,该长方体的外接球就是经过P ,A ,B ,C 四点的球.因为PA =2 m ,PB =3 m ,PC =4 m ,所以长方体的体对角线的长为PA2+PB2+PC2=29 m ,即外接球的直径2R =29m ,可得R =292m ,因此外接球的表面积为S =4πR 2=4π×⎝ ⎛⎭⎪⎪⎫2922=29π(m 2).(第2题)(第3题)3.3【解析】如图,将直三棱柱ABC-A1B1C1沿BB1展开,则AM+MC1最小等价于在矩形ACC1A1中求AM+MC1的最小值.当A,M,C1三点共线时,AM+MC1最小.又AB=1,BC=2,AB∶BC=1∶2,所以AM=2,MC1=22.又在原三棱柱中,AC1=9+5=14,所以cos∠AMC1=AM2+C1M2-AC212AM·C1M=2+8-142×2×22=-12,故sin∠AMC1=32,△AMC1的面积为S=12×2×22×32=3.4. 10 【解析】因为长方体ABCD-A1B1C1D1的体积为120,所以AB·BC·CC1=120,因为E为CC1的中点,所以CE=12CC1,由长方体的性质知CC1⊥底面ABCD,所以CE是三棱锥E-BCD的底面BCD上的高,所以三棱锥E-BCD的体积V=13·12AB·BC·CE=13·12AB·BC·12CC1=112×120=10.第34讲空间点、线、面之间的位置关系链教材·夯基固本激活思维1. C 【解析】点A在平面α外,故A∉α;直线l在平面α内,故l⊂α.2. C 【解析】此时三个平面两两相交,且有三条平行的交线.3. C 【解析】根据平面的特征,绝对的平,无限延展,不计大小和厚薄,即可知,①对,②错;再根据点线面的关系可知,③④正确.4. C 【解析】如图,因为M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,所以M,N分别是A1 C1,BC1的中点,所以直线MN与直线A1B平行,所以A错误;因为直线MN经过平面BB1D1D内一点M,且点M不在直线DD1上,所以直线MN与直线DD1是异面直线,所以B错误;因为直线MN经过平面ABC1内一点N,且点N不在直线AC1上,所以直线MN与直线AC1是异面直线,所以C正确;因为直线MN经过平面A1CC1内一点M,且点M不在直线A1C上,所以直线MN与直线A1C是异面直线,所以D错误.(第4题)5. C 【解析】连接BD,BC1,因为AB=D1C1,AB∥D1C1,所以四边形ABC1D1为平行四边形,所以AD1∥BC1,所以∠BC1D为异面直线AD1与DC1所成的角.在正方体ABCD-A1B1C1D1中,BD=BC1=DC1,所以△BC1D为等边三角形,所以∠BC1D=60°,所以异面直线AD1与DC1所成的角的大小为60°.知识聚焦1. 两点所有的点经过这个公共点的一条直线有且只有一个平面2. 在同一平面内异面直线3. (1) 平行(2) 平行相同4. (3) 互相垂直研题型·融会贯通分类解析【解答】 (1) 因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1中,B1D1∥BD,所以EF∥BD,所以EF,BD确定一个平面,即D,B,F,E四点共面.(2) 在正方体AC1中,设A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β,则Q是α与β的公共点,所以α∩β=PQ.又A1C∩β=R,所以R∈A1C.所以R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.【解答】(1) 因为PQ⊂平面PQR,M∈直线PQ,所以M∈平面PQR.因为RQ ⊂平面PQR,N∈直线RQ,所以N∈平面PQR,所以直线MN⊂平面PQR.(2) 因为M∈直线CB,CB⊂平面BCD,所以M∈平面BCD.由(1)知M∈平面PQR,所以M在平面PQR与平面BCD的交线上,同理,可知N,K也在平面PQR与平面BCD的交线上,所以M,N,K三点共线,所以点K在直线MN上.【解答】(1) 不是异面直线,理由:连接MN,A1C1,AC,如图,因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A綊D1D,D1D綊C1C,所以A1A綊C1C,所以四边形A1ACC1为平行四边形,所以A1C1∥AC,故MN∥A1C1∥AC,所以A,M,N,C在同一个平面内,故AM和CN不是异面直线.(例2)(2)是异面直线,证明如下:显然D1B与CC1不平行,假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1,所以BC⊂平面CC1D1,这显然是不正确的,所以假设不成立,故D1B与CC1是异面直线.【解答】 (1) 由题意易知PQ∥DE,MN∥DE,所以PQ∥MN,所以M,N,P,Q四点共面.(2) 由条件知AD=1,DC=1,BC=2,(例3)如图,延长ED至R,使DR=ED,则ER=BC,ER∥BC,故四边形ERCB为平行四边形,所以RC∥EB,又AC∥QM.所以∠ACR为异面直线BE与QM所成的角(或补角).因为DA=DC=DR,且三线两两互相垂直,由勾股定理得AC=AR=RC=2.因为△ACR为正三角形,所以∠ACR=60°.所以异面直线BE 与MQ 所成的角为60°. 【题组强化】 1. C【解析】 如图,取CD 的中点M ,CF 的中点N ,连接MN ,则MN ∥DF .延长BC 到点P ,使CP =12BC ,连接MP ,NP ,则MP ∥AC .(第1题)令AB =2,则MP =MN =2,又△BCF 是等边三角形,NC =PC =1,在△NCP 中,由余弦定理可得NP 2=CP 2+CN 2-2·CP ·CN ·cos ∠PCN =1+1-2×1×1×⎝ ⎛⎭⎪⎪⎫-12=3,所以NP =3,又异面直线AC 和DF 所成角为∠NMP ,在△NMP 中,由余弦定理得cos ∠NMP =2+2-32×2×2=14.2. D 【解析】 如图,取CD 的中点G ,连接EG ,FG ,则FG ∥BC ,EG ∥AD ,则∠EGF 为异面直线AD 与BC 所成的角(或补角),因为FG =12BC =2,EG =12AD =3,所以由余弦定理得cos ∠EGF =4+9-22×2×3=1112,故异面直线AD 与BC 所成角的余弦值为1112.(第2题)3.C【解析】如图,设AC ∩BD =O ,连接OE ,易知OE 是△SAC 的中位线,故EO∥SA ,则∠BEO 为异面直线BE 与SA 所成的角.设SA =AB =2a ,则OE =12SA =a ,BE =32SA =3a ,OB =22SA =2a ,在△EOB 中,由余弦定理可得cos ∠BEO =a2+3a2-2a223a2=33.(第3题)4. 2 【解析】 如图,设AB 的中点为E ,连接EN ,则EN ∥AC 且EN =12AC ,所以∠MNE 或其补角即为异面直线MN 与AC 所成的角.连接ME ,在Rt △MEN 中,tan ∠MNE =MENE=2.所以异面直线MN 与AC 所成角的正切值为2.(第4题)【答案】 A 【解析】如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin60°=334.故选A.(例4)【答案】 26【解析】由题知,过BD1的截面可能是矩形,可能是平行四边形.(1) 当截面为矩形,即截面为ABC1D1,A1BCD1,BB1D1D时,由正方体的对称性可知S矩形ABC1D1=S矩形A1BCD1=S矩形BB1D1D=42.(2) 当截面为平行四边形时,如图所示,过点E作EM⊥BD1于M,S▱BED1F=BD1·EM,又因为BD1=23,所以S▱BED1F=EM·23,过点M作MN∥D1D交BD于N,连接AN,当AN⊥BD时,AN最小,此时,EM的值最小,且EM=2,故四边形BED1F面积的最小值为S▱BED1F=2×23=26,又因为42>26,所以过BD1的截面面积S的最小值为26.(变式)课堂评价1. D 【解析】因为一条直线与两条异面直线中的一条平行,所以它与另一条异面直线可能异面也可能相交.2. B 【解析】当两个平面相互平行时,把空间分成3部分.当两个平面相交时,把空间分成4部分.所以不重合的两个平面可以把空间分成3或4部分.3. BD 【解析】对于A,两两相交的三条直线,若相交于同一点,则不一定共面,故A不正确;对于B,平行四边形两组对边分别平行,则平行四边形是平面图形,故B正确;对于C,若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故C不正确;对于D,由公理可得,若A∈α,A∈β,α∩β=l,则A∈l,故D正确.4. ABC 【解析】如图,过点A作AM⊥BF于点M,过点C作CN⊥DE于点N.在翻折过程中,AF是以F为顶点,AM为底面半径的圆锥的母线,同理AB,E C,DC边均可看作圆锥的母线.对于A,点A和点C的轨迹为圆周,所在平面平行,显然无公共点,故A正确;对于B,AF,EC分别可看成圆锥的母线,只需看以F为顶点、AM为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B正确;对于C,同理B,故C正确;对于D,能否使直线AB与CD所成的角为90°,只需看以B为顶点、AM为底面半径的圆锥轴截面的顶角是否大于等于90°即可,可知D不成立.故选ABC.(第4题)5. 【解答】(1) 因为DD1⊥平面ABCD,所以斜线BD1在平面ABCD内的射影是BD.又直线BD1和直线AC不同在任何一个平面内,所以直线BD1和直线AC是异面直线.(2) 连接BD.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.又因为AC⊥BD,BD∩DD1=D,所以AC⊥平面BDD1.因为BD1⊂平面BDD1,所以AC⊥BD1,故直线BD1和直线AC所成的角是90°.第35讲直线、平面平行的判定与性质链教材·夯基固本激活思维1. D 【解析】与一个平面平行的两条直线可以平行,相交,也可以异面.2. D 【解析】依题意,直线a必与平面α内的某直线平行,又a∥b,因此直线b与平面α的位置关系是平行或直线b在平面α内.3. BD 【解析】因为直线a∥平面α,直线a与平面α无公共点,所以直线a和平面α内的任意一条直线都不相交,与无数条直线平行.4. 平面ABCDEF、平面CC1D1D【解析】在正六棱柱中,易知A1F1∥AF,AF⊂平面ABCDEF,且A1F1⊄平面ABCDEF,所以A1F1∥平面ABCDEF.同理,A1F1∥C1D1,C1D1⊂平面CC1D1D,且A1F1⊄平面CC1D1D,所以A1F1∥平面CC1D1D.其他各面与A1F1均不满足直线与平面平行的条件.5. ①③【解析】直线l在平面α外⇔l∥α或直线l与平面α仅有一个交点.知识聚焦1. 直线a与平面α平行直线a与平面α相交直线a在平面α内研题型·融会贯通分类解析【答案】 D【解析】对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,故a∥β,故D是真命题.【答案】 C【解析】对于A,两条直线可能平行也可能异面或相交;对于B,如图,在正方体ABCD-A1B1CD1中,平面ABB1A1和平面BCC1B1与B1D1所成的角相等,但这两个平面垂直;对于D,1两平面也可能相交.C正确.(变式)【解答】因为在直三棱柱ABC-A1B1C1中,点D,E分别是边BC,B1C1的中点,所以EC1綊BD,所以四边形BDC1E是平行四边形,所以BE∥C1D.因为BE⊄平面AC1D,C1D⊂平面AC1D,所以BE∥平面AC1D.【解答】如图,连接BD,令AC∩BD=O,连接EO.因为在△BPD中,BO=OD,PE=ED,所以OE∥BP.又因为BP⊄平面ACE,OE⊂平面ACE,所以BP∥平面ACE.(变式)【解答】 因为BC ∥平面GEFH ,BC ⊂平面ABCD ,平面GEFH ∩平面ABCD =EF ,所以BC ∥EF .同理可得,BC ∥GH ,所以GH ∥EF .【解答】 因为AB ∥平面MNPQ ,平面ABC ∩平面MNPQ =MN ,且 AB ⊂平面ABC ,所以由线面平行的性质定理,知 AB ∥MN .同理可得PQ ∥AB ,故MN ∥PQ .同理可得MQ ∥NP ,所以截面四边形 MNPQ 为平行四边形.【解答】 (1) 在正方形AA 1B 1B 中,因为AE =B 1G =1,所以BG =A 1E =2,所以BG 綊A 1E ,所以四边形A 1GBE 是平行四边形,所以A 1G ∥BE .