数学几何解题技巧
初中数学解几何题方法总结

初中数学解几何题方法总结数学几何题在初中阶段是我们经常遇到的题型。
解几何题需要运用几何知识和推理能力,同时还需要一些解题技巧。
下面是对初中数学解几何题的一些方法总结。
1. 观察图形特点:在解几何题时,我们首先要观察图形的特点,包括图形的形状、对称性和相等的边或角等。
通过观察图形特点,我们可以获得一些有用的信息,从而更好地解题。
2. 利用几何定理:几何学有一些重要的定理,如皮亚诺定理、勾股定理、正弦定理和余弦定理等。
在解题时,我们可以运用这些定理来分析和推导出有关的几何关系,从而解决几何题。
3. 利用相似性:相似三角形是解几何题常用的方法之一。
如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是相似的。
通过相似性的性质,我们可以求解未知边或角的值。
4. 利用三角函数:在解三角形的几何题中,我们经常需要用到三角函数。
正弦、余弦和正切函数可以帮助我们求解三角形内的边长和角度。
在运用三角函数时,我们需要根据题目给出的条件,选择合适的三角函数关系式进行计算。
5. 运用推理和演绎:解几何题的过程中,推理和演绎是非常重要的。
通过逻辑推理和演绎,我们可以根据题目给出的条件,推导出所需的结果。
合理运用推理和演绎,可以在解几何题时事半功倍。
6. 假设和反证法:在解决一些复杂的几何题时,我们可以采用假设和反证法。
假设一些未知条件或结果,然后根据已知条件进行推导和证明。
通过反证法,我们可以反向推导出题目所求的结果,从而解决几何题。
7. 利用图形辅助线:当我们遇到难题时,可以尝试在图形中加入一些辅助线。
通过合理的辅助线可以将题目转化为易于解决的几何问题。
图形辅助线是解几何题的有效方法之一,可以帮助我们更好地理解和解决问题。
除了以上方法,还有一些解几何题的技巧需要我们注意:1. 画图准确:在解几何题时,我们需要准确地画出图形,尽量按照题目给出的条件和要求进行绘制。
画图准确对于解答几何题是很重要的。
2. 简化计算:在计算过程中,我们可以利用一些简化计算的技巧。
初中数学几何解题方法与技巧

初中数学几何解题方法与技巧
摘要:
一、初中数学几何解题方法概述
1.灵活运用定理
2.掌握答题技巧和解题思路
3.构建辅助线的方法
4.特殊方法与技巧
正文:
初中数学几何解题方法与技巧
几何作为初中数学的重要组成部分,不仅考验学生的逻辑思维能力,还需要掌握一定的解题技巧。
本文将为大家介绍一些初中数学几何的解题方法和技巧,以帮助大家更好地应对几何题目。
一、灵活运用定理
初中几何涉及上百条定理,针对具体的题目,我们需要灵活运用这些定理来解题。
例如,在解决线段和差的问题时,可以运用截长补短的方法。
此外,还需要掌握一些基本定理,如等腰三角形底边上的高、直径所对的圆周角是90度等。
二、掌握答题技巧和解题思路
解决几何题目时,首先要认真审题,弄清楚题目要求证明的内容。
其次,要善于从题目给出的条件中寻找解题线索,对应到图形中进行分析。
此外,要熟练掌握几何题的答题技巧,如构建辅助线的方法。
三、构建辅助线的方法
在解决几何问题时,构建辅助线是非常重要的。
一些常见的辅助线方法包括:中线,延长中线法,等腰三角形作底上的高,直径连结,构成直径所对的圆周角是90度等。
四、特殊方法与技巧
在解决一些复杂的几何问题时,需要运用特殊的解题方法。
例如,平移或旋转的方法,可以用来解决动点问题。
通过这些特殊方法,可以将复杂的问题转化为简单的几何图形,从而更容易解决问题。
总的来说,解决初中数学几何问题的关键在于掌握解题方法和技巧,并通过不断的练习和积累来提高自己的解题能力。
初中数学几何模型的60种解题技巧

初中数学作为学生学习的基础课程之一,其中的几何模型在数学解题中占据着重要的地位。
掌握几何模型的解题技巧不仅可以帮助学生更好地理解数学知识,还可以提高他们的解题效率。
本文将介绍初中数学几何模型的60种解题技巧,希望能为学生们的学习提供帮助。
1. 角度概念的运用:在几何模型的解题过程中,学生可以通过具体的角度概念来解答问题,例如利用垂直角、平行线、内角和为180度等概念来解题。
2. 图形相似的判断:判断两个图形是否相似是解题的基础,学生可以利用边长比例、角度比例等方法来确定图形的相似性。
3. 平行线相关性质的应用:平行线的性质在几何模型的解题中经常会出现,学生可以通过平行线与角度的关系来解答问题。
