几何问题解题思路
空间几何问题的解题思路与方法

空间几何问题的解题思路与方法空间几何问题是数学中重要的一个分支,涉及到解析几何、线性代数、微积分等多个数学学科。
解决空间几何问题需要运用一定的思路和方法,本文将介绍几种常见的解题思路和方法。
一、几何图形的性质与关系在解决空间几何问题时,首先需要熟悉各种几何图形的性质与关系。
比如直线与平面的相交情况,平面与平面的夹角关系等。
对于给定的几何图形,可以运用已知的性质和关系来推导出需要求解的结果。
二、坐标系与向量坐标系是解析几何中重要的工具,可以将几何图形与代数符号相联系。
通过引入坐标系,可以将空间几何问题转化为代数方程或方程组的求解。
在使用坐标系时,需要确定适当的坐标轴和坐标原点,并将几何图形的特征抽象为代数符号。
通过利用向量的性质,可以在坐标系中进行向量运算,计算两点距离、中点坐标等。
三、向量叉乘与双曲面交线向量叉乘是解决空间几何问题的常见方法之一。
通过向量叉乘可以求得两向量所夹平面的法向量,利用法向量可以进一步求解两平面的交线。
在求解双曲面交线问题时,可以将双曲面方程转化为标准形式,并应用向量叉乘的方法来求解交线的方程。
四、平面投影平面投影是解决空间几何问题的重要方法之一。
通过将空间中的几何体在一个平面上的投影,可以简化问题的处理。
平面投影可以应用于求解空间几何体的面积、体积以及几何体之间的位置关系等问题。
五、参数方程与参数化求解参数方程是描述几何图形的一种常用形式,通过引入参数,可以将几何图形的属性与参数相联系。
通过求解参数方程,可以得到几何图形的特征。
在解决空间几何问题时,可以运用参数方程来表示给定几何体之间的关系,并通过求解参数方程来得到结果。
六、三维几何题目的解题方法三维几何题目是空间几何问题的一种典型形式,解决三维几何题目需要清晰的思维和严密的推导。
一种常见的解题方法是利用立体几何中的立体角公式和公式组。
通过列出合适的公式组,可以将几何问题转化为方程组的求解问题。
综上所述,解决空间几何问题需要熟悉几何图形的性质与关系,运用坐标系与向量进行分析和计算,利用向量叉乘求解双曲面交线,应用平面投影简化问题的处理,运用参数方程与参数化求解等方法。
解析几何解题思路总结

解析几何巧妙解题思路总结解析几何巧妙解题思路总结一.直线和圆的方程一.直线和圆的方程1.理解直线的斜率的概念,理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、掌握直线方程的点斜式、掌握直线方程的点斜式、两点式、两点式、一般式,并能根据条件熟练地求出直线方程.一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.线的方程判断两条直线的位置关系. 3.了解二元一次不等式表示平面区域..了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用..了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法..了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质..掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质..掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质..掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用..了解圆锥曲线的初步应用. 【例题解析】 考点1.1.求参数的值求参数的值求参数的值求参数的值是高考题中的常见题型之一求参数的值是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,构造方程解之构造方程解之. . 例1.(2009年安徽卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线222y px =的焦点为(2,0),则4p =,故选D. 考点2. 2. 求线段的长求线段的长求线段的长求线段的长也是高考题中的常见题型之一求线段的长也是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,找出点的坐标找出点的坐标,,利用距离公式解之离公式解之. .例2.(2009年四川卷)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3 B.4 C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x bì=-+Þ++-=Þ+=-í=+î,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-´-=.故选C 例3.(2006年四川卷)如图,把椭圆2212516x y +=的长轴的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆2212516x y +=的方程知225, 5.a a =\=∴12345677277535.2aPF P F P F P F P F P F P F a ´++++++==´=´= 故填35. 考点3. 3. 曲线的离心率曲线的离心率曲线的离心率曲线的离心率是高考题中的热点题型之一曲线的离心率是高考题中的热点题型之一,,其解法为充分利用其解法为充分利用: : (1)(1)椭圆的离心率椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁越大则椭圆越扁); );(2) (2) 双曲线的离心率双曲线的离心率e =ac ∈(1, (1, +∞+∞+∞) (e ) (e 越大则双曲线开口越大越大则双曲线开口越大). ).结合有关知识来解题结合有关知识来解题. .例4.(2008年全国卷)文(年全国卷)文(44)理()理(44)已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -= D .221610x y -=考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程:解答过程: 2,4,ce c a=== 所以22,12.a b \==故选(A). 小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会. 例5.(2008年广东卷)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于(到右准线的距离之比等于( )A. 2B.332 C. 2 D.4 考查意图: 本题主要考查双曲线的性质和离心率e =ac∈(1, +∞) 的有关知识的应用能力. 解答过程:依题意可知解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.4.