又C 1F 綊B 1G ,所以四边形C 1FGB 1是平行四边形,所以FG 綊C 1B 1綊D 1A 1,所以四边形A 1GFD 1是平行四边形,所以A 1G 綊D 1F ,所以D 1F 綊EB ,故E ,B ,F ,D 1四点共面.(2) 因为H 是B 1C 1的中点,所以B 1H =32. 又B 1G =1,所以B1G B1H =23. 又FC BC =23,且∠FCB =∠GB 1H =90°,所以△B 1HG ∽△CBF , 所以∠B 1GH =∠CFB =∠FBG ,所以HG ∥FB .因为GH ⊄平面FBED 1,FB ⊂平面FBED 1,所以GH ∥平面BED 1F .由(1)知A 1G ∥BE ,A 1G ⊄平面FBED 1,BE ⊂平面FBED 1,所以A 1G ∥平面BED 1F .又HG ∩A 1G =G ,所以平面A 1GH ∥平面BED 1F .【解答】 因为PM ∶MA =BN ∶ND =PQ ∶QD ,所以MQ ∥AD ,NQ ∥BP .又BP ⊂平面PBC ,NQ ⊄平面PBC ,所以NQ∥平面PBC.又因为四边形ABCD为平行四边形,所以BC∥AD,所以MQ∥BC.又BC⊂平面PBC,MQ⊄平面PBC,所以MQ∥平面PBC.又MQ∩NQ=Q,所以平面MNQ∥平面PBC.课堂评价1. D2. A3. B 【解析】因为平面SBC∩平面ABC=BC,EF⊂平面SBC,又EF∥平面ABC,所以EF∥BC.4. ABC 【解析】由题意知,OM是△BPD的中位线,所以OM∥PD,故A正确;因为PD⊂平面PCD,OM⊄平面PCD,所以OM∥平面PCD,故B正确;同理可得OM∥平面PDA,故C正确;因为OM与平面PBA相交,故D不正确.第36讲直线、平面垂直的判定与性质链教材·夯基固本激活思维1. B 【解析】设a,b为异面直线,a∥平面α,b∥平面α,直线l⊥a,l⊥b.过a作平面β∩平面α=a′,则a∥a′,所以l⊥a′.同理过b作平面γ∩α=b′,则l⊥b′.因为a,b异面,所以a′与b′相交,所以l⊥α.2. A 【解析】由l⊥α且m∥α能推出m⊥l,充分性成立;若l⊥α且m⊥l,则m∥α或者m⊂α,必要性不成立,因此“m∥α”是“m⊥l”的充分不必要条件,故选A.3. A 【解析】因为DD1⊥平面ABCD,所以AC⊥DD1.又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1.因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.4. AC 【解析】由题意知PA⊥平面ABC,因为BC⊂平面ABC,所以PA⊥BC,故A正确;因为AC⊥BC,PA⊥BC,且PA∩AC=A,PA,AC⊂平面PAC,所以BC⊥平面PAC,故C正确;若AC⊥PB,因为AC⊥BC,故可得AC⊥平面PBC,则AC⊥PC,与题目矛盾,故B错误;由BC⊥平面PAC可得,BC⊥PC,则△PBC为直角三角形,若PC ⊥PB ,则BC ,PB 重合,与已知矛盾,故D 错误.5. (1) 外 (2) 垂【解析】 (1) 如图(1),连接OA ,OB ,OC ,OP ,在Rt △POA ,Rt △POB 和Rt △POC 中,PA =PC =PB ,所以OA =OB =OC ,即O 为△ABC 的外心.(2)如图(2),延长AO ,BO ,CO 分别交BC ,AC ,AB 于点H ,D ,G .因为PC ⊥PA ,PB ⊥PC ,PA ∩PB =P ,所以PC ⊥平面PAB ,又AB ⊂平面PAB ,所以PC ⊥AB ,又AB ⊥PO ,PO ∩PC =P ,所以AB ⊥平面PGC .又CG ⊂平面PGC ,所以AB ⊥CG ,即CG 为△ABC 边AB 的高.同理可证BD ,AH 为△ABC 底边上的高,即O 为△ABC 的垂心.(第5题(1))(第5题(2))知识聚焦1. (1) 任意一条直线 (2) 两条相交直线都垂直2. (1) 射影 锐角 直角 (2) ⎣⎢⎢⎡⎦⎥⎥⎤0,π2 3. (1) 两个半平面 (2) 垂直于棱 (4) 直二面角研题型·融会贯通分类解析【答案】 B【解析】 如图,连接AC 1,因为∠BAC =90°,所以AC ⊥AB ,因为BC 1⊥AC ,BC 1∩AB =B ,所以AC ⊥平面ABC 1. 又AC 在平面ABC 内,所以根据面面垂直的判定定理,知平面ABC ⊥平面ABC 1, 则根据面面垂直的性质定理知,在平面ABC 1内一点C 1向平面ABC 作垂线,垂足必落在交线AB 上.故选B.(例1)【答案】 C【解析】因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.【解答】因为AB=AC,D是BC的中点,所以AD⊥BC. 在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一:在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,即B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二:在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2=5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2=5.显然DF2+B1F2=B1D2,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.【解答】在矩形CDEF中,CD⊥DE.因为∠ADC=90°,所以CD⊥AD.因为DE∩AD=D,DE,AD⊂平面ADE,所以CD⊥平面ADE. 因为DM⊂平面ADE,所以CD⊥DM.又因为AB∥CD,所以AB⊥DM.因为AD=DE,M为AE的中点,所以AE⊥DM.又因为AB∩AE=A,AB,AE⊂平面ABE,所以MD⊥平面ABE.因为BE⊂平面ABE,所以BE⊥MD.【解答】 (1) 因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2) 因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,AB∥EF,所以AB⊥AF.又AB⊥AD,点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A.又AF,AD⊂平面PAD,所以AB⊥平面PAD.又AB⊂平面ABCD,所以平面PAD⊥平面ABCD.【解答】 (1) 因为PA=PC,O是AC的中点,所以PO⊥AC. 在Rt△PAO中,因为PA=5,OA=3,所以由勾股定理得PO=4.因为AB=BC,O是AC的中点,所以BO⊥AC.在Rt△BAO中,因为AB=5,OA=3,所以由勾股定理得BO=4.因为PO=4,BO=4,PB=42,所以PO2+BO2=PB2,所以PO⊥BO.因为BO∩AC=O,所以PO⊥平面ABC.因为PO⊂平面PAC,所以平面PAC⊥平面ABC.(2) 由(1)可知平面PAC⊥平面ABC.因为平面ABC∩平面PAC=AC,BO⊥AC,BO⊂平面ABC,所以BO⊥平面PAC,所以V POBQ=V BPOQ=13S△PQO·BO=13×12S△PAO×4=13×14×3×4×4=4.所以四面体POBQ的体积为4.【解答】(1) 因为AB⊥AD,AB⊥BC,且A,B,C,D四点共面,所以AD ∥BC.因为BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD.(2) 如图,过点D作DH⊥PA于点H,因为△PAD是锐角三角形,所以H与A不重合.因为平面PAD⊥平面PAB,平面PAD∩平面PAB=PA,DH⊂平面PAD,所以DH⊥平面PAB,因为AB⊂平面PAB,所以DH⊥AB.因为AB⊥AD,AD∩DH=D,AD,DH⊂平面PAD,所以AB⊥平面PAD.因为AB⊂平面ABCD,所以平面PAD⊥平面ABCD.(变式2)课堂评价1. ③⑤②⑤2. AC 【解析】如图,连接AC,BD相交于点O,连接EM,EN,SO.由正四棱锥的性质可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC,可得AC⊥平面SBD,利用三角形的中位线结合面面平行判定定理得平面EMN∥平面SBD,进而得到AC⊥平面EMN,故A正确;由异面直线的定义可知不可能EP∥BD;由A易得C正确;由A同理可得EM⊥平面SAC,故D错误.3. [2,3] 【解析】因为CD⊥平面B1C1CB,EF⊂平面B1C1CB,所以CD⊥EF.连接BC1,B1C,则EF∥BC1,BC1⊥B1C,所以EF⊥B1C,因为CD∩B1C=C,所以EF⊥平面A1B1CD.当点P在线段CD上时,总有A1P⊥EF,所以A1P的最大值为A1C=3,A1P的最小值为A1D=2,故线段A1P长度的取值范围是[2,3].4. 【解答】 (1) 如图,连接BD,交AC于点O,连接OF.因为四边形ABCD是矩形,O是矩形ABCD对角线的交点,所以O为BD的中点.又因为F是BE的中点,所以在△BED中,OF∥DE.因为OF⊂平面ACF,DE⊄平面ACF,所以DE∥平面ACF.(2) 因为四边形ABCD是矩形,所以AB⊥BC.又因为平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,AB⊂平面ABCD ,所以AB ⊥平面BCE .因为CF ⊂平面BCE ,所以AB ⊥CF .在△BCE 中,因为CE =CB ,F 是BE 的中点,所以CF ⊥BE .因为AB ⊂平面ABE ,BE ⊂平面ABE ,AB ∩BE =B ,所以CF ⊥平面ABE .又CF ⊂平面AFC ,所以平面AFC ⊥平面ABE .(第4题)第37讲 综合法求角与距离链教材·夯基固本激活思维1. B 【解析】 如图,取AD 的中点F ,连接EF ,CF .因为E 为AB 的中点,所以EF ∥DB ,则∠CEF 为异面直线BD 与CE 所成的角.在正四面体ABCD 中,因为E ,F 分别为AB ,AD 的中点,所以CE =CF .设正四面体的棱长为2a ,则EF =a ,CE =CF =(2a )2-a 2=3a .在△CEF 中,由余弦定理得cos ∠CEF =CE2+EF2-CF22CE ·EF =a22×3a2=36.(第1题)2. A 【解析】 如图,连接A 1C 1,则∠AC 1A 1为AC 1与平面A 1B 1C 1D 1所成的角.因为AB =BC =2,所以A 1C 1=AC =22,又AA1=1,所以AC 1=3,所以sin ∠AC 1A 1=AA1AC1=13.故选A.(第2题)3. 233【解析】设棱长为a,BC的中点为E,连接A1E,AE,在正三棱柱ABC-A1B1C1中,由各棱长都相等,可得A1E⊥BC,AE⊥BC,故二面角A1-BC-A的平面角为∠A1EA.在Rt△AA1E中,AE=32a,所以tan ∠A1EA=AA1AE=a32a=233,即二面角A1-BC-A的平面角的正切值为233.(第3题)4. 8 【解析】由体积公式V=13Sh,得96=13×36h,所以h=8,即点P到平面ABCD的距离是8.5.33【解析】由题意知点S在平面ABC内的射影为AB的中点H,所以SH⊥平面ABC.因为SH=3,CH=1,在平面SHC内作SC的垂直平分线MO,交SH于点O,则O为三棱锥S-ABC的外接球球心.因为SC=2,所以SM=1,∠OSM=30°,所以SO=233,OH=33,即为O到平面ABC的距离.知识聚焦1. 锐角2. 垂直研题型·融会贯通分类解析【答案】 D【解析】因为PA⊥底面ABC,所以PA⊥AB,PA⊥AC,即∠PAB=∠PAC=90°,又因为AB=AC=1,PA=2,所以△PAB≌△PAC,所以PB=PC.如图,取BC的中点D,连接AD,PD,所以PD⊥BC,AD⊥BC.又因为PD∩AD=D,所以点BC⊥平面PAD.因为BC⊂平面PBC,所以平面PAD⊥平面PBC.过点A作AO⊥PD于点O,易得AO⊥平面PBC,所以∠APD就是直线PA与平面PBC所成的角. 在Rt△PAD中,AD=12,PA=2,则PD=PA2+AD2=32,则sin ∠APD=ADPD=13.故选D.(例1)【答案】 A【解析】因为平面ABD⊥底面BCD,AB=AD,取DB的中点O,连接AO,CO,则AO⊥BD,AO⊥平面BCD,所以∠ACO就是直线AC与底面BCD所成的角.