4. 圆的相关性质的利用:圆的性质在几何模型中也是常见的,学生需要掌握圆的直径、半径、圆心角等概念,以便解题。
5. 三角形的分类和性质的运用:学生需要掌握等边三角形、等腰三角形、直角三角形等不同类型三角形的性质,并根据题目的要求来进行合理的运用。
6. 应用解题:在学习几何模型的解题过程中,学生需要结合实际的应用场景,将抽象的几何原理与具体的问题相结合来解答问题。
7. 连线问题的求解:对于一些多边形的连线问题,学生可以通过几何模型的知识来进行合理的求解。
8. 几何图形的对称性:对称图形在几何模型中也是常见的,学生可以通过对称性来解答与对称图形相关的问题。
9. 正多边形的性质:正多边形的性质是几何模型解题中的重要内容,学生需要掌握正多边形的内角和为180度、外角的性质等知识。
10. 形状的变换:在几何模型的解题中,学生需要掌握形状的平移、旋转、翻转等变换操作,以便解答形状变换后的问题。
11. 圆的面积和周长的求解:学生需要掌握圆的面积和周长的相关公式,并结合题目要求来进行求解。
12. 三角形的面积和周长的求解:学生需要掌握不同类型三角形的面积和周长的求解方法,并灵活运用到不同的题目中。
13. 平行四边形的面积和周长的求解:平行四边形的面积和周长的求解也是初中数学几何模型解题的重要内容,学生需要掌握相关公式及其应用。
几何数学解题技巧

几何数学解题技巧
几何数学是数学领域的一个重要分支,涉及到平面几何、立体几何等多个方面。
解决几何数学问题需要具备一定的基础知识和技巧,以下是一些常用的几何数学解题技巧:
1.画图:解决几何数学问题的第一步是画出几何图形,通过图形可以更清晰地理解题目意思,有助于找到解题思路。
2. 利用等式和性质:几何数学中有很多重要的等式和性质,如勾股定理、相似三角形的性质等,掌握这些等式和性质可以帮助我们更快速地解决问题。
3. 观察图形特征:几何数学问题中的图形往往具有一些特征,如对称性、相似性等,观察这些特征可以帮助我们找到规律和解题思路。
4. 使用代数方法:有些几何数学问题可以使用代数方法进行求解,如利用二元一次方程求解两个未知量,或者利用向量的运算求解空间几何问题。
5. 引入辅助线:有时候我们需要引入一些辅助线来辅助解题,如引入中垂线、平分线等,通过这些辅助线可以将复杂的几何问题简化为更易解决的问题。
以上是一些常用的几何数学解题技巧,掌握这些技巧可以帮助我们更快速地解决
几何数学问题。
数学几何问题解题技巧

数学几何问题解题技巧数学几何问题是许多学生在学习数学过程中遇到的难题之一。
解决几何问题需要一定的技巧和方法,下面将介绍一些常用的数学几何问题解题技巧。
一、画图法解决几何问题的第一步是画出几何图形。
通过准确地绘制所给的图形,可以帮助我们更好地理解问题,并找到解决方案。
在画图时要注意几何图形的形状、比例和准确度。
二、利用已知信息解决几何问题时,首先要充分利用已知信息。
读题时要将已知条件逐一列出,并理解它们之间的关系。
根据已知信息,可以通过几何定理或公式来推导所需的结果。
三、几何定理的灵活运用几何定理是解决几何问题的重要工具。
我们需要熟练掌握各种几何定理,并能够灵活地运用它们。
在解决几何问题时,常常需要将不同的几何定理相结合使用,找到解题的关键点。
四、角度与边的关系解决几何问题时,角度与边的关系是非常重要的一点。
我们需要通过观察几何图形中的角度和边的长度,寻找它们之间的关联。
利用角度与边的关系,可以推导出所求的结果。
五、相似和全等三角形相似和全等三角形是几何问题中常见的概念。
当我们遇到几何问题时,可以尝试通过相似或全等三角形来求解。
相似三角形的对应边比值相等,而全等三角形的对应边长度相等。
通过应用相似或全等三角形的性质,可以简化解题过程。
六、运用代数解题在某些情况下,几何问题可以通过代数的方法来解决。
我们可以用变量表示未知量,列方程,然后通过求解方程来得到答案。
这种方法通常适用于几何问题与代数问题相结合的情况。
七、结合图形推导有些几何问题无法直接得出结论,需要通过推导来解决。
我们可以在几何图形中引入辅助线或辅助点,通过推导和类似三角形等方法来解题。
这种方法通常需要一定的想象力和思考能力。
综上所述,解决数学几何问题需要一定的技巧和方法。
通过合理运用画图法、利用已知信息、几何定理、角度与边的关系、相似和全等三角形、代数解题以及结合图形推导等技巧,我们可以提高解题的效率和准确性。