求最大求最大求最大((小)值求最大求最大((小)值, , 是高考题中的热点题型之一是高考题中的热点题型之一其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是特别是,,一些题目还需要应用曲线的几何意义来解答一些题目还需要应用曲线的几何意义来解答. .例6.(2006年山东卷年山东卷))已知抛物线y 22=4x,=4x,过点过点P(4,0)P(4,0)的直线与抛物线相交于的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是的最小值是 . 考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P(4,0)的直线为()()224,8164,y k x k x x x =-\-+=()()122222222122284160,8414416232.k x k x k k y y x x k k \-++=+æö\+=+=´=+³ç÷èø 故填32. 考点5 5 圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.(2007年广东卷文)年广东卷文)在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y=x 相切于坐标原点O.椭圆9222y ax +=1与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. [考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.行推理运算的能力和解决问题的能力. [解答过程] (1) 设圆C 的圆心为的圆心为 (m, n) 则,222,m n n =-ìïí×=ïî 解得2,2.m n =-ìí=î所求的圆的方程为所求的圆的方程为 22(2)(2)8x y ++-= (2) 由已知可得由已知可得 210a = , 5a =. 椭圆的方程为椭圆的方程为 221259x y += , 右焦点为右焦点为 F( 4, 0) ; 假设存在Q 点()222cos ,222sin q q -++使QF OF =, ()()22222cos 4222sin 4q q-+-++=.整理得整理得 s i n 3c o s 22q q=+, 代入代入 22sin cos 1q q +=. 得:210cos 122cos 70q q ++= , 122812222cos 11010q -±-±==<-.因此不存在符合题意的Q 点. 例8.(2007年安徽卷理)年安徽卷理)如图,曲线G 的方程为)0(22³=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的轴的 正半轴相交于正半轴相交于 A 与点B. 直线直线 AB 与 x 轴相交于点C. (Ⅰ)求点(Ⅰ)求点 A 的横坐标的横坐标 a 与点与点 C 的横坐标c 的关系式;的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A 因为.2,||22t a a t OA =+=所以 由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+t y c x又因点A 在直线BC 上,故有,12=+ta c a将(1)代入上式,得,1)2(2=++a a a ca 解得解得 )2(22+++=a a c . (II )因为))2(22(++a a D ,所以直线CD 的斜率为的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值. 例9.已知椭圆2222x y E :1(a b 0)a b +=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求:,求: (1)椭圆E 的离心率;(2)双曲线C 的方程. 解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ),则221122x y 1a b+=,222222x y 1a b +=,二式相减得:,二式相减得: 21212AB 21212y y (x x )b k x x (y y )a -+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =, 则c2e a 2==;(2)椭圆E 的右准线为22a(2c)x 2c cc===,双曲线的离心率11e 2e==, 设P(x,y)是双曲线上任一点,则:是双曲线上任一点,则: 22(x 2)(y 1)|PM |2|x 2c ||x 2c |-+-==--,两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去;,不合题意,舍去;当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法;“点差法”是处理弦的中点与斜率问题的常用方法; (2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题利用向量求曲线方程和解决相关问题利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:典型例题:例10.(2008年山东卷)双曲线C 与椭圆22184x y +=有相同的焦点,直线y=x 3为C 的一条渐近线. (1)求双曲线C 的方程;的方程;(2)过点P(0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合)当12PQ QA QB l l ==,且3821-=+l l 时,求Q 点的坐标. 考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力. 解答过程:(Ⅰ)设双曲线方程为22221x y a b -=, 由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,\对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线的一条渐近线\3ba = 解得解得 221,3ab ==,\双曲线C 的方程为2213y x -=(Ⅱ)解法一:(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零. 设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k -. 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. 