因为BC⊥CD,BC=6,BD=43,所以CO=23.在Rt△ADO中,OA=AD2-OD2=2.在Rt△AOC中,tan ∠ACO=AOOC=33,故直线AC与底面BCD所成角的大小为30°.故选A.(变式)【答案】1 3【解析】如图,过点S作SO⊥底面ABC,点O为垂足,连接OA,OB,OC,则OA=OB=OC,点O为等边三角形ABC 的中心.延长AO交BC于点D,连接SD.(例2)则AD⊥BC,BC⊥SD,所以∠ODS为侧面SBC与底面ABC所成二面角的平面角.因为正三棱锥S-ABC的所有棱长均为2,所以SD=3,OD=13AD=33.在Rt△SOD中,cos ∠ODS=ODSD=13.【答案】π3【解析】在△BDC中,BC=3,CD=2,∠BCD=π2,则BD=13.在△ABC中,AB=1,BC=3,∠ABC=π2,则AC=10.又AD=23,在△ABD中,BD2=AB2+AD2,则∠BAD=π2.过点B作BE∥CD,使BE=CD,连接AE,DE,则四边形BEDC为矩形,BE=2.因为BC⊥AB,BC⊥BE,则BC⊥平面ABE,DE∥BC,则DE⊥平面ABE,则DE⊥AE,AE=AD2-DE2=3,在△ABE中,AE2+AB2=BE2,则∠BAE=π2,∠AEB=π6,∠ABE=π3,由于AB⊥BC,EB⊥BC,则∠ABE为二面角A-BC-D的平面角,且∠ABE=π3.【答案】 B【解析】过点B作BE∥AC,且BE=AC.因为AC⊥AB,所以BE⊥AB.因为BD⊥AB,BD∩BE=B,所以∠DBE是二面角α-l-β的平面角,且AB⊥平面DBE,所以AB⊥DE ,所以CE ⊥DE .因为AB =4,CD =8,所以DE =CD2-CE2=82-42=43,所以cos ∠DBE =BE2+BD2-DE22BE ·BD =36+36-482×6×6=13.故选B.【解答】 (1) 如图(1),取BD 的中点O ,连接OM ,OE .(例3(1))因为O ,M 分别为BD ,BC 的中点,所以OM ∥CD ,且OM =12CD .因为四边形ABCD 为菱形,所以CD ∥AB ,又EF∥AB ,所以CD∥EF ,又AB =CD =2EF ,所以EF =12CD ,所以OM∥EF ,且OM =EF ,所以四边形OMFE 为平行四边形,所以MF ∥OE .又OE ⊂平面BDE ,MF ⊄平面BDE ,所以MF ∥平面BDE .(2) 由(1)得FM ∥平面BDE ,所以点F 到平面BDE 的距离等于点M 到平面BDE 的距离. 如图(2),取AD 的中点H ,连接EH ,BH .(例3(2))因为EA =ED ,四边形ABCD 为菱形,且∠DAB =60°,所以EH ⊥AD ,BH ⊥AD .因为平面ADE ⊥平面ABCD ,平面ADE ∩平面ABCD =AD ,EH ⊂平面ADE ,所以EH ⊥平面ABCD ,所以EH ⊥BH ,易得EH =BH =3,所以BE =6,所以S △BDE =12×6×22-⎝ ⎛⎭⎪⎪⎫622=152.设点F 到平面BDE 的距离为h ,连接DM ,则S △BDM =12S △BCD =12×34×4=32,连接EM ,由V E -BDM =V M -BDE ,得13×3×32=13×h ×152,解得h =155,即点F 到平面BDE 的距离为155.【解答】(1)如图,连接AF ,则AF =2,又DF =2,AD =2,所以DF 2+AF 2=AD 2,所以DF ⊥AF .因为PA ⊥平面ABCD ,所以DF ⊥PA ,又PA ∩AF =A ,所以DF ⊥平面PAF .又PF ⊂平面PAF ,所以DF ⊥PF .(变式)(2) 如图,连接EP ,ED ,EF .因为S △EFD =S 矩形ABCD -S △BEF -S △ADE -S △CDF =2-54=34,所以V P -EFD =13S △EFD ·PA =13×34×1=14.设点E 到平面PFD 的距离为h , 则由V E -PFD =V P -EFD ,得13S△PFD ·h =13·62·h =14,解得h =64,即点E 到平面PFD 的距离为64. 课堂评价 1.D【解析】如图,连接BC 1,A 1C 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.(第1题)由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45.2.55【解析】连接EB ,由BB 1⊥平面ABCD ,知∠FEB 即为直线EF 与平面ABCD 所成的角.在Rt △FBE 中,BF =1,BE =5,则tan ∠FEB =BFBE =55.3. 60°【解析】 如图,取AB 的中点O ,连接VO ,CO .在三棱锥V -ABC 中,VA =VB =AC =BC =2,AB=23,VC =1,所以VO⊥AB ,CO⊥AB ,所以∠VOC 是二面角V -AB -C 的平面角,VO =VA2-⎝ ⎛⎭⎪⎪⎫AB 22=4-3=1,CO =BC2-⎝ ⎛⎭⎪⎪⎫AB 22=4-3=1,所以cos ∠VOC =VO2+CO2-VC22VO ·CO=1+1-12×1×1=12,所以∠VOC =60°,所以二面角V -AB -C 的平面角的度数为60°.(第3题)4.217【解析】 如图,取AB 的中点E ,连接CE ,C 1E ,过点C 作CF ⊥C 1E ,垂足为F .在正三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,则AB ⊥CC 1. 因为△ABC 是等边三角形,所以AB ⊥CE , 又CE ∩CC 1=C ,所以AB ⊥平面CC 1E .因为CF ⊂平面CC 1E ,所以CF ⊥AB ,因为C 1E ∩AB =E ,所以CF ⊥平面ABC 1,则CF 的长即为所求. 在Rt △CEC 1中,CC 1=1,CE =32AB =32,所以C 1E =CC21+CE2=72,由等面积法,得CF =CC1×CE C1E =217.(第4题)第38讲 空间直角坐标系与空间向量链教材·夯基固本 激活思维 1.D【解析】因为向量OA→,OB →,OC →不能构成空间的一个基底,所以向量OA→,OB→,OC→共面,因此O ,A ,B ,C 四点共面,故选D.2. C 【解析】 AE →=AA 1+A 1E =AA 1+12A 1C 1=AA 1+12(AB →+AD →),故x =12,y =12.3. 2 【解析】 |EF→|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,所以|EF→|=2,所以EF 的长为2.4. 18 【解析】 因为P ,A ,B ,C 四点共面,所以34+18+t =1,所以t =18. 5. α⊥β α∥β 【解析】 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v =(4,-4,-10)时,v =-2u ⇒α∥β.知识聚焦2. (1) ①〈a ,b 〉 [0,π] 互相垂直 ②|a ||b |cos 〈a ,b 〉 a·b |a ||b |cos 〈a ,b 〉 (2) λ(a ·b ) b ·a3. a 1b 1+a 2b 2+a 3b 3 a 1=λb 1,a 2=λb 2,a 3=λb 3 a 1b 1+a 2b 2+a 3b 3=0研题型·融会贯通 分类解析【解答】 ①因为P 是C 1D 1的中点,所以AP→=AA1→+A1D1→+D1P →=a +AD →+12D1C1→=a +c +12AB →=a +12b +c . ②因为N 是BC 的中点,所以A1N →=A1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .③因为M 是AA 1的中点,所以MP →=MA →+AP →=12A1A →+AP →=-12a +⎝ ⎛⎭⎪⎪⎫a +12b +c =12a +12b +c . 又NC1→=NC →+CC1→=12BC →+AA1→=12AD →+AA1→=a +12c ,所以MP →+NC1→=⎝ ⎛⎭⎪⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎪⎫a +12c =32a +12b +32c . (1) 【答案】 -3 【解析】因为AB→=(3,-1,1),AC →=(m +1,n -2,-2),且A ,B ,C 三点共线,所以存在实数λ,使得AC→=λAB→,即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ),所以⎩⎪⎨⎪⎧m +1=3λ,n -2=-λ,-2=λ,解得⎩⎪⎨⎪⎧λ=-2,m =-7,n =4.所以m +n =-3.(2) 【解答】 ①由题知OA→+OB →+OC →=3OM →,所以OA →-OM →=(OM →-OB→)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,所以MA →,MB →,MC →共面. ②由①知MA→,MB→,MC→共面且过同一点M ,所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内.【解答】 因为AM→=k AC1→,BN →=k BC →,所以MN →=MA →+AB →+BN →=k C1A →+AB→+k BC →=k (C1A →+BC →)+AB →=k (C1A →+B1C1→)+AB →=k B1A →+AB →=AB →-k AB1→=AB →-k (AA1→+AB →)=(1-k )AB →-k AA1→,所以由共面向量定理知向量MN →与向量AB →,AA1→共面.【解答】 (1) 设AB→=a ,AC →=b ,AD →=c ,由题意知EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a ·b +a ·c -a 2)=12⎝ ⎛⎭⎪⎪⎫1×1×12+1×1×12-1=0. 故EG→⊥AB →,即EG ⊥AB . (2) 由题意知EG →=-12a +12b +12c ,得|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.(3) 因为AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,所以cos 〈AG→,CE →〉=AG →·CE →|AG→||CE →|=⎝ ⎛⎭⎪⎪⎫12b +12c ·⎝ ⎛⎭⎪⎪⎫-b +12a ⎝ ⎛⎭⎪⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝ ⎛⎦⎥⎥⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.。
2022版高考数学一轮复习 考案7 第七章 立体几何(含解析)新人教版