希望以上的数学几何问题解题技巧对你有所帮助!。
八年级数学几何题解题技巧

一、熟练掌握基本概念解决几何问题时,首先要对几何概念有深入的理解。
对于每一个概念,都要明白它的定义、性质和定理。
例如,在三角形中,要理解三角形的边、角、高的概念,以及三角形的基本性质,如三角形的稳定性、两边之和大于第三边等。
二、演绎推理几何证明题是数学几何题中的一类重要题型,对于这种题目,需要使用演绎推理的方法。
演绎推理是一种严格的逻辑推理方法,它从已知的事实出发,通过逻辑推理得出结论。
在演绎推理中,需要注意使用定理、公理等已知事实,以及推理规则的正确性。
三、辅助线在解决一些较难的几何问题时,通常需要添加辅助线。
辅助线可以帮助我们更好地理解问题的本质,以及找到解决问题的方法。
例如,在证明勾股定理时,可以通过添加辅助线将直角三角形转化为矩形。
四、转化思想转化思想是数学中的一种重要思想方法,它通过将复杂问题转化为简单问题,或者将不规则图形转化为规则图形,从而解决问题。
例如,在求多边形的面积时,可以将多边形转化为三角形或矩形来计算。
五、举一反三在学习数学时,要学会举一反三。
对于一个题目,不仅要会做,还要理解其背后的原理和思路,这样才能在遇到类似问题时游刃有余。
例如,在解决几何问题时,可以通过举一反三的方法,将类似的题目进行归纳和总结,从而更好地掌握解题技巧。
六、细心计算在做数学题时,一定要细心计算。
几何问题通常涉及到大量的计算和证明过程,如果粗心大意,很容易出现错误。
因此,在做几何题时,需要耐心细致地进行计算和证明。
七、系统归纳学习数学需要系统归纳的方法。
可以将所学的知识点进行分类和整理,形成系统的知识结构。
例如,对于几何知识点,可以按照平面几何、立体几何等分类进行整理归纳,方便后续学习和复习。
同时也可以将一些难题或者错题进行归纳整理,以便于及时发现自己薄弱环节并加以改进提高。
总之要想提高八年级数学几何题的解题技巧首先要熟练掌握基本概念并理解每一个概念的性质与定理;其次要学会运用演绎推理方法解决证明题;第三要学会添加辅助线以帮助解决难题;第四要学会转化思想将复杂问题转化为简单问题来解决;第五要学会举一反三总结归纳以掌握解题技巧;第六要细心计算以避免出现错误;最后要将所学的知识点进行系统归纳以便于更好地复习提高学习效率.。
复习数学几何题与解题技巧

复习数学几何题与解题技巧数学几何是中学数学的重要部分,它研究的是空间中的形状、大小、位置等问题。
为了能够熟练解决数学几何题,我们需要进行系统的复习和掌握解题技巧。
本文将为大家介绍数学几何复习的方法,并分享一些解题技巧。
一、复习数学几何题的方法1. 逐章复习首先,我们可以按照教材的章节顺序进行复习。
建议将每章的重点概念和定理进行整理,通过重新学习,加深理解。
2. 做题集做题集是巩固知识的重要途径。
可以选择一些难度适中的数学几何题目,通过解答题目来巩固知识。
需要注意的是,不要只做重复性的计算题,要注重理解题意和分析解法。
3. 总结解题思路在复习的过程中,我们需要总结出不同类型题目的解题思路。
例如,对于平面几何,可以总结出三角形、圆形、平行四边形等不同类型题目的解题方法。
这样可以在遇到同类型题目时,能够更加迅速地找到解题思路。
二、数学几何题的解题技巧1. 画图在解决数学几何题时,画图是非常重要的一步。
通过画图,可以直观地理解题意和形状,同时也有利于找到解题的突破口。
在画图的过程中,要注重几何图形的比例,尽量保证图形的准确性。
2. 运用几何性质数学几何题的解题过程中,需要充分运用几何性质。
例如,对于三角形问题,我们可以利用三角形的角、边关系来解题;对于圆形问题,我们可以利用圆的性质,如切线、弦等来解题。
3. 利用相似性相似性是解决几何问题的重要思想之一。
当两个图形具有相似性质时,我们可以运用相似三角形的性质来解题。
通过找出相似关系,可以计算未知长度、面积等。
4. 应用解析几何解析几何是数学几何的一种重要方法。
通过引入坐标系,将几何问题转化为代数方程,从而进行解题。
这种方法适用于某些无法直接得出结果的几何问题,如证明题等。
5. 多角度思考在解决数学几何题的过程中,要多角度思考问题。
如果直接的方法行不通,可以尝试从不同的角度入手,运用不同的角度来解题。
这样可以开阔思路,提供新的解题思路。