111111114444()44x k k x k k y y l l l l ì=--ìï-=+ïï\Þííïï-==-îïî 11(,)A x y 在双曲线C 上,上,\2121111616()10k l l l +--=. \222211161632160.3k k l l l ++--=\2221116(16)32160.3k k l l -++-=同理有:2222216(16)32160.3k k l l -++-=若2160,k -=则直线l 过顶点,不合题意.2160,k \-¹12,l l \是二次方程22216(16)32160.3k x x k -++-=的两根. 122328163k l l \+==--,24k \=,此时0,2k D >\=±. \所求Q 的坐标为(2,0)±. 解法二:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 1PQ QA l = , Q \分PA的比为1l . 由定比分点坐标公式得由定比分点坐标公式得1111111111144(1)14401x x k k y y l l l l l l l ìì-==-+ïï+ïï®íí+ïï=-=ïï+îî下同解法一下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 12PQ QA QB l l == , 111222444(,4)(,)(,)x y x y kkkl l \--=+=+. 11224y y l l \-==, 114y l \=-,224y l =-,又1283l l +=-,121123y y \+=,即12123()2y y y y +=. 将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=. 230k -¹ ,否则l 与渐近线平行. 212122224483,33k y y y y k k -\+==--. 222244833233k k k -\´=´--.2k \=±(2,0)Q \±. 解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k- 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. \1114444k kx x kl -==-++.同理同理 1244kx l =-+. 1212448443kx kx l l +=--=-++. 即 2121225()80k x x k x x +++=. (*)又 22413y kx y x =+ìïí-=ïî消去y 得22(3)8190k x kx ---=. 当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -¹. 由韦达定理有:由韦达定理有: 12212283193k x x k x x k ì+=ïï-íï=-ï-î代入(*)式得)式得24,2k k ==±. \所求Q 点的坐标为(2,0)±. 例11.(2007年江西卷理)年江西卷理)设动点P 到点A(-l ,0)和B(1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.为坐标原点.[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合 运用数学知识进行推理运算的能力和解决问题的能力.运用数学知识进行推理运算的能力和解决问题的能力.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.的双曲线.方程为:2211x y l l-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.在双曲线上.即2111511012l l l l l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l lì-=ï-íï=-î得:2222(1)2(1)(1)()0k x k x k l l l l l éù--+---+=ëû, 由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--. 于是:22212122(1)(1)(1)k y y k x x kl l l =--=--.因为0=×ON OM ,且M N ,在双曲线右支上,所以在双曲线右支上,所以 2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l ll -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -<≤.解法2:(1)同解法1 (2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB l l l l l=-=Þ+-=-,因为01l <<,所以512l -=; ②当12x x ¹时,002222212111111y x k y x y xMN ×-=Þïïîïïíì=--=--l l l l l l . 又001MN BE y k k x ==-.所以22000(1)y x x l l l -=-;由2MON p =∠得222002MN x y æö+=ç÷èø,由第二定义得2212()222MN e x x a æö+-éù=ç÷êúëûèø 22000111(1)211x x x l l ll æö=--=+--ç÷--èø. 所以2220(1)2(1)(1)y x x l l l l -=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x l l l l l l l ì-=-ïí-=--+-ïî得20(1).23x l l -=-因为01x >,所以2(1)123l l->-,又01l <<,C BA oy x解得:51223l -<<.由①②知51223l -<≤.考点7 利用向量处理圆锥曲线中的最值问题利用向量处理圆锥曲线中的最值问题利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易. 例12.设椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为33,过点C(1,0)-的直线交椭圆E 于A 、B 两点,且CA2BC = ,求当AOB D 的面积达到最大值时直线和椭圆E 的方程. 解答过程:因为椭圆的离心率为33,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1ì+=í=+î得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则1224m y y 2m 3+=+…………① 又CA 2BC =,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………②由①②得:128m y 2m 3=+,224m y 2m 3-=+,则AOB 1221m S |y y |6||22m 3D =-=+=66322|m ||m |£+, 当23m 2=,即6m 2=±时,AOB D 面积取最大值,面积取最大值,此时2122222t32m y y 2m 3(2m 3)-==-++,即t 10=,所以,直线方程为6x y 102±+=,椭圆方程为222x 3y 10+=. 