第七章立体几何(时间 : 120分钟总分值150分)一、单项选择题(本大题共8个小题 , 每道题5分 , 共40分 , 在每道题给出的四个选项中只有一个是符合题目要求的)1.(2021·河北省衡水中学调研)以下命题正确的个数为(C)①梯形一定是平面图形 ;②假设两条直线和第三条直线所成的角相等 , 那么这两条直线平行 ;③两两相交的三条直线最多可以确定三个平面 ;④如果两个平面有三个公共点 , 那么这两个平面重合.A.0B.1C.2D.3[解析]①由于梯形是有一组对边平行的四边形 , 易知两平行线确定一平面 , 所以梯形可以确定一个平面 , 故①对 ; ②假设两条直线和第三条直线所成的角相等 , 比方等腰三角形ABC , AB=AC , 直线AB , AC与直线BC所成的角相等 , 而直线AB , AC不平行 , 故②错 ; ③两两相交的三条直线 , 比方墙角处的三条交线可以确定三个平面 , 故③对 ; ④如果两个平面有三个公共点 , 比方两平面相交有一条公共直线 , 如果这三个公共点不共线 , 那么这两个平面重合 , 故④错.综上 , 选C.2.(2020·山东省济南市6月模拟)如下列图 , 在圆柱O1O2内有一个球O , 该球与圆柱的上 , 下底面及母线均相切.假设O1O2=2 , 那么圆柱O1O2的外表积为(C)A.4πB.5πC.6πD.7π[解析]由题意, 可得h=2r=2 , 解得r=1 , 所以圆柱O1O2的外表积为S=πr2×2+2πr×h=6πr2=6π.应选C.3.(2021·河北省唐山市期末)一个几何体的三视图如下列图, 小正方形的边长为1 , 那么这个几何体的外表积是(D)A .11πB .9πC .7πD .5π[解析] 由三视图可得几何体为18个球体 , 球的半径为 2 , 故该几何体的外表积为18×4×π×4+3×π×44=5π , 应选D.4.(2021·山东省滨州市三模)已知m , n 为两条不同的直线 , α , β , γ为三个不同的平面 , 那么以下命题正确的选项是( B )A .假设m ∥α , n ∥α , 那么m ∥nB .假设α⊥β , γ⊥β且α∩γ=m , 那么m ⊥βC .假设m ⊂α , n ⊂α , m ∥β , n ∥β , 那么α∥βD .假设m ⊥α , n ∥β , α⊥β , 那么m ⊥n[解析] 对A : 假设m ∥α , n ∥α , 那么m ∥n , 或m 与n 是异面直线 , 或m 与n 相交 , 故A 错误 ; 对B : 假设α⊥β , γ⊥β且α∩γ=m , 不妨取交线m 上一点P , 作平面β的垂线为l , 因为l ⊥β , α⊥β , 且点P ∈α , 故l ⊂α ; 同理可得l ⊂γ , 故l 与m 是同一条直线 , 因为l ⊥β , 故m ⊥γ.故B 选项正确 ; 对C : 只有当m 与n 是相交直线时 , 假设m ⊂α , n ⊂α , m ∥β , n ∥β , 才会有α∥β.故C 错误 ; 对D : 假设m ⊥α , n ∥β , α⊥β , 那么m 与n 的关系不确定 , 故D 错误.应选 : B.5.(2021·东北三省四市教研联合体模拟)已知正方体ABCD -A 1B 1C 1D 1 , O 为底面ABCD 的中心 , M , N 分别为棱A 1D 1 , CC 1的中点.那么异面直线B 1M 与ON 所成角的余弦值为( C )A.55 B .105C .1515D .2515[解析] 以D 为原点建立如以下列图所示的空间直角坐标系 : 设正方体的棱长为2 ,所以有D (0,0,0) , O (1,1,0) , B 1(2,2,2) , M (1,0,2) , N (0 , 2,1) , 因此B 1M →=(-1 , -2,0) , ON →=(-1,1,1) , 设异面直线B 1M 与ON 所成角为α , 所以cos α=|B 1M →·ON →||B 1M →|·|ON →|=|(-1)×(-1)+(-2)×1+0×1|(-1)2+(-2)2+02·(-1)2+12+12=1515. 应选 : C.6.如下列图 , 在正方形ABCD 中 , E , F 分别是BC , CD 的中点 , G 是EF 的中点.现在沿AE , AF 及EF 把这个正方形折成一个空间图形 , 使B , C , D 点重合 , 重合后的点记为H .那么 , 在这个空间图形中必有( B )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF[解析] 根据折叠前、后AH ⊥HE , AH ⊥HF 不变 , ∴AH ⊥平面EFH , B 正确 ;∵过A 只有一条直线与平面EFH 垂直 , ∴A 不正确 ;∵AG ⊥EF , EF ⊥GH , AG ∩GH =G , AG , GH ⊂平面HAG , ∴EF ⊥平面HAG , 又EF ⊂平面AEF ,∴平面HAG ⊥平面AEF , 过点H 作直线垂直于平面AEF , 一定在平面HAG 内 , ∴C 不正确 ;由条件证不出HG ⊥平面AEF , ∴D 不正确.应选B.7.(2021·湖北武汉局部学校质检)如下列图 , 点A , B , C , M , N 为正方体的顶点或所在棱的中点 , 那么以下各图中 , 不满足直线MN ∥平面ABC 的是( D )[解析] 选项D 中 , MN ⊂平面ABC , 应选D.8.(2021·福建龙岩质检)在三棱锥A -BCD 中 , △ABC 和△BCD 都是边长为23的等边三角形 , 且平面ABC ⊥平面BCD , 那么三棱锥A -BCD 外接球的外表积为( D )A .8πB .12πC .16πD .20π[解析] 取BC 的中点E , 连接AE 与DE , 那么AE ⊥DE , 且AE =DE =23×32=3 , 在DE 上取点I 使得EI =13DE , 在AE 上取点H 使得EH =13AE , 那么点I 是三角形BCD 的外接圆圆心 , 点H 是三角形BCA 的外接圆圆心 , 那么BI =12×2332=2 , 分别过点I 、H 作平面BCD 和ABC 的垂线IO 和HO 交于O 点 , 那么点O 是三棱锥A -BCD 的外接球球心 , OI =EH =13×3=1 , BO =BI 2+OI 2=4+1= 5 , 故外接球半径为 5 , 那么三棱锥A -BCD外接球的外表积4π×5=20π.二、多项选择题(本大题共4个小题 , 每道题5分 , 共20分 , 在每道题给出的四个选项中 , 有多项符合题目要求全部选对的得5分 , 局部选对的得3分 , 有选错的得0分)9.(2021·山东济宁期末)已知m 、n 为两条不重合的直线 , α、β为两个不重合的平面 , 那么以下说法正确的选项是( BC )A .假设m ∥α , n ∥β且α∥β , 那么m ∥nB .假设m ∥n , m ⊥α , n ⊥β , 那么α∥βC .假设m ∥n , n ⊂α , α∥β , m ⊄β , 那么m ∥βD .假设m ∥n , n ⊥α , α⊥β , 那么m ∥β[解析] 在A 中的条件下 , m ∥n 或m 与n 相交或m 、n 异面 , A 错 ; 又 ⎭⎪⎬⎪⎫m ∥n m ⊥α⇒⎭⎪⎬⎪⎫n ⊥αn ⊥β⇒α∥β , B 正确 ;⎭⎬⎫n ⊂αα∥β⇒⎭⎬⎫n ∥βm ∥n m ⊄β⇒m ∥β , C 正确 ; ⎭⎪⎬⎪⎫m ∥n n ⊥α⇒⎭⎪⎬⎪⎫m ⊥αα⊥β⇒m ∥β或m ⊂β , D 错 , 应选BC. 10.(2021·山东滨州期末)已知菱形ABCD 中 , ∠BAD =60° , AC 与BD 相交于点O .将△ABD 沿BD 折起 , 使顶点A 至点M , 在折起的过程中 , 以下结论正确的选项是( ABD )A .BD ⊥CMB .存在一个位置 , 使△CDM 为等边三角形C .DM 与BC 不可能垂直D .直线DM 与平面BCD 所成的角的最大值为60°[解析] 由题意知BD ⊥OM , BD ⊥CO , ∴BD ⊥平面MOC , ∴BD ⊥CM , A 正确 ; 设菱形边长为a , 那么CM 的取值范围为(0 , 3a ) , ∴B 正确 ; 当CM =a 时 , DM ⊥BC , C 错 ; 当平面MBD ⊥平面BCD 时 , 直线DM 与平面BCD 所成角最大为60° , D 正确 , 应选ABD.11.(2021·湖南省期末改编)在三棱锥D -ABC 中 , AB =BC =CD =DA =1 , 且AB ⊥BC , CD ⊥DA , M , N 分别是棱BC , CD 的中点 , 下面结论中正确的选项是( ABD )A .AC ⊥BDB .MN ∥平面ABDC .三棱锥A -CMN 的体积的最大值为212D .AD 与BC 一定不垂直[解析] 设AC 的中点为O , 连接OB , OD (图略) , 那么AC ⊥OB , AC ⊥OD , 又OB ∩OD =O , 所以AC ⊥平面OBD , 所以AC ⊥BD , 故A 正确 ; 因为MN ∥BD , 所以MN ∥平面ABD , 故B 正确 ; 当平面DAC 与平面ABC 垂直时 , V A -CMN 最大 , 最大值为V A -CMN =V N -ACM =13×14×24=248, 故C 错误 ; 假设AD 与BC 垂直 , 又因为AB ⊥BC , 所以BC ⊥平面ABD , 所以BC ⊥BD , 又BD ⊥AC , 所以BD ⊥平面ABC , 所以BD ⊥OB , 因为OB =OD , 所以显然BD 与OB 不可能垂直 , 故D 正确.12.(2021·山东烟台期末)如下列图 , 在正方体ABCD -A 1B 1C 1D 1中 , 点P 在线段B 1C 上运动 , 那么( ABD )A .直线BD 1⊥平面A 1C 1DB .三棱锥P -A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范围是[45° , 90°] D .直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63[解析] 设正方体的棱长为1 , 如下列图建立空间直角坐标系 ,那么BD 1→=(-1 , -1,1) , A 1C 1→=(-1,1,0) ,∴BD 1→·A 1C 1→=0 , 即BD 1⊥A 1C 1 , 同理BD 1⊥DA 1 ,∴BD 1⊥平面A 1C 1D , A 正确 ; 由B 1C ∥A 1D 得B 1C ∥平面A 1DC 1 , ∴P 到平面A 1C 1D 的距离为正值 ,又S △A 1C 1D 为定值 , ∴VP -A 1C 1D 为定值 , B 正确 ;AP 与A 1D 所成的角为AP 与B 1C 所成的角 , 其取值范围为[60° , 90°] , C 错误 ; 由A 知BD 1为平面A 1C 1D 的法向量 , 记C 1P 与平面A 1C 1D 所成角为θ , P (a,1 , a ) , C 1P →=(a,0 , a -1) ,那么sin θ=|BD 1→·C 1P →||BD 1→|·|C 1P →|=13·2⎝⎛⎭⎫a -122+12≤63 ,⎝⎛⎭⎫当且仅当a =12时取等号 , D 正确 ; 应选ABD.三、填空题(本大题共4小题 , 每道题5分 , 共20分.把答案填在题中的横线上) 13.(2021·北京石景山期末)已知平面α、β、γ.给出以下三个论断 : ①α⊥β ; ②α⊥γ ; ③β∥γ.以其中的两个论断为条件 , 余下的一个论断作为结论 , 写出一个正确的命题 : 假设α⊥γ , β∥γ , 那么α⊥β(或填α⊥β , β∥γ , 那么α⊥γ) .14.(2018·江苏卷)如下列图 , 正方体的棱长为2 , 以其所有面的中心为顶点的多面体的体积为 43.[解析] 由题意知所给的几何体是棱长均为2的八面体 , 它是由两个有公共底面的正四棱锥组合而成的 , 正四棱锥的高为 1 , 所以这个八面体的体积为2V 正四棱锥=2×13×(2)2×1=43.15.如下列图 , 在直四棱柱(侧棱与底面垂直)ABCD -A 1B 1C 1D 1中 , 当底面四边形ABCD 满足条件 AC ⊥BD (或ABCD 为正方形或ABCD 为菱形等) 时 , 有AC 1⊥BD 成立(注 :填上你认为正确的一种情况即可 , 不必考虑所有可能的情况).[解析] ∵C 1C ⊥平面ABCD , ∴BD ⊥CC 1 , 又BD ⊥AC , ∴BD ⊥平面ACC 1 , ∴AC 1⊥BD . 16.(2021·山东滨州期末)在四面体S -ABC 中 , SA =SB =2 , 且SA ⊥SB , BC = 5 , AC = 3 , 那么该四面体体积的最大值为306, 该四面体外接球的外表积为 8π . [解析] ∵SA =SB =2 , SA ⊥SB , ∴AB =2 2 , 又BC = 5 , AC = 3 , ∴AB 2=BC 2+AC 2 , 即AC ⊥BC , 当平面ASB ⊥平面ABC 时V S -ABC 最大 , 此时V S -ABC =13×152×2=306.设AB 的中点为O , 那么OA =OB =OC =OS = 2 , 即四面体外接球的半径为 2 , ∴四面体外接球的外表积为S =4π(2)2=8π.四、解答题(本大题共6个小题 , 共70分 , 解答应写出文字说明、证明过程或演算步骤) 17.(本小题总分值10分) (2021·山东新高考质量测评)如下列图 , 在四棱锥M -ABCD 中 , 底面ABCD 是平行四边形 , 且AB =BC =1 , MD =1 , MD ⊥平面ABCD , H 是MB 中点 , 在下面两个条件中任选一个 , 并作答 :(1)二面角A -MD -C 的大小是2π3 ;(2)∠BAD =π2, 假设 .求CH 与平面MCD 所成角的正弦值.注 : 如果选择两个条件分别解答 , 按第一个解答计分. [解析] 假设选(1).因为MD ⊥平面ABCD , 所以AD ⊥MD , CD ⊥MD ,所以∠ADC 就是二面角A -MD -C 的平面角 , 所以∠ADC =2π3,过D 作x 轴⊥DC , 以D 为坐标原点 , 以DC , DM 所在直线为y 轴、z 轴建立如下列图的空间直角坐标系.