通过以上的复习方法和解题技巧,相信大家能够更好地理解和掌握数学几何知识,提高解题能力。
高考数学立体几何大题的八大解题技巧

高考数学立体几何大题的八大解题技巧1、平行、垂直位置关系的论证的策略(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2、空间角的计算方法与技巧主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3、空间距离的计算方法与技巧(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4、熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
5、平面图形的翻折、立体图形的展开等一类问题要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教学中几何解题思路分析
【摘要】平面几何在初中数学中一直占据着很重要的位置。
而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。
正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。
”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。
对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。
在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。
【关键词】初中数学;教学;几何;解题思路;
对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。
尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。
当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。
只有思维能力得到提高,才能更好地掌握解题技巧与规律。
下面我们通过具体的实例进行详细分析初中数学几何题的解题思路,
一、初中数学几何的解题技巧
1、对常见的题型与解题方法进行归纳总结
初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。
初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。
对线段的关系的证明通常包括相等及其和差关系等的证明。
在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。
在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。
对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。
对常见技巧进行掌握,能有效提高学生的解题效率。
2、注意对辅助线进行添加和使用
在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。
在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。
对常见技巧进行掌握,能有效提高学生的解题效率。
下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧:
如下图所示,已知:在ABC ∆中,︒=∠90C ,B C AC =,DB A D =,B F A E =,求证:DF DE =,
分析:通过上述条件和上图1所示可以得知,ABC ∆是等腰直角三角形,其中︒=∠=∠45B A ,所以根据定理可以得知,D 是AB 的中点,然后连接CD ,从而可以得知CD=AD ,︒=∠45DCF ,从而可以发现DAE DCF ∆=∆
证明:连接CD
由AC=BC ,可以得B A ∠=∠,又因为DB AD 90ACB =︒=∠,,所以可以得知CD=BD=AD ,A B DCB ∠=∠=∠,已知,AE=CF ,所以DCB A ∠=∠,AD=CD ,所以可以得知CDF ADE ∆≅∆,所以DE=DF.