小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易. 例13.已知P A (x 5,y)=+,PB (x 5,y)=- ,且|P A||P B|6+= , 求|2x 3y 12|--的最大值和最小值. 解答过程:设P(x,y),A(5,0)-,B(5,0),因为|P A ||PB|6+=,且|AB|256=<,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆,的椭圆,椭圆方程为22x y 194+=,令x 3cos ,y 2sin =q =q , 则|2x 3y 12|--=|62cos()12|4pq +-,当cos()14pq +=-时,|2x 3y 12|--取最大值1262+,当cos()14pq +=时,|2x 3y 12|--取最小值1262-. 小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题利用向量处理圆锥曲线中的取值范围问题解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域问题. 例14.(2006年福建卷)年福建卷) 已知椭圆2212x y +=的左焦点为F , O 为坐标原点. (I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==\=-=-圆过点O 、F , \圆心M 在直线12x =-上. 设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =得2213(),22t -+=解得 2.t =±\所求圆的方程为2219()(2).24x y ++±=(II )设直线AB 的方程为(1)(0),y k x k =+¹代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F ,\方程有两个不等实根. ylG ABF OF EP DBA Oy x记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB \的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++¹\-<<\点G 横坐标的取值范围为1(,0).2- 例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA|,|OB|,|OF| 成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ×=×;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围. 解答过程:(1)因|OA |,|OB|,|OF| 成等比数列,故22|OB |a|OA |c |OF|== ,即2a A(,0)c , 直线l :ay (x c)b=--,由2a y (x c)a ab b P(,)bc c y xa ì=--ïïÞíï=ïî, 故:22ab a ab b ab PA (0,),OP (,),FP (,)c c c c c =-==-,则:222a b PA OP PA FP c×=-=×,即PA OP PA FP ×=× ;(或P A (OP FP)P A (PF PO)P A OF 0×-=×-=×=,即PA OP PA FP ×=× ) (2)由44422222222222222ay (x c)a a a c (b )x 2cx (a b )0b b b b b x a y a b ì=--ïÞ-+-+=íï-=î,由4222212422a c (a b )b x x 0a b b -+=<-得:4422222b a b c a a e 2e 2.>Þ=->Þ>Þ>(或由DFDO k k >Þa bb a->-Þ2222222222b c a a e 2e 2=->Þ>Þ>)小结:向量的数量积在构造等量关系中的作用举足轻重,向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,而要运用数量积,必须先恰当地求出各个点的坐标. 例16.已知a (x,0)= ,b (1,y)=,(a 3b)(a 3b)+^- ,(1)求点P(x,y)的轨迹C 的方程;的方程;(2)若直线y kx m(m 0)=+¹与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围. 解答过程:(1)a 3b +=(x,0)3(13(1,,y)(x 3,3y)+=+,a 3b -=(x,0)3(13(1,,y)(x 3,3y)-=--, 因(a 3b)(a 3b)+^- ,故(a 3b)(a 3b)0+×-=,即22(x 3,3y)(x 3,3y)x 3y 30+×--=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx mx 3y 3=+ìí-=î得:222(13k )x 6kmx 3m 30----=, 设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0D =----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k=+=-, 即A 、B 的中点为223km m(,)13k 13k --, 则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k -=----, 将D(0,1)-的坐标代入,化简得:24m 3k 1=-,PQCBA xy O则由222m 13k 04m 3k 1ì+->ïí=-ïî得:2m 4m 0->,解之得m 0<或m 4>,又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+¥ . 小结:求变量的范围,要注意式子的隐含条件,否则会产生增根现象. 考点9 利用向量处理圆锥曲线中的存在性问题利用向量处理圆锥曲线中的存在性问题存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立. 例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0×= ,|BC|2|AC|=, (1)求椭圆的方程;)求椭圆的方程;(2)如果椭圆上的两点P ,Q 使PCQ Ð的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =?请说明理由;请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y14b+=,不妨设C 在x 轴上方,轴上方,由椭圆的对称性,|BC|2|AC|2|OC||AC||OC|==Þ= ,又AC BC 0×=AC OC Þ^,即ΔOCA 为等腰直角三角形,为等腰直角三角形,由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=; (2)假设总存在实数λ,使得PQ λAB =,即AB //PQ ,由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1ì+=ïÞ+--+--=íï=-+î, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=×=+,以k -代k 得2Q 23k 6k 1x 13k+-=+, 故P Q P Q PQ P Q P Q yy k(x x )2k 1k x x x x 3-+-===--,故AB //PQ , 即总存在实数λ,使得PQ λAB =. 评注:此题考察了坐标系的建立、待定系数法、椭圆的对称性、向量的垂直、向量的共线及探索性问题的处理方法等,是一道很好的综合题. 考点10 利用向量处理直线与圆锥曲线的关系问题利用向量处理直线与圆锥曲线的关系问题直线和圆锥曲线的关系问题,直线和圆锥曲线的关系问题,一般情况下,一般情况下,是把直线的方程和曲线的方程组成方程组,是把直线的方程和曲线的方程组成方程组,进一进一步来判断方程组的解的情况,但要注意判别式的使用和题设中变量的范围. 例18.设G 、M 分别是ABC D 的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =l ,(1)求点C 的轨迹方程;的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OPOQ 0×= 若存在,求出直线m 的方程;若不存在,请说明理由. 解答过程:(1)设C(x,y),则x yG(,)33, 因为GM AB =l ,所以GM //AB ,则xM(,0)3,由M 为ABC D 的外心,则|MA ||MC |=,即2222x x ()a (x)y 33+=-+,整理得:2222x y 1(x 0)3a a+=¹;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3aa =-ìïí+=¹ïî得:22222(13k )x 6k ax 3a (k 1)0+++-=,设1122P(x ,y ),Q(x ,y ),则21226k a x x 13k +=+,221223a (k 1)x x 13k -=+,22212121212y y k (x a )(x a )k [x x a (x x )a ]=--=-++=2222k a 13k-+, 由OP OQ 0×=得:1212x x y y 0+=,即2222223a (k 1)2k a13k 13k --+=++,解之得k 3=±,又点(a,0)在椭圆的内部,直线m 过点(a,0),故存在直线m ,其方程为y 3(x a)=±-. 小结:(1)解答存在性的探索问题,一般思路是先假设命题存在,再推出合理或不合理的结果,然后做出正确的判断;然后做出正确的判断;(2)直线和圆锥曲线的关系问题,一般最终都转化成直线的方程和圆锥曲线的方程所组成的方程组的求解问题. 专题训练与高考预测专题训练与高考预测一、选择题一、选择题1.如果双曲线经过点(6,3),且它的两条渐近线方程是1y x 3=±,那么双曲线方程是(),那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-= 2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n-=有公共的焦点,那么双曲线的的渐近线方程为(为( ) A.15x y 2=± B. 15y x2=± C. 3x y 4=± D. 3y x 4=± 3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,轴, 且12FMF 60Ð=°,则椭圆的离心率为(,则椭圆的离心率为( ) A.12 B.22 C.33 D.324.二次曲线22x y 14m+=,当m [2,1]Î--时,该曲线的离心率e 的取值范围是(的取值范围是( )A.23[,]22B. 35[,]22C.56[,]22D. 36[,]225.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C 的右支相交于不重合的两点,则实数k 的取值范围是(的取值范围是( )A.(2,2)-B.(1,2)C.[2,2)-D.[1[1,,2)6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为(抛物线的焦点的轨迹方程为( ) A. 22xy1(y0)34+=¹B. 22x y 1(y 0)43+=¹ C. 22x y 1(x 0)34-=¹ D. 22x y 1(x 0)43-=¹二、填空题二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by ax 上一点,若021=×PF PF 21tan 21=ÐF PF ,则椭圆的离心率为,则椭圆的离心率为 ______________ . 8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,轴正方向上的一定点,若过点若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ . 9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k ×=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;F 2F 1A 2A 1PNM oy x FQoyx②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292;③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP ,OQ 的斜率之积为14-,则22|OP ||OQ|+等于定值20 . 把你认为正确的命题的序号填在横线上_________________ . 三、解答题三、解答题 11.已知两点A(2,0),B(2,0)-,动点P 在y 轴上的射影为Q ,2PA PB 2PQ ×=, (1)求动点P 的轨迹E 的方程;的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标. 12.