那么C (0,1,0) , H ⎝ ⎛⎭⎪⎪⎫3414 12. 所以CH →=⎝ ⎛⎭⎪⎪⎫34-34 12.取平面MCD 的一个法向量为n =(1,0,0). 设CH 与平面MCD 所成角为θ , 那么sin θ=|CH →·n ||CH →|·|n |=34316+916+14=34. 所以CH 与平面MCD 所成角的正弦值是34. 假设选(2).因为MD ⊥平面ABCD , ∠BAD =π2 ,所以DA , DC , DM 两两垂直.以D 为坐标原点 , 以DA , DC , DM 所在直线分别为x 轴、y 轴、z 轴建立如下列图的空间直角坐标系.那么C (0,1,0) , H ⎝ ⎛⎭⎪⎪⎫1212 12. 所以CH →=⎝ ⎛⎭⎪⎪⎫12-1212.取平面MCD 的一个法向量n =(1,0,0).设CH 与平面MCD 所成角为θ , 那么sin θ=|CH →·n ||C H →|·|n |=1214+14+14=33. 所以CH 与平面MCD 所成角的正弦值是33. 18.(本小题总分值12分)(2021·山东潍坊安丘市、诸城市、高密市联考)已知正三棱柱ABC -A 1B 1C 1的边长均为2 3 , E , F 分别是线段AC 1和BB 1的中点.(1)求证 : EF ∥平面ABC ; (2)求三棱锥C -ABE 的体积.[解析] (1)证明 : 取AC 的中点为G , 连接GE , GB ,在△ACC 1中 , EG 为中位线 ,所以EG ∥CC 1 , EG =12CC 1 , 又因为CC 1∥BB 1 ,CC 1=BB 1 , F 为BB 1的中点 ,所以EG ∥BF , EG =BF ,所以四边形EFBG 为平行四边形 ,所以EF ∥GB , 又EF ⊄平面ABC , GB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为V C -ABE =V E -ABC , 因为E 为AC 1的中点 ,所以E 到底面ABC 的距离是C 1到底面ABC 的距离的一半 ,即三棱锥E -ABC 的高h =12CC 1= 3 , 又△ABC 的面积为S =34×(23)2=3 3 , 所以V C -ABE =V E -ABC =13Sh =13×33×3=3. 19.(本小题总分值12分)(2021·河南许昌、洛阳质检)已知平面多边形P ABCD 中 , P A =PD , AD =2DC =2BC =4 , AD ∥BC , AP ⊥PD , AD ⊥DC , E 为PD 的中点 , 现将△APD 沿AD 折起 , 使PC =2 2.(1)证明 : CE ∥平面ABP ;(2)求直线AE 与平面ABP 所成角的正弦值.[解析] (1)证明 : 取P A 的中点H , 连HE , BH .∵E 为PD 中点 , ∴HE 为△APD 的中位线 ,∴HE ∥AD , HE =12AD . 又AD ∥BC , ∴HE ∥BC , HE =BC ,∴四边形BCEH 为平行四边形 , ∴CE ∥BH .∵BH ⊂平面ABP , CE ⊄平面ABP ,∴CE ∥平面ABP.(2)由题意知△P AD 为等腰直角三角形 , 四边形ABCD 为直角梯形 , 取AD 中点F , 连接BF , PF ,∵AD =2BC =4 , ∴平面多边形P ABCD 中P , F , B 三点共线 , 且PF =BF =2 ,∴翻折后 , PF ⊥AD , BF ⊥AD , PF ∩BF =F ,∴DF ⊥平面PBF , ∴BC ⊥平面PBF ,∵PB ⊂平面PBF , ∴BC ⊥PB .在直角三角形PBC 中 , PC =2 2 , BC =2 ,∴PB =2 , ∴△PBF 为等边三角形.取BF 的中点O , DC 的中点M ,那么PO ⊥BF , PO ⊥DF , DF ∩BF =F ,∴PO ⊥平面ABCD .以O 为原点 , OB → , OM → , OP →分别为x , y , z 轴正方向建立空间直角坐标系 ,那么B (1,0,0) , D (-1,2,0) , P (0,0 , 3) , A (-1 , -2,0) ,∴E ⎝ ⎛⎭⎪⎫-12 1 32 , ∴AE →=⎝ ⎛⎭⎪⎫123 32 ,∴AB →=(2,2,0) , BP →=(-1,0 , 3).设平面ABP 的法向量为n =(x , y , z ) ,那么⎩⎪⎨⎪⎧ n ·AB →=0n ·BP →=0 , ∴⎩⎪⎨⎪⎧x +y =0-x +3z =0. 故可取n =(3 , -3 , 3) ,∴cos n , AE →=n ·AE →|n |·|AE →|=-21035. ∴直线AE 与平面ABP 所成角的正弦值为21035. 20.(本小题总分值12分)(2021·山西运城调研)如下列图 , 在多面体ABCDEF 中 , 底面ABCD 是边长为2的菱形 , ∠ADC =120° , 且DE ∥FC , DE ⊥平面ABCD , DE =2FC =2.(1)证明 : 平面FBE ⊥平面EDB ;(2)求二面角A -EB -C 的余弦值.[解析] (1)如下列图 , 连接AC 交BD 于点O , 取EB 的中点H , 连接FH , HO .∵四边形ABCD 为菱形 , 点H 是EB 的中点 , DE ∥FC .∴HO ∥FC , HO =12ED =FC , ∴四边形CFHO 为平行四边形 ,∵FH ∥CO .∵DE ⊥平面ABCD , CO ⊂平面ABCD , ∴DE ⊥CO .又∵CO ⊥BD , ED ∩BD =D , ∴CO ⊥平面EDB ,∴FH ⊥平面EDB .又FH ⊂平面FBE ,∴平面FBE ⊥平面EDB .(2)连接EC , 以点O 为坐标原点 , 分别以OB → , OC → , OH →的方向为x 轴 , y 轴 , z 轴的正方向 , 建立如下列图的空间直角坐标系O -xyz.由题意得A (0 , - 3 , 0) , C (0 , 3 , 0) , B (1,0,0) , E (-1,0,2) ,那么EB →=(2,0 , -2) , AB →=(1 , 3 , 0) , BC →=(-1 , 3 , 0).设平面AEB 的法向量为m =(x 1 , y 1 , z 1) ,那么⎩⎪⎨⎪⎧ EB →·m =0AB →·m, 即⎩⎪⎨⎪⎧ 2x 1-2z 1=0x 1+3y 1=0 , 取m =⎝ ⎛⎭⎪⎪⎫1 -33 1. 设平面CEB 的法向量为n =(x 2 , y 2 , z 2) ,那么⎩⎪⎨⎪⎧ EB →·m =0BC →·m =0 , 即⎩⎪⎨⎪⎧2x 2-2z 2=0-x 2+3y 2=0 , 取n =⎝ ⎛⎭⎪⎪⎫-1 -33 -1. cos 〈m , n 〉=m ·n |m |·|n |=1×(-1)+⎝⎛⎭⎫-33×⎝⎛⎭⎫-33+1×(-1)1+13+1×1+13+1=-57 , ∴二面角A -EB -C 的余弦值为-57.21.(本小题总分值12分)(2021·河南中原名校质量测评)如下列图 , S 为圆锥的顶点 , O 为底面圆心 , 点A , B 在底面圆周上 , 且∠AOB =60° , 点C , D 分别为SB , OB 的中点.(1)求证 : AC ⊥OB ;(2)假设圆锥的底面半径为2 , 高为4 , 求直线AC 与平面SOA 所成的角的正弦值.[解析] (1)证明 : 由题意 , 得SO ⊥底面圆O ,∵点C , D 分别为SB , OB 中点 ,∴CD ∥SO , ∴CD ⊥底面圆O ,∵OB 在底面圆O 上 , ∴OB ⊥CD ,∵∠AOB =60° , ∴△AOB 为正三角形 ,又D 为OB 中点 , ∴OB ⊥AD ,又AD ∩CD =D , 且AD , CD ⊂平面ACD ,∴OB ⊥平面ACD ,∵AC ⊂平面ACD ,∴AC ⊥OB .(2)如下列图 , 以D 为原点 , DA , DB , DC 所在直线为x 轴 , y 轴 , z 轴建立空间直角坐标系 ,那么A ( 3 , 0,0) , C (0,0,2) , O (0 , -1,0) , S (0 , -1,4) ,故AC →=(- 3 , 0,2) , AS →=(- 3 , -1,4) , OA →=( 3 , 1,0) ,设平面SOA 的法向量为n =(x , y , z ) ,由⎩⎪⎨⎪⎧ n ·AS →=0n ·OA →=0 , 可得⎩⎪⎨⎪⎧ -3x -y +4z =03x +y =0 , 令x =1 , 得n =(1 , - 3 , 0)为平面SOA 的一个法向量 , 设直线AC 与平面SOA 所成的角为θ ,那么sin θ=|cos 〈n , AC →〉|=⎪⎪⎪⎪⎪⎪n ·AC →|n |·|AC →|= ⎪⎪⎪⎪⎪⎪⎪⎪-3+0+01+3×3+4=327=2114 , 即直线AC 与平面SOA 所成的角的正弦值为2114. 22.(本小题总分值12分)(2021·河南九师联盟质检)如下列图 , 在四棱锥P -ABCD 中 , 平面P AD ⊥平面ABCD , AD ∥BC , ∠ADC =90° , P A ⊥PD , P A =PD .(1)求证 : 平面P AB ⊥平面PCD ;(2)假设BC =1 , AD =CD =2 , 求二面角A -PC -B 的余弦值.[解析] (1)证明 : 在四棱锥P -ABCD 中 ,因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,又因为CD ⊥AD ,CD ⊂平面ABCD ,所以CD ⊥平面P AD .因为P A ⊂平面P AD , 所以CD ⊥P A .因为P A ⊥PD , CD ∩PD =D , CD , PC ⊂平面PCD ,所以P A ⊥平面PCD .因为P A ⊂平面P AB , 所以平面P AB ⊥平面PCD .(2)解 : 取AD 中点O , 连接OP , OB , 因为P A =PD ,所以PO ⊥AD .因为平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD ,因为PO ⊂平面P AD , 所以PO ⊥平面ABCD ,所以PO ⊥OA , PO ⊥OB .因为CD ⊥AD , BC ∥AD , AD =2BC ,所以BC ∥OD , BC =OD ,所以四边形OBCD 是平行四边形 , 所以OB ∥CD ,所以OB ⊥AD .以OA , OB , OP 所在的直线分别为x 、y 、z 轴建立如下列图的空间直角坐标系O -xyz , 那么O (0,0,0) , A (1,0,0) , B (0,2,0) , C (-1,2,0) , P (0,0,1) ,所以AC →=(-2,2,0) , AP →=(-1,0,1) , BC →=(-1,0,0) , BP →=(0 , -2,1) ,设平面P AC 的法向量为n =(x , y , z ) ,那么⎩⎪⎨⎪⎧ AC →·n =0AP →·n =0.即⎩⎨⎧ -2x +2y =0 -x +z =0.令x =1 , 那么n =(1,1,1).设平面BPC 的法向量为m =(a , b , c ) ,那么⎩⎪⎨⎪⎧ BC →·m =0BP →·m =0.即⎩⎨⎧ a =0 -2b +c =0.令b =1 , 那么m =(0,1,2).所以cos〈m , n〉=m·n|m||n|=15 5 ,易判断二面角A-PC-B为锐角 ,所以二面角A-PC-B的余弦值为15 5.。
2025年高考数学一轮复习课件第七章立体几何-单元检测

1
4
2
∘
2
12
13
∘
cos 60 + cos 60
=
故选C.
1
2
3
4
5
6
7
16
8
17
9
18
10
19
11
14
15
1 2
.
4
6.如图,在正方体 − 1 1 1 1 中,,分别是棱,1 1 的中点,
则与平面1 1 的位置关系是 (
)
A.//平面1 1
故选C.
1
2
3
4
5
6
7
16
8
17
9
18
10
19
11
12
13
14
15
2.若直线与平面 相交,则(
A.平面
√
)
内存在直线与异面
B.平面 内存在唯一直线与平行
C.平面 内存在唯一直线与垂直
D.平面 内的直线与都相交
解:当直线与平面 相交时,这条直线与该平面内任意一条不过交点的直线均为异
B.π
√
3π
A.
4
1
2
3
4
C.2π
5
6
7
16
8
17
D.3π
9
18
)
10
19
11
12
13
14
15
解:如图,设顶点在底面上的投影为,连接.