说明:在直角三角形中,通过做斜线上的中线是常用的辅助线,在等腰三角形中,进行作顶角的平分线或者底边上的线或高,从图中可以明显的看出来,在等腰直角三角形中,我们应该连接CD ,因为CD 即是斜边上的中线,而且也是底边上的中线。
从而可以证明出CDF ADE ∆≅∆,进而得出DE=DF 。
所以学生要注意对辅助线的添加方法进行总结。
如针对等腰三角形的“三线合一”的性质,学生就应该了解到要做的辅助线比较常用的会是中线或顶角的平分线;而对直角三角形来说,要注意斜边上的中线是其常用的辅助线,尤其是斜边上出现中点时;对梯形来说,通过平移一腰或对角线作高的方法把它转化成平行四边形或者三角形是常用的技巧。
当然,几何中的常用辅助线很多,学生一定要多加注意,这样才能对解题能力有所提高。
3、对特殊条件下的常用辅助线进行总结
另外,在对初中几何题进行解题的过程中,还要注意对特殊条件下经常用到的辅助线进行归类和总结,以方便学生更加系统地对相关知识进行掌握。
比如“角的平分线”就是在初中几何题中经常会出现的一个条件,这种题在很多情况下都要对其加辅助线才能解决,虽然方法在具体上有很多种,但总结来说,大致有三种(图1,是仙是条件,虚线是辅助线):
图1
从图中我们可以看出,图(1)的辅助线是通过角的平分线的性质定理得出的,图(2)是对角两边的相等线段进行截取,图(3)是对有角的一边上的点到其平分线的垂线线段条件下,对垂线段进行延长,使其通过与另一边相交而出现全等三角形。
这些都是特殊条件下常用的辅助线。
学生对这些进行归纳和总结,会在解题中对该种条件有本质上的认识,同时也对其记忆来说和方便,有利于其解题的速率。
二、如何对学生的思维能力进行培养
1.教师在教学过程中要重视对教材中逻辑成分的讲解
对学生的思维能力进行培养,首要的是对其逻辑思维能力进行培养。
而要更好地培养其逻辑思维能力,主要的途径是在教学中让学生在推理论证过程中对逻辑方面的知识进行应用,以此来对学生的抽象概括、分析综合以及推理证明的能力进行提高。
在初中教学中,其实有很多地方都运用了逻辑方面的知识,所以,教师在对学生进行教学的过程中,一定对教学的具体内容进行结合,对一些必须的逻辑知识进行通俗地讲授,指导学生对这些知识进行推理和证明的应用,进而在应用中提高自己的逻辑思维能力。
比如在解几何性应用题,既要让学生学会分析问题,而且也能够将书序知识运用到实际的生活中,比如在某公路MN 和公路PQ 在P 点交汇,并且两条公路构成的30=∠QPN ,而在点A 处有一所学校,并且AP 之间的长度为160m ,如果一辆噪声较大的汽车行驶时,周围100m 以内将会受到影响,那么如果
这辆汽车在公路MN 上沿着PN 方向进行行驶,问学校是否会受到噪声的影响,已知这辆汽车的行驶速度为18Km/h,那么学校如果受到影响,则受到影响的时间为多少?
解析:通过题目可以得知,此题为圆和直角三角形综合应用题,如果想要判断学校是否受到影响,则只需要进行得出E 到到AB 距离就能够得出,对于影响的时间为多久,则只需要求出影响路段的长度就能够得出。
解题:在求解的过程中中首先过A 点作出AB ⊥CD ,垂足为B ,然后在 AB P Rt ∆,︒=∆=∆30QPN APB ,160AP =,则80AP AB ==,由此可以得出学校会受到影响。
以A 为圆心,然后以100m 为半径可以作出圆A 交与MN 与C 、D 两点,并且在 AB P Rt ∆中有100 AC =,80 AB =,则60 BC =所以可以得出,60 2B C CD ==,并且有已知条件知,18Km/h=5m/s,所以可以得知学校受到的影响时间为24s.通过对身边的一些事情,运用数学问题进行解决,不仅能够提高学生的理解能力,而且对激发学生对数学的学习兴趣也具有重要的作用。
2.对学生平面几何与立体几何的教学进行加强
科学研究表明,智力与思维能力的发展,不仅与知识的增长有关系,而且还与人的年龄有密不可分的联系。
人的思维能力会随着年龄增长而变丰富,这种增长是基于对世事的理解。
而说到最好的思维能力培养时间,实际上是在出生到十七岁左右。
所以,在初中阶段一定要好好培养学生的思维能力。
平面几何与立体几何因为涉及的逻辑知识比较多,通过对其的学习,能够有效增强学生的思维能力。
所以,教师在一定要加强对平面几何与立体几何的教学,并积极引导学生去思考,这样才能更好地提高学生的思维能力。
三、总结
在数学教学中,几何是学习中最为重要的一个课题,也是相对比较难的课题,所以我们应该加强注意降解解题思路的分析和学习方法的教学,并通过采用实际的问题进行解几何问题,采用图形来获取相同的解题思路的方法,有利于学生快速地找到正确解决问题的方法和手段,以提高几何解题能力。