如图,1F (3,0)-,2F (3,0)是双曲线C 的两焦点,直线4x 3=是双曲线C 的右准线,12A ,A是双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点,两点, (1)求双曲线C 的方程;的方程;(2)求证:12FM F N × 是定值. 13.已知OFQ D 的面积为S ,且OFFQ 1×= ,建立如图所示坐标系,,建立如图所示坐标系, (1)若1S 2=,|OF|2= ,求直线FQ 的方程;的方程;(2)设|OF|c(c 2)=³,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求当|OQ |取得最小值时的椭圆方程. 14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0×= ,3PM MQ 2=-,BAMQ E T HP o yx(1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 轴上存在一点0E(x ,0),使得ABE D 为等边三角形,求0x 的值. 15.已知椭圆)0(12222>>=+b a b y a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使NPNM PN PM MN MP ×××,,成公差小于零的等差数列,数列, (Ⅰ)点P 的轨迹是什么曲线?的轨迹是什么曲线? (Ⅱ)若点P 坐标为),(00y x ,q 为PN PM 与的夹角,求tan θ.参考答案参考答案一. 1.C .提示,设双曲线方程为提示,设双曲线方程为11(x y)(x y)33+-=l ,将点(6,3)代入求出l 即可. 2.D .因为双曲线的焦点在因为双曲线的焦点在x 轴上,故椭圆焦点为22(3m 5n ,0)-,双曲线焦点为22(2m 3n ,0)+,由22223m 5n 2m 3n -=+得|m |22|n |=,所以,双曲线的渐近线为6|n |3y x 2|m |4=±=± . 3.C .设1|MF |d =,则2|MF |2d =,12|FF |3d =,11212|FF |c 2c 3d3e a2a|MF ||MF |d 2d 3=====++ . 4.C .曲线为双曲线,且曲线为双曲线,且512>,故选C ;或用2a 4=,2b m =-来计算. 5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义数形结合,利用梯形中位线和椭圆的定义. 二.7.解:设c 为为椭圆半焦距,∵021=×PF PF ,∴21PF PF ^ . 又21tan 21=ÐF PF ∴ïïïîïïïíì==+=+212)2(122122221PF PF a PF PF c PF PF解得:255()93,cc e aa === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由,由 y=x-x 0 可得3x 2-4x 0x+2x 02-12=0, x 22+2y 22=12 34021x x x =+,31222021-=×x x x ,则,则 2020221221212363234889164)(||x x xx x x x x x -=--=-+=-.∴||13144212x x x -×+=,即202363223144x -××=. ∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =×=+-=- . 10.②④. 三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-,P A (2x,y)=-- ,PB (2x,y)=---,22P A PB x 2y ×=-+ ,因为2PA PB 2PQ ×= ,所以222x 2y 2x -+=,即动点P 的轨迹方程为:22y x 2-=; (2)设直线m :y k(x 2)(0k 1)=-<<,依题意,点C 在与直线m 平行,且与m 之间的距离为2的直线上,的直线上, 设此直线为1m :y kx b =+,由2|2k b |2k 1+=+,即2b 22kb 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=,则22224k b 4(k 1)(b 2)0D =---=,即22b 2k 2+=,…………②由①②得:25k 5=,10b 5=,此时,由方程组222510y x C(22,10)55y x 2ì=+ïÞíï-=î . 12.解:(1)依题意得:c 3=,2a4c 3=,所以a 2=,2b 5=,所求双曲线C 的方程为22x y145-=;(2)设00P(x ,y ),11M(x ,y ),22N(x ,y ),则1A (2,0)-,2A (2,0),100A P (x 2,y )=+ ,200A P (x 2,y )=- ,1110A M (,y )3= ,222A N (,y )3=- , 因为1A P 与1A M 共线,故01010(x 2)y y 3+=,01010y y 3(x 2)=+,同理:0202y y 3(x 2)=--, 则1113F M (,y )3= ,225F N (,y )3=-, 所以12FM F N ×=1265y y 9-+=202020y 6599(x 4)---=20205(x 4)206541099(x 4)-´--=-- . 13.解:(1)因为|OF|2= ,则F(2,0),OF (2,0)=,设00Q(x ,y ),则00FQ (x 2,y )=- ,0OF FQ 2(x 2)1×=-= ,解得05x 2=,由0011S |OF ||y ||y |22=×== ,得01y 2=±,故51Q(,)22±,所以,PQ 所在直线方程为y x 2=-或y x 2=-+;(2)设00Q(x ,y ),因为|OF|c(c 2)=³,则00FQ (x c,y )=- ,)))设椭圆方程为22x y a b +=222594a4b í+=ïî所以,椭圆方程为x y106+=MQ 2-)2-Q(,0)3)(x,)22-22(k 2)k -,2(,)k k-2(x )k k k-=--2k=+2E(k+的距离等于3|2221212(x x )(y y )=-+-=22241k 1k k -×+,所以,422231k 21k k |k |-=+,解得:3k 2=±,011x 3= . 15.解:(1)∵a b y c x c F M M 21,),0,(=-=-则,∴acb k OM 2-= . ∵AB OM a b k AB与,-=是共线向量,∴a bac b -=-2,∴b=c,故22=e . (2)设1122121212,,,2,2,FQ r F Q r F QF r r a F F c q ==Ð=\+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r q +-+--===-³-=+ 当且仅当21r r =时,cos θ=0,∴θ]2,0[pÎ . 16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得)得(1,),PM MP x y =-=--- ),1(y x NP PN ---=-=, )0,2(=-=NM MN . 所以所以 )1(2x MN MP +=× . 122-+=×y x PN PM , )1(2x NP NM -=× . 于是,于是, NP NM PN PM MN MP ×××,,是公差小于零的等差数列等价于是公差小于零的等差数列等价于îîïíì<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 îíì>=+0322x y x . 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P 的坐标为),(00y x 。