2
3
由题意,知为△ 的中心,且 = × 6 ×
3
2
= 2 3.
故 = 36 − 12 = 2 6.
高考数学一轮复习第七章立体几何课时作业45课件文aa高三全册数学课件

答案 C
2021/12/13
第十页,共二十七页。
7.空间四边形 ABCD 的四个顶点都在同一球面上,E,F 分别是 AB,
CD 的中点,且 EF⊥AB,EF⊥CD,若 AB=8,CD=EF=4,则该球的半径 为( )
A.6516 2
B.658 2
C.
65 2
D. 65
2021/12/13
第十一页,共二十七页。
答案 33π
2021/12/13
第二十二页,共二十七页。
14.在半径为 4 的球面上有不同的四点 A,B,C,D,若 AB=AC=AD =4,则平面 BCD 被球所截得图形的面积为________。
解析 因为 A,B,C,D 为球面上不同的四点,所以 B,C,D 不共线, 由 AB=AC=AD 知 A 在平面 BCD 内的射影为△BCD 外接圆的圆心,记圆 心为 O1。设 O 为球的球心,则 OB=OC=OD,故 O 在平面 BCD 内的投影 也为△BCD 外接圆的圆心 O1,故有 OA⊥平面 BCD。又 AB=AC=AD=4, 所以平面 BCD 垂直平分线段 OA。记△BCD 外接圆的半径为 r,由勾股定 理得 r2+12OA2=42,即 r2=16-4=12。从而平面 BCD 被球所截得的图形 即△BCD 的外接圆,其面积为 πr2=12π。
答案 12π
2021/12/13
第二十三页,共二十七页。
15.(2019·长春质检)已知四棱锥 P-ABCD 的底面为矩形,平面 PBC⊥
平面 ABCD,PE⊥BC 于点 E,EC=1,AB= 6,BC=3,PE=2,则四棱
锥 P-ABCD 的外接球半径为________。
解析 如图,由已知,得 PC= 5,PB=2 2,所以 tan∠PBC=PBEE=22 =1,所以∠PBC=45°,sin∠PBC= 22。设△PBC 的外接圆圆心为 O1,半 径为 r,在△PBC 中,由正弦定理可得sin∠PCPBC=2r,即 25=2r,解得 r= 210。
2021年高考数学总复习 第七章 立体几何练习

2021年高考数学总复习第七章立体几何练习一、选择题训练1.下列命题中,正确的是()A、首尾相接的四条线段在同一平面内B、三条互相平行的线段在同一平面内C、两两相交的三条直线在同一平面内D、若四个点中的三个点在同一直线上,那么这四个点在同一平面内2.对于平面α和共面的直线m、n,下列命题中真命题是()A、若m⊥α,m⊥n,则n∥αB、若m∥α,n∥α,则m∥nC、若mα,n∥α,则m∥nD、若m、n与α所成角相等,则m∥n3.直线a⊥平面α,直线b∥α,则a与b的关系是()A、a∥bB、a⊥bC、a、b一定相交D、a、b一定异面4.若直线∥平面α,则下列命题中正确的是()A、平行于α内的所有直线B、平行于α内的唯一确定的直线C、平行于任一条平行于α的直线D、平行于过的平面与α的交线5.“直线垂直于平面α内的无数条直线”是“⊥α”的()A、充分条件B、必要条件C、充要条件D、既是充分条件又是必要条件6、正方体ABCD-A1B1C1D1中,与AD1垂直的平面之一是()A、平面DD1C1CB、平面A1DBC、平面AB1C1DD、平面A1DB17.设a,b,c是空间三条直线,a∥b,a与c相交,则b与c必()A 相交B 异面C 平行D 不平行8.A,B,C为空间三点,经过这三点()A、能确定一个平面B、能确定无数个平面C、能确定一个或无数个平面D、能确定一个平面或不能确定平面9.空间四边形ABCD中,若AB=BC=CD=DA=AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的形状是()A.平行四边形B.长方形C.菱形D.正方形10、已知平面α∥β,直线aα,点P∈β,则平面β内过点P的直线中()A、不存在与a平行的直线B、不一定存在与a平行的直线C、有且只有一条与a平行的直线D、有无数条与a平行的直线11.若α,β表示平面,a,b表示直线,则a∥α的一个充分条件是()A、α⊥β,且a⊥βB、α∩β= b,且a∥bC、a∥b,且b∥αD、α∥β,且aβ12.平面α⊥平面β,α∩β= ,点P∈α,点Q∈,那么PQ⊥是PQ⊥β的()A、充分但不必要条件B、必要但不充分条件C、充要条件D、既不充分也不必要条件13.设α,β为两个不同的平面,,m为两条不同的直线,且α,mβ,有如下的两个命题:①若α∥β,则∥m;②若⊥m,则α⊥β. 那么()A、①是真命题,②是假命题B、①是假命题,②是真命题C、①②都是真命题D、①②都是假命题14.(xx年高考浙江卷(文))设m.n是两条不同的直线,α,β是两个不同的平面()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥α D.若m∥α,α⊥β,则m⊥β15.(xx年高考广东卷(文))设为直线,是两个不同的平面,下列命题中正确的是()A.若, , 则B.若, , 则C.若, , 则D.若, , 则二、解答题1.如图,ABCD,ABEF均为平行四边形,M,N分别为对角线AC,FB的中点。
高考数学一轮复习 第七章 立体几何学案

第七章立体几何第一节空间几何体的结构特征及三视图与直观图1.简单几何体(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且相等多边形互相平行侧棱平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环2.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.[小题体验]1.若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 3 B.22,2C.4,2 D.2,4解析:选D 由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.2.(教材习题改编)如图,长方体ABCDA′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是______.答案:五棱柱三棱柱1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.[小题纠偏]1.如图,能推断这个几何体可能是三棱台的是( )A.A1B1=2,AB=3,B1C1=3,BC=4B .A 1B 1=1, AB =2,B 1C 1=32,BC =3,A 1C 1=2,AC =3C .A 1B 1=1,AB =2,B 1C 1=32,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C 根据棱台是由棱锥截成的,可知A 1B 1AB =B 1C 1BC =A 1C 1AC,故A ,B 不正确,C 正确;D 项中满足这个条件的是一个三棱柱,不是三棱台,故D 不正确.2.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )解析:选B 俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B. 3.(教材习题改编)利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1考点一 空间几何体的结构特征基础送分型考点——自主练透[题组练透]1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体解析:选C 截面是任意的且都是圆面,则该几何体为球体. 2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B ①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④[谨记通法]解决与空间几何体结构特征有关问题的3个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型;(3)通过反例对结构特征进行辨析.考点二空间几何体的三视图重点保分型考点——师生共研[典例引领]1.(2018·东北四市联考)如图,在正方体ABCDA1B1C1D1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为( )解析:选D 如图,画出原正方体的侧视图,显然对于三棱锥PA1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.2.(2018·杭州模拟)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,那么该三棱锥的侧视图可能为( )解析:选B 由正视图可看出长为2的侧棱垂直于底面,侧视图为直角三角形,直角边长为2,另一直角边为底边三角形的高 3.故侧视图可能为B.[由题悟法]1.已知几何体,识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.(3)遵循“长对正、高平齐、宽相等”的原则.[提醒] 对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.[即时应用]1.(2018·沈阳教学质量监测)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析:选B 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B ,故选B.2.一个几何体的三视图如图所示,则该几何体的直观图可以是( )解析:选D 由俯视图是圆环可排除A 、B 、C ,进一步将已知三视图还原为几何体,可得选项D.考点三 空间几何体的直观图重点保分型考点——师生共研[典例引领](2018·杭州模拟)在等腰梯形ABCD 中,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.解析:画出等腰梯形ABCD 的实际图形及直观图A ′B ′C ′D ′如图所示,因为OE =22-12=1,所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.答案:22[由题悟法]原图与直观图中的“三变”与“三不变” (1)“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度改变减半图形改变(2)“三不变”⎩⎪⎨⎪⎧平行性不变与x 轴平行的线段长度不变相对位置不变[即时应用]如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形解析:选C 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=4 2 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形.一抓基础,多练小题做到眼疾手快1.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是( )解析:选D 几何体的正视图和侧视图完全一样,则几何体从正面看和侧面看的长度相等,只有等边三角形不可能.2.下列说法正确的是( )A.棱柱的两个底面是全等的正多边形B.平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}解析:选D 因为选项A中两个底面全等,但不一定是正多边形;选项B中一般的棱柱不能保证侧棱与底面垂直,即截面是平行四边形,但不一定是矩形;选项C中{正棱柱}⊆{直棱柱},故A、B、C都错;选项D中,正四面体是各条棱均相等的正三棱锥,故正确.3.某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台解析:选A 因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.4.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在直角坐标系xOy中,四边形ABCO的形状为________,面积为________cm2.解析:由斜二测画法的特点知该平面图形是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形85.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图,ABCDA1B1C1D1,如图,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②二保高考,全练题型做到高考达标1.(2018·台州模拟)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为( )A.正方形B.圆C.等腰三角形D.直角梯形解析:选D 该几何体是一个长方体时,其中一个侧面为正方形,A可能;该几何体是一个横放的圆柱时,B可能;该几何体是横放的三棱柱时,C可能,只有D不可能.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B 由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.(2018·沈阳教学质量监测)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A.三棱台B.三棱柱C.四棱柱D.四棱锥解析:选B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示,这是一个三棱柱.4.(2018·温州第八高中质检)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,该三棱柱的侧视图面积为( )A.4 B.2 3C.2 2 D. 3解析:选B 由题可得,该几何体的侧视图是一个长方形,其底边长是底面正三角形的高3,高为2,所以侧视图的面积为S=2 3.5.已知四棱锥PABCD的三视图如图所示,则四棱锥PABCD的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PM =3,PN =5,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6.所以四个侧面中面积最大的是6.6.(2018·台州模拟)如图所示,在正方体ABCD A 1B 1C 1D 1中,点E 为棱BB 1的中点,若用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )解析:选C 取DD 1的中点F ,连接AF ,FC 1,则过点A ,E ,C 1的平面即为面AEC 1F ,所以剩余几何体的侧视图为选项C.7.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④8.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:139.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32, C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:6410.已知正三棱锥V ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积. 解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23,∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=23,∴S △VBC =12×23×23=6.三上台阶,自主选做志在冲刺名校1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图,共六块.2.(2018·湖南东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8解析:选C 设该三棱锥为P ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =12×4×4=8,S △PBC =12×4×422-22=47,故四个面中面积最大的为S △PBC =47,选C.3.如图,在四棱锥P ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求PA .解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2. 由正视图可知AD =6, 且AD ⊥PD , 所以在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.第二节空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l2.空间几何体的表面积与体积公式名称几何体 表面积体积柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h台) 球S =4πR 2 V =43πR 3[小题体验]1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+232=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(教材习题改编)某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以该几何体的体积V =S ·h =⎝ ⎛⎭⎪⎫12×2×3×3=3 3. 答案:3 33.若球O 的表面积为4π,则该球的体积为________.解析:由题可得,设该球的半径为r ,则其表面积为S =4πr 2=4π,解得r =1.所以其体积为V =43πr 3=43π.答案:43π1.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念. [小题纠偏]1.(教材习题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶12.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S =3×4×2+2×2×2+4×22×2+4×6+12×(2+6)×2×2=72+16 2.答案:72+16 2考点一 空间几何体的表面积基础送分型考点——自主练透[题组练透]1.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .8+2 2 B .11+2 2 C .14+2 2 D .15解析:选 B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.2.(2018·浙江新高考联盟高三期初联考)如图是某四棱锥的三视图,则该几何体的表面积等于( )A .34+6 5B .44+12 5C .34+6 3D .32+6 5解析:选A 由三视图知几何体底面是一个长为6,宽为2的矩形,高为4的四棱锥,所以该几何体的表面积为12×6×25+12×6×4+2×12×2×5+6×2=34+65,故选A.3.如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则该棱锥的表面积为( )A .6+42+2 3B .8+4 2C .6+6 2D .6+22+4 3解析:选A 由三视图可知该棱锥为如图所示的四棱锥P ABCD ,S △PAB=S △PAD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故该棱锥的表面积为6+42+2 3.[谨记通法]几何体的表面积的求法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.注意衔接部分的处理.考点二 空间几何体的体积重点保分型考点——师生共研[典例引领]1.(2018·金华高三期末考试)某几何体的三视图如图所示,则该几何体的体积为( )A.223 B.233C.423D.433解析:选D 由三视图可知该几何体是一个以俯视图为底面的四棱锥,其直观图如图所示.底面ABCD 的面积为2×2=4,高PO =3,故该几何体的体积V =13×4×3=433.2.(2018·宁波十校联考)某几何体的三视图如图所示,则该几何体的体积等于________,表面积等于________.解析:如图,由三视图可知该几何体是底面半径为2,高为3的圆柱的一半,故该几何体的体积为12×π×22×3=6π,表面积为2×12×π×22+4×3+π×2×3=10π+12.答案:6π 12+10π[由题悟法]有关几何体体积的类型及解题策略常见类型 解题策略球的体积问题直接利用球的体积公式求解,在实际问题中要根据题意作出图形,构造直角三角形确定球的半径 锥体、柱体的体积问题根据题设条件求出所给几何体的底面积和高,直接套用公式求解以三视图为载体的几何体体积问题将三视图还原为几何体,利用空间几何体的体积公式求解不规则几何体的体积问题常用分割或补形的思想,若几何体的底不规则,也需采用同样的方法,将不规则的几何体或平面图形转化为规则的几何体或平面图形,易于求解[即时应用]1.(2018·西安质检)某几何体的三视图如图所示,该几何体的体积为( )A.43 B .52 C.73 D .3解析:选A 根据几何体的三视图,得该几何体是下部为直三棱柱,上部为三棱锥的组合体,如图所示.则该几何体的体积是V 几何体=V 三棱柱+V 三棱锥=12×2×1×1+13×12×2×1×1=43.2.(2018·杭州高级中学模拟)一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .32 C.12D.34解析:选C 由题可得,该几何体是一个四棱锥,底面是上下底边分别为1和2,高为1的直角梯形,又四棱锥的高为1.所以该几何体的体积为V =13×12×(1+2)×1×1=12.3.(2018·温州高三一模)如图,一个简单几何体的三视图的正视图与侧视图都是边长为1的正三角形,其俯视图的轮廓为正方形,则该几何体的体积为________,表面积为________.解析:如图,还原三视图为正四棱锥,易得正四棱锥的高为32,底面积为1,体积V =13×1×32=36;易得正四棱锥侧面的高为⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=1,所以表面积S =4×12×1×1+1=3. 答案:363 考点三 与球有关的切、接问题题点多变型考点——多角探明 [锁定考向]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点,命题角度多变. 常见的命题角度有: (1)球与柱体的切、接问题;(2)球与锥体的切、接问题.[题点全练]角度一:球与柱体的切、接问题1.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132D .310解析:选C 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎫522+62=132.2.如图,已知球O 是棱长为1的正方体ABCD A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3C.π6D.33π 解析:选C 平面ACD 1截球O 的截面为△ACD 1的内切圆.因为正方体的棱长为1,所以AC =CD 1=AD 1=2,所以内切圆的半径r =22×tan 30°=66, 所以S =πr 2=π×16=16π.角度二:球与锥体的切、接问题3.(2018·绍兴质检)四棱锥P ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )A .6B .5 C.92D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P ABCD 是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94.4.(2017·全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB , ∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S ABC =V A SBC =13×S △SBC ×AO=13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO , 即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得 R =3,∴球O 的表面积为S =4πR 2=4π×32=36π. 答案:36π[通法在握]解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:[演练冲关]1.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20πB.205π3C .5πD.55π6解析:选D 由题意知六棱柱的底面正六边形的外接圆半径r =1,其高h =1,∴球半径为R =r 2+⎝ ⎛⎭⎪⎫h 22=1+14=52,∴该球的体积V =43πR 3=43×⎝ ⎛⎭⎪⎫523π=55π6. 2.(2018·镇海期中)一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体体积的最大值为________.解析:由题可得,要使正方体可以在纸盒内任意转动,则只需该正方体在正四面体的内接球内即可.因为正四面体的棱长为6,所以其底面正三角形的高为33,正四面体的高为26,则该正四面体的内球的半径为62,设该正方体的边长为a ,要满足条件,则3a ≤6,即a ≤ 2.所以正方体的最大体积为V =a 3≤2 2.答案:2 2一抓基础,多练小题做到眼疾手快1.(2018·浙江名校联考)“某几何体的三视图完全相同”是“该几何体为球”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由题可得,球的三个视图都是圆,所以三视图完全相同;三视图完全相同的几何体除了球,还有正方体,所以是必要不充分条件.2.(2018·长兴中学适应性测试)一个几何体的三视图如图所示,则该几何体的体积为( )A .64B .72C .80D .112解析:选C 由题可得,该几何体是一个棱长为4的正方体与一个底面是边长为4的正方形,高为3的四棱锥的组合体,所以其体积为V =43+13×42×3=80.3.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π解析:选A 由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.4.(2018·嘉兴模拟)如图是一个几何体的三视图,若它的体积是33,则a =________,该几何体的表面积为________.解析:由题可得,该几何体是一个水平放置的三棱柱,其底面是一个底边长为2、高为a 的等腰三角形,高为3.因为其体积为33,所以V =12×2a ×3=3a =33,解得a = 3.所以该几何体的表面积为S =2×12×2×3+2×3×3=23+18.答案: 3 23+185.(2018·丽水模拟)若三棱锥P ABC 的最长的棱PA =2,且各面均为直角三角形,则此三棱锥的外接球的体积是________,表面积是________.解析:如图,根据题意,可把该三棱锥补成长方体,则该三棱锥的外接球即该长方体的外接球,易得外接球的半径R =12PA =1,所以该三棱锥的外接球的体积V =43×π×13=43π,表面积S =4πR 2=4π.答案:43π 4π二保高考,全练题型做到高考达标1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3解析:选A 设圆台较小底面半径为r , 则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.2.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为( )A .6B .8C .12D .24解析:选C 由题意可知该六棱锥为正六棱锥,正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×34×22×h =23,∴h =1, ∴斜高h ′=12+32=2,∴S 侧=6×12×2×2=12.故选C.3.(2018·温州十校联考)已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是( )A .4 B.163 C .8D.323解析:选 B 由题可得,该几何体是一个底面为长方形的四棱锥,所以其体积为V =13。
2025版高考数学一轮总复习第7章立体几何高考大题规范解答__立体几何pptx课件

(2)求直线DE与平面C1EF所成角的正弦值.
[解析] (1)取C1C的中点H,(1分) 连接A1B,A1G,BH,GH,所以截面BA1GH为要求作的截面.(2分) 理由如下: 因 为 E , F 分 别 为 A1B1 , BB1 的 中 点 , 所 以 A1B ∥ EF , 又 A1B ⊄ 平 面 C1EF,EF⊂平面C1EF,所以A1B∥平面C1EF.(3分) 在正方形A1B1C1D1中,因为G为C1D1的中点, 所以A1E∥GC1,且A1E=GC1, 所以四边形A1EC1G为平行四边形,所以A1G∥EC1,
评分细则: 本题(1)还有如下解法: (1)取 BC 中点 H,连接 OH,EH,证平面 DEH∥平面 PDC; (2)建系求出平面 PDC 的法向量 n,证O→E·n=0 且说明 OE⊄平面 PDC, 若没证明 OE⊄平面 PDC 扣 1 分.
2. (2023·江西上饶、景德镇等地名校联考)(12分)如图,在棱长为2的 正方体ABCD-A1B1C1D1中,E,F,G分别为A1B1,BB1,C1D1的中点.
(1)证明:AE∥平面BCD. (2)求平面ACE与平面BDE的夹角的余弦值.
[解析] (1)证明:取 CD 的中点 F,连接 EF, BF.
因为△ECD 是边长为 2 的正三角形,所以 EF ⊥CD,且 EF= 3.(1 分)
因为平面 ECD⊥平面 BCD,且平面 ECD∩ 平面 BCD=CD,EF⊂平面 ECD,所以 EF⊥平面 BCD.(2 分)
评分细则:
(1)第(1)问中,若得到的截面为△A1BG,且证明了截面A1BG∥平面 C1EF,第(1)问只得3分.
高考数学总复习 第七章 立体几何 课时作业45 理(含解析)新人教A版-新人教A版高三全册数学试题

课时作业45 直线、平面垂直的判定及其性质1.(2019·某某某某模拟)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( B )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n解析:若α⊥β,m⊂α,n⊂β,则m与n相交、平行或异面,故A错误;∵m⊥α,m ∥n,∴n⊥α,又∵n∥β,∴α⊥β,故B正确;若m⊥n,m⊂α,n⊂β,则α与β的位置关系不确定,故C错误;若α∥β,m⊂α,n⊂β,则m∥n或m,n异面,故D错误,故选B.2.(2019·某某某某一模)已知a,b表示两条不同的直线,α,β表示两个不同的平面,下列说法错误的是( C )A.若a⊥α,b⊥β,α∥β,则a∥bB.若a⊥α,b⊥β,a⊥b,则α⊥βC.若a⊥α,a⊥b,α∥β,则b∥βD.若α∩β=a,a∥b,则b∥α或b∥β解析:对于A,若a⊥α,α∥β,则α⊥β,又b⊥β,故a∥b,故A正确;对于B,若a⊥α,a⊥b,则b⊂α或b∥α,∴存在直线m⊂α,使得m∥b,又b⊥β,∴m⊥β,∴α⊥β.故B正确;对于C,若a⊥α,a⊥b,则b⊂α或b∥α,又α∥β,∴b⊂β或b∥β,故C错误;对于D,若α∩β=a,a∥b,则b∥α或b∥β,故D正确,故选C.3.若平面α⊥平面β,平面α∩平面β=直线l,则( D )A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直解析:对于A,垂直于平面β的平面与平面α平行或相交,故A错误;对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错误;对于C,垂直于平面β的平面与直线l平行或相交,故C错误.D正确.4.(2019·某某某某一模)在下列四个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是( D )解析:如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,易知E,F,G,M,N,Q六个点共面,直线BD1与平面EFMNQG垂直,并且选项A、B、C中的平面与这个平面重合,不满足题意,只有选项D中的直线BD1与平面EFG不垂直,满足题意,故选D.5.如图,直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( A )A.12B .1 C.32D .2 解析:设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF , 所以AB 1⊥DF .