初中数学知识归纳几何题的解题思路与方法

初中数学知识归纳几何题的解题思路与方法几何题在初中数学中占据着重要的地位,它不仅考察了学生对几何概念的理解,还需要运用一些解题技巧和方法。
本文将从几何题的解题思路和方法两个方面进行阐述,希望能够帮助读者更好地理解和应对几何题。
一、几何题的解题思路解决几何题首先要理解题意,弄清楚题目中给出的条件和要求。
在这个过程中,我们需要运用数学知识进行分析和归纳。
下面是一些常见的解题思路:1. 图形识别法:通过观察题目中给出的图形,识别出可能与之相关的几何性质。
例如,如果题目中出现了平行线、垂直线、等腰三角形等关键词,可以进一步研究它们的性质,从而找到解题的线索。
2. 形状比较法:有时候题目中给出了多个图形,要求我们比较它们的大小、面积或者其他性质。
这时,我们可以通过计算或者直观的对比来找出它们之间的关系。
3. 数字推理法:一些几何题目中给出了具体的数字或者比例关系,我们可以根据这些信息进行推理。
例如,通过求解比例、利用勾股定理等方法来计算出未知的长度、角度等。
4. 分类讨论法:有些几何题目可能存在多种条件或者情况,我们可以根据题目中的关键信息进行分类讨论。
通过分别解决每一种情况,再综合得出最后的结论。
二、几何题的解题方法在掌握了解题思路后,我们还需要掌握一些具体的解题方法,这些方法是根据几何性质和常见的解题模式总结得出的。
下面是一些常见的解题方法:1. 几何性质运用:几何题目中常常涉及到点、线、面的性质。
因此,我们需要牢记一些常见的几何性质,如平行线的性质、垂直线的性质、等腰三角形的性质等。
这些性质在解题过程中起着重要的作用,可以帮助我们找到解题的线索。
2. 分割图形法:有时候题目中给出的图形比较复杂,我们可以通过分割图形来简化问题。
将复杂的图形分割为若干简单的几何形状,然后对每个简单的几何形状进行分析和运算,最后再综合得出最终的结论。
3. 利用相似性:在一些几何题中,图形之间存在相似性。
我们可以通过相似三角形的性质来求解未知的长度、角度等。
如何解决初中数学中的几何难题

如何解决初中数学中的几何难题初中数学中的几何难题常常让学生感到头疼,然而,只要掌握一些解题的技巧和方法,就能轻松应对各种几何难题。
本文将向大家介绍一些解决初中数学中的几何难题的方法和技巧。
一、了解基础知识在解决几何难题之前,首先要熟悉几何基础知识。
我们应该了解几何中的基本概念,例如:点、线、面等,还要掌握一些常见的图形的性质和特点,例如:圆、直角三角形、等边三角形等。
只有掌握了这些基础知识,我们才能更好地理解和解决几何难题。
二、学会观察图形解决几何难题的关键是要善于观察图形。
通过观察,我们能够发现图形中的一些规律和特点,从而帮助解题。
例如,当我们遇到一个与直线垂直的线段时,应该想到这个线段就是直角三角形的斜边,可以应用勾股定理来解题。
三、运用几何定理和公式初中数学中有许多几何定理和公式,我们在解决几何难题时可以运用这些定理和公式来得到结果。
例如,解决面积相关的问题时,可以运用矩形面积公式、三角形面积公式等。
而对于角度相关的问题,可以利用角的平分线定理、同位角定理等来解题。
四、运用相似性质在解决几何难题时,我们还可以运用相似性质。
两个图形相似,意味着它们的相应边的比例相等。
通过运用相似性质,我们可以求解未知边长或者角度的值。
例如,当遇到两个三角形相似的题目时,我们可以列出相似比例方程,从而求解未知边长或者角度的值。
五、练习真题和习题要提高解决几何难题的能力,还需要进行充分的练习。
我们可以多做一些真题和习题,通过反复练习,掌握解题的思路和技巧。
同时,我们还可以参加数学竞赛或者参加几何相关的讲座和培训,提高自己的解题水平。
六、注意解题过程和答案的合理性在解决几何难题时,我们应该注重解题的过程,不仅仅关注答案。
解题的过程是检验我们解题能力的重要指标。
我们要注意逻辑的合理性,思路的连贯性,不能出现错误的推理和计算。
同时,我们还要注意答案的合理性,回头检查解答结果是否与题意相符。
通过掌握这些方法和技巧,我们就能在初中数学中轻松应对各种几何难题。
数学几何问题解题技巧

数学几何问题解题技巧数学几何问题是许多学生在学习数学过程中遇到的难题之一。
解决几何问题需要一定的技巧和方法,下面将介绍一些常用的数学几何问题解题技巧。
一、画图法解决几何问题的第一步是画出几何图形。
通过准确地绘制所给的图形,可以帮助我们更好地理解问题,并找到解决方案。
在画图时要注意几何图形的形状、比例和准确度。
二、利用已知信息解决几何问题时,首先要充分利用已知信息。
读题时要将已知条件逐一列出,并理解它们之间的关系。
根据已知信息,可以通过几何定理或公式来推导所需的结果。
三、几何定理的灵活运用几何定理是解决几何问题的重要工具。
我们需要熟练掌握各种几何定理,并能够灵活地运用它们。
在解决几何问题时,常常需要将不同的几何定理相结合使用,找到解题的关键点。
四、角度与边的关系解决几何问题时,角度与边的关系是非常重要的一点。
我们需要通过观察几何图形中的角度和边的长度,寻找它们之间的关联。
利用角度与边的关系,可以推导出所求的结果。
五、相似和全等三角形相似和全等三角形是几何问题中常见的概念。
当我们遇到几何问题时,可以尝试通过相似或全等三角形来求解。
相似三角形的对应边比值相等,而全等三角形的对应边长度相等。
通过应用相似或全等三角形的性质,可以简化解题过程。
六、运用代数解题在某些情况下,几何问题可以通过代数的方法来解决。
我们可以用变量表示未知量,列方程,然后通过求解方程来得到答案。
这种方法通常适用于几何问题与代数问题相结合的情况。
七、结合图形推导有些几何问题无法直接得出结论,需要通过推导来解决。
我们可以在几何图形中引入辅助线或辅助点,通过推导和类似三角形等方法来解题。
这种方法通常需要一定的想象力和思考能力。
综上所述,解决数学几何问题需要一定的技巧和方法。
通过合理运用画图法、利用已知信息、几何定理、角度与边的关系、相似和全等三角形、代数解题以及结合图形推导等技巧,我们可以提高解题的效率和准确性。
希望以上的数学几何问题解题技巧对你有所帮助!。
八年级数学几何题解题技巧