由已知可得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h , 则DE =12h .又2×2=h 22+22,所以h =233,DE =33.在Rt △DB 1E 中,B 1E =⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫332=66. 由面积相等得66× x 2+⎝⎛⎭⎪⎫222=22x ,得x =12. 6.(2019·某某一模)如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H,那么在这个空间图形中必有( B )A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF解析:根据折叠前、后AH⊥HE,AH⊥HF不变,又HE∩HF=H,∴AH⊥平面EFH,B正确.∵过A只有一条直线与平面EFH垂直,∴A不正确.∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥平面AEF,过H作直线垂直于平面AEF,一定在平面HAG 内,∴C不正确.由条件证不出HG⊥平面AEF,∴D不正确.7.如图所示,直线PA垂直于⊙O所成的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( B )A.①②B.①②③C.①D.②③解析:对于①,∵PA⊥平面ABC,∴PA⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∵AC∩PA=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.8.(2019·某某模拟)如图是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确结论的个数是( B )A.1 B.2C.3 D.4解析:画出该几何体,如图所示,①因为E,F分别是PA,PD的中点,所以EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线,故①不正确;②直线BE与直线AF满足异面直线的定义,故②正确;③由E,F分别是PA,PD的中点,可知EF∥AD,所以EF∥BC,因为EF⊄平面PBC,BC⊂平面PBC,所以直线EF∥平面PBC,故③正确;④因为BE与PA的关系不能确定,所以不能判定平面BCE⊥平面PAD,故④不正确.所以正确结论的个数是2.9.(2019·某某模拟)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足DM⊥PC(或BM⊥PC) 时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)解析:∵PA⊥底面ABCD,∴BD⊥PA,连接AC,则BD⊥AC,且PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.10.(2019·某某实战考试)α,β是两平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF.现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是①③.解析:由题意得,AB∥CD,∴A,B,C,D四点共面.①中,∵AC⊥β,EF⊂β,∴AC⊥EF,又∵AB⊥α,EF⊂α,∴AB⊥EF,∵AB∩AC=A,∴EF⊥平面ABCD,又∵BD⊂平面ABCD,∴BD⊥EF,故①正确;②不能得到BD⊥EF,故②错误;③中,由AC与CD在β内的射影在同一条直线上可知平面ABCD⊥β,又AB⊥α,AB⊂平面ABCD,∴平面ABCD⊥α.∵平面ABCD⊥α,平面ABCD⊥β,α∩β=EF,∴EF⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥EF,故③正确;④中,由①知,若BD⊥EF,则EF⊥平面ABCD,则EF⊥AC,故④错误,故填①③.11.(2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.解:(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O,如图.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.12.(2018·卷)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.证明:(1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD ⊥平面ABCD , 所以AB ⊥平面PAD ,所以AB ⊥PD . 又因为PA ⊥PD ,所以PD ⊥平面PAB . 所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形. 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .13.(2019·某某某某模拟)如图,已知四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为MC 的中点,则下列结论不正确的是( C )A.平面BCE⊥平面ABN B.MC⊥ANC.平面CMN⊥平面AMN D.平面BDE∥平面AMN解析:如图,分别过A,C作平面ABCD的垂线AP,CQ,使得AP=CQ=1,连接PM,PN,QM,QN,将几何体补成棱长为1的正方体.∴BC⊥平面ABN,又BC⊂平面BCE,∴平面BCE⊥平面ABN,故A正确;连接PB,则PB∥MC,显然,PB⊥AN,∴MC⊥AN,故B正确;取MN的中点F,连接AF,CF,AC.∵△AMN和△CMN都是边长为2的等边三角形,∴AF⊥MN,CF⊥MN,∴∠AFC为二面角A-MN-C的平面角,∵AF=CF=62,AC=2,∴AF2+CF2≠AC2,即∠AFC≠π2,∴平面CMN与平面AMN不垂直,故C错误;∵DE∥AN,MN∥BD,DE∩BD=D,DE,BD⊂平面BDE,MN∩AN=N,MN,AN⊂平面AMN,∴平面BDE∥平面AMN,故D正确.故选C.14.(2019·某某模拟)点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,给出下列命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是①②④.解析:连接BD交AC于点O,连接DC1交D1C于点O1,连接OO1,则OO1∥BC1,所以BC1∥平面AD1C,动点P到平面AD1C的距离不变,所以三棱锥P-AD1C的体积不变.又因为V三棱锥P-AD1C=V三棱锥A-D1PC,所以①正确;因为平面A1C1B∥平面AD1C,A1P⊂平面A1C1B,所以A1P∥平面ACD1,②正确;由于当点P在B点时,DB不垂直于BC1,即DP不垂直BC1,故③不正确;由于DB1⊥D1C,DB1⊥AD1,D1C∩AD1=D1,所以DB1⊥平面AD1C.又因为DB1⊂平面PDB1,所以平面PDB1⊥平面ACD1,④正确.15.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB=BC,AC =2,AA1= 2.(1)求证:B1C∥平面A1BM;(2)求证:AC1⊥平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.解:(1)证明:连接AB1与A1B,两线交于点O,连接OM,如图所示.在△B1AC中,∵M,O分别为AC,AB1的中点,∴OM∥B1C,又∵OM⊂平面A1BM,B1C⊄平面A1BM,∴B1C∥平面A1BM.(2)证明:∵侧棱AA1⊥底面ABC,BM⊂平面ABC,∴AA1⊥BM,又∵M为棱AC的中点,AB=BC,∴BM⊥AC.∵AA 1∩AC =A ,AA 1,AC ⊂平面ACC 1A 1, ∴BM ⊥平面ACC 1A 1,∴BM ⊥AC 1. ∵AC =2,∴AM =1.又∵AA 1=2,∴在Rt △ACC 1和Rt △A 1AM 中, tan ∠AC 1C =tan ∠A 1MA =2, ∴∠AC 1C =∠A 1MA ,即∠AC 1C +∠C 1AC =∠A 1MA +∠C 1AC =90°, ∴A 1M ⊥AC 1.∵BM ∩A 1M =M ,BM ,A 1M ⊂平面A 1BM , ∴AC 1⊥平面A 1BM .(3)当点N 为BB 1的中点,即BN BB 1=12时, 平面AC 1N ⊥平面AA 1C 1C .证明如下:设AC 1的中点为D ,连接DM ,DN . ∵D ,M 分别为AC 1,AC 的中点,∴DM ∥CC 1,且DM =12CC 1. 又∵N 为BB 1的中点, ∴DM ∥BN ,且DM =BN ,∴四边形BNDM 为平行四边形, ∴BM ∥DN ,∵BM⊥平面ACC1A1,∴DN⊥平面AA1C1C.又∵DN⊂平面AC1N,∴平面AC1N⊥平面AA1C1C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45分钟阶段测试(九)
(范围:§7.1~§7.4)
一、选择题
1.空间中四点可确定的平面有( ) A .1个 B .3个
C .4个
D .1个或4个或无数个
答案 D
解析 当这四点共线时,可确定无数个平面;当这四点不共线且共面时,可确定一个平面;当这四点不共面时,其中任三点可确定一个平面,此时可确定4个平面.
2.一个长方体被一个平面所截,得到的几何体的三视图,如图所示,则这个几何体的体积为( )
A .8
B .4
C .2
D .1 答案 C
解析 根据该几何体的三视图知,该几何体是一个平放的三棱柱;它的底面三角形的面积为S 底面=1
2×2×1=1,棱柱高为h =2,∴棱柱的体积为S 棱柱=S 底面·h =1×2=2.
3.下列命题中,错误的是( )
A .三角形的两条边平行于一个平面,则第三边也平行于这个平面
B .平面α∥平面β,a ⊂α,过β内的一点B 有唯一的一条直线b ,使b ∥a
C .α∥β,γ∥δ,α、β、γ、δ所成的交线为a 、b 、c 、d ,则a ∥b ∥c ∥d
D .一条直线与两个平面成等角,则这两个平面平行 答案 D
解析 A 正确,三角形可以确定一个平面,若三角形两边平行于一个平面,而它所在的平面
与这个平面平行,故第三边平行于这个平面;B 正确,两平面平行,一面中的线必平行于另一个平面,平面内的一点与这条线可以确定一个平面,这个平面与已知平面交于一条直线,过该点在这个平面内只有这条直线与a 平行;C 正确,利用同一平面内不相交的两直线一定平行判断即可确定C 是正确的;D 错误,一条直线与两个平面成等角,这两个平面可能是相交平面,故应选D.
4.在空间四边形ABCD 中,平面ABD ⊥平面BCD ,且DA ⊥平面ABC ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定
答案 B
解析 作AE ⊥BD ,交BD 于E , ∵平面ABD ⊥平面BCD ,
∴AE ⊥平面BCD ,BC ⊂平面BCD ,∴AE ⊥BC , 而DA ⊥平面ABC ,BC ⊂平面ABC ,∴DA ⊥BC , 又∵AE ∩AD =A ,∴BC ⊥平面ABD , 而AB ⊂平面ABD ,∴BC ⊥AB , 即△ABC 为直角三角形.故选B.
5.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )
A .AD ⊥平面PBC 且三棱锥D -ABC 的体积为83
B .BD ⊥平面P A
C 且三棱锥
D -ABC 的体积为8
3
C .A
D ⊥平面PBC 且三棱锥D -ABC 的体积为16
3
D .BD ⊥平面P AC 且三棱锥D -ABC 的体积为16
3
答案 C
解析 ∵P A ⊥平面ABC ,∴P A ⊥BC , 又AC ⊥BC ,P A ∩AC =A , ∴BC ⊥平面P AC ,∴BC ⊥AD ,
又由三视图可得在△P AC 中,P A =AC =4,D 为PC 的中点, ∴AD ⊥PC ,∴AD ⊥平面PBC .
又BC =4,∠ADC =90°,BC ⊥平面P AC . 故V D -ABC =V B -ADC =13×12×22×22×4=163.
二、填空题
6.(2014·江苏)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1
V 2的值是________.
答案 3
2
解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2, 由S 1S 2=94, 得πr 21πr 22=9
4,则r 1r 2=32
. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2, 即r 1h 1=r 2h 2,
所以V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32
.
7.已知P A 垂直于平行四边形ABCD 所在的平面,若PC ⊥BD ,则平行四边形ABCD 的形状一定是________. 答案 菱形
解析 由于P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .
又PC ⊥BD ,且PC ⊂平面P AC ,P A ⊂平面P AC ,PC ∩P A =P ,所以BD ⊥平面P AC . 又AC ⊂平面P AC ,所以BD ⊥AC . 又四边形ABCD 是平行四边形,
所以四边形ABCD 是菱形.
8.如图,两个正方形ABCD 和ADEF 所在平面互相垂直,设M 、N 分别是BD 和AE 的中点,那么①AD ⊥MN ;②MN ∥平面CDE ;③MN ∥CE ;④MN 、CE 异面.其中正确结论的序号是________. 答案 ①②③
解析 ∵两个正方形ABCD 和ADEF 所在平面互相垂直,设M 、N 分别是BD 和AE 的中点,取AD 的中点G ,连接MG ,NG ,易得AD ⊥平面MNG ,进而得到AD ⊥MN ,故①正确;连接AC ,CE ,根据三角形中位线定理,可得MN ∥CE ,由线面平行的判定定理,可得②MN ∥平面CDE 及③MN ∥CE 正确,④MN 、CE 异面错误. 三、解答题
9.如下的三个图中,左面的是一个长方体截去一个角所得多面体的直观图,它的正视图和俯视图在右面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC ′,证明BC ′∥平面EFG . (1)解 如图:
(2)解 所求多面体体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=284
3(cm 3).
(3)证明 在长方体ABCD -A ′B ′C ′D ′中,
连接AD ′,则AD ′∥BC ′.
因为E ,G 分别为AA ′,A ′D ′的中点, 所以AD ′∥EG , 从而EG ∥BC ′. 又BC ′⊄平面EFG , 所以BC ′∥平面EFG .
10.如图,矩形ABCD 所在的平面与四边形ABEF 所成的平面互相垂直,已知四边形ABEF 为等腰梯形,点O 为AB 的中点,M 为CD 中点,AB ∥EF ,AB =2,AF =EF =1. (1)求证:平面DAF ⊥平面CBF ;
(2)若直线AM 与平面CBF 所成角的正弦值为
5
10
,求AD 的长. 解 (1)∵平面ABCD ⊥平面ABEF ,CB ⊥AB , 平面ABCD ∩平面ABEF =AB ,∴CB ⊥平面ABEF . ∵AF ⊂平面ABEF ,∴AF ⊥CB , 由已知条件可得∠BAF =60°, ∴∠BEF =120°,又BE =EF , ∴∠EBF =∠BFE =30°,
∴∠ABF =30°,∴∠BF A =90°,即AF ⊥BF , 又CB ∩BF =B ,∴AF ⊥平面CBF , ∵AF ⊂平面DAF , ∴平面DAF ⊥平面CBF .
(2)连接CO ,
∵CM ∥OA ,CM =OA =1, ∴四边形AOCM 为平行四边形,
∴AM ∥CO ,∴直线AM 与平面CBF 所成角的大小等于直线CO 与平面CBF 所成角的大小.
过点O 作OH ⊥BF 于H ,连接CH , ∵CB ⊥平面ABEF ,∴CB ⊥OH , 又CB ∩BF =B , ∴OH ⊥平面CBF .
∴∠OCH 为直线CO 与平面CBF 所成的角,
设AD =t (t >0),则CO =1+t 2,在Rt △AFB 中,OH =12AF =12,sin ∠OCH =OH
CO
=
1
21+t
2
=
5
10,则t =2,∴AD =2.。