一、熟练掌握基本概念解决几何问题时,首先要对几何概念有深入的理解。
对于每一个概念,都要明白它的定义、性质和定理。
例如,在三角形中,要理解三角形的边、角、高的概念,以及三角形的基本性质,如三角形的稳定性、两边之和大于第三边等。
二、演绎推理几何证明题是数学几何题中的一类重要题型,对于这种题目,需要使用演绎推理的方法。
演绎推理是一种严格的逻辑推理方法,它从已知的事实出发,通过逻辑推理得出结论。
在演绎推理中,需要注意使用定理、公理等已知事实,以及推理规则的正确性。
三、辅助线在解决一些较难的几何问题时,通常需要添加辅助线。
辅助线可以帮助我们更好地理解问题的本质,以及找到解决问题的方法。
例如,在证明勾股定理时,可以通过添加辅助线将直角三角形转化为矩形。
四、转化思想转化思想是数学中的一种重要思想方法,它通过将复杂问题转化为简单问题,或者将不规则图形转化为规则图形,从而解决问题。
例如,在求多边形的面积时,可以将多边形转化为三角形或矩形来计算。
五、举一反三在学习数学时,要学会举一反三。
对于一个题目,不仅要会做,还要理解其背后的原理和思路,这样才能在遇到类似问题时游刃有余。
例如,在解决几何问题时,可以通过举一反三的方法,将类似的题目进行归纳和总结,从而更好地掌握解题技巧。
六、细心计算在做数学题时,一定要细心计算。
几何问题通常涉及到大量的计算和证明过程,如果粗心大意,很容易出现错误。
因此,在做几何题时,需要耐心细致地进行计算和证明。
七、系统归纳学习数学需要系统归纳的方法。
可以将所学的知识点进行分类和整理,形成系统的知识结构。
例如,对于几何知识点,可以按照平面几何、立体几何等分类进行整理归纳,方便后续学习和复习。
同时也可以将一些难题或者错题进行归纳整理,以便于及时发现自己薄弱环节并加以改进提高。
总之要想提高八年级数学几何题的解题技巧首先要熟练掌握基本概念并理解每一个概念的性质与定理;其次要学会运用演绎推理方法解决证明题;第三要学会添加辅助线以帮助解决难题;第四要学会转化思想将复杂问题转化为简单问题来解决;第五要学会举一反三总结归纳以掌握解题技巧;第六要细心计算以避免出现错误;最后要将所学的知识点进行系统归纳以便于更好地复习提高学习效率.。
初中数学几何常用十大解题方法

初中数学几何常用十大解题方法
初中数学几何是一门非常重要且广泛运用的学科,掌握一些常用的
解题方法能够加深对这门学科的理解,也有助于我们在考试中更为得
心应手。
下面是我总结的初中数学几何常用的十大解题方法。
1. 引理法:在证明一个重要的结论时,我们可以先引入一个类似的但
容易证明的结论,然后再运用这个结论推导得出所要证明的结论。
2. 分类讨论法:将不同情况按照不同性质分为若干个类别,然后分别
进行讨论,最后再根据各个情况得出所要求的答案。
3. 反证法:这种证明方法常用于证明命题的否定。
先假设结论不成立,然后推导得到一个矛盾的结论,说明原命题是成立的。
4. 相似性质法:找出几何图形之间的相似性质,利用这些性质建立几
何方程来求解未知量。
5. 对称性法:通过图形的对称性质,将几何问题转化为已知问题来解决。
6. 等角定理法:利用三角形等角定理推导问题,解决几何题。
7. 重心法:通过计算三角形各顶点的坐标,进而求出三角形的重心坐标,从而解决几何问题。
8. 勾股定理法:利用勾股定理解决几何题,是一种非常常见的解题方法。
9. 同位角反向法:通过同位角的反向推导,建立几何方程求解未知量。
10. 线性规划法:用代数的方法求解对于一些线性方程的优化问题,对
于一些几何问题也可以通过线性规划进行求解。
以上就是初中数学几何常用的十大解题方法,这些方法都有着广泛的
运用场景,希望大家在学习中能够加以应用,并且能够掌握更多的解
题方法。
立体几何中主要解题思路

立体几何中主要解题思路如下:
1.建立空间坐标系:对于三维空间中的点、线、面等几何对象,
可以通过建立空间直角坐标系来描述它们的坐标。
通过坐标系,可以将几何问题转化为代数问题,从而利用代数方法进行求解。
2.向量方法:向量是解决立体几何问题的重要工具。
通过向量的
加、减、数乘以及向量的模长、向量之间的夹角等性质,可以
方便地解决与长度、角度、平行、垂直等问题。
3.空间几何的性质:掌握空间几何的基本性质,如平行、垂直、
相交等,对于理解问题和寻找解题思路至关重要。
4.投影与截面:在解决与空间几何体相关的问题时,常常需要利
用投影和截面的性质。
例如,求一个几何体的体积或表面积时,
可以通过投影或截面的面积来推导。
5.转化与构造:在解决立体几何问题时,有时需要将问题转化为
更容易处理的形式,或者构造新的几何图形来帮助解决问题。
6.运用几何定理:掌握并运用基本的几何定理是解决立体几何问
题的关键。
例如,勾股定理、余弦定理、正弦定理等。
7.数形结合:在解题过程中,将代数表达式与几何图形相结合,
有助于更直观地理解问题并找到解决方案。
8.逻辑推理:在证明题中,逻辑推理是必不可少的。
通过严密的
逻辑推理,可以证明某些结论或性质。
综上所述,掌握这些解题思路对于解决立体几何问题至关重要。
通过不断练习和总结,可以提高解决立体几何问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何问题解题思路
数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。
今天中公教育为考生整理了数量关系答题技巧中的几何问题解题思路,希望对考生有所帮助!
中公教育为考生整理了几何问题考点的解题思路和技巧,望考生注意以下几个方面。
第一个方面,几何基本公式:
三角形的面积=底×高÷2,长方形(正方形)的面积=长×宽,梯形的面积=(上底+下底)×高÷2,圆形的面积=π×半径的平方,长方体(正方体)的面积=长×宽×高,圆柱体的体积=底面积×高,圆锥体的面积=底面积×高÷3。
第二个方面,几何问题的“割补平移”思想。
中公教育提醒考生,当看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。
对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。
第三个方面,几何极限理论。
平面图形:①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小;
立体图形:①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。
实战例题:
【例题】半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方米?
A.25
B.10+5л
C.50
D.55
【中公教育解析】如下图:连接BD,作矩形BDMN,将下面的四分之一圆弧的半径画出来,可见该部分面积分为彩色的两部分。
上面部分是半圆,下半部分是矩形面积减去2个四分之一圆,即矩形面积减半个圆形面积二部分之和,正好是矩形面积,即10×5=50平方厘米。
故答案为C。
最新招考公告、备考资料就在辽宁事业单位考试网
/liaoning/。