第二章(2)方向电流保护

合集下载

电力系统继电保护-(第2版)第二章-电流保护PPT课件全文编辑修改

电力系统继电保护-(第2版)第二章-电流保护PPT课件全文编辑修改
➢最小运行方式:是指系统投入运行的电源容量最小,系统的
等值阻抗最大,以致发生故障时,通过保护装置的短路电流为 最小的运行方式。
➢最大短路电流:在最大运行方式下三相短路时通过保护装置
的电流为最大,称为最大短路电流。
Ik.m axZ E Z s.m iE nZ k 1Z s.m in E Z 1 L k 1短路类型系数
流来整定。
动作电流:
I =K II
II
set.2 rel
Iset.1
K r I e I l 1 .1 ~ 1 .2 ( 非 周 期 分 量 已 衰 减 )
为保证选择性,动作时限要高于下一线路电流速断保护的动 作时限一个时限级差△t (Δt一般取0.5s)
动作时间: t2II t1 tt
(1) 前一级保护动作的负偏差(即保护可能提前动作) ; (2) 后一级保护动作的正偏差(即保护可能延后动作) ; (3) 保护装置的惯性误差(即断路器跳闸时间:从接通跳闸回 路到触头间电弧熄灭的时间) ; (4) 再加一个时间裕度。
Lmin
1( Z1
3 E
2
II set
Zs.max)
(保证选择性和可靠性,牺牲一定的灵敏性,获得速动性)
三、保护实现原理图
电流速断保护的主要优点是动作迅速、简单可靠。 缺点是不能保护线路的全长,且保护范围受系统运行方式和 线路结构的影响。当系统运行方式变化很大或被保护线路很 短时,甚至没有保护范围。
对于单侧电源网络的相间短路保护主要采用三段式电流 保护,即第一段为无时限电流速断保护,第二段为限时电 流速断保护,第三段为定时限过电流保护。其中第一段、 第二段共同构成线路的主保护,第三段作为后备保护
电流互感器和电流继电器是实现电流保护的基本元件。

(完整版)电力系统继电保护辅导资料二

(完整版)电力系统继电保护辅导资料二

电力系统继电保护辅导资料二主题:课件第二章电网的电流保护第1-2节——单侧电源网络相间短路的电流保护、电网相间短路的方向性电流保护学习时间:2013年10月7日-10月13日内容:我们这周主要学习第二章的第1-2节,单侧电源网络相间短路的电流保护和电网相间短路的方向性电流保护的相关内容。

希望通过下面的内容能使同学们加深电网电流保护相关知识的理解。

一、学习要求1.掌握三段式电流保护的配合原则、整定计算,会阅读三段式电流保护的原理图;2.理解方向性电流保护中方向元件的作用,能正确按动作方向分组配合、整定计算。

二、主要内容(一)单侧电源网络相间短路的电流保护1.继电器(1)基本原理能自动地使被控制量发生跳跃变化的控制元件称为继电器。

当输入信号达到某一定值或由某一定值突跳到零时,继电器就动作,使被控制电路通断。

它的功能是反应输入信号的变化以实现自动控制和保护。

继电器的继电特性:(也称控制特性)继电器的输入量和输出量在整个变化过程中的相互关系。

图1 继电特性继电器的返回系数r K :返回值r X 与动作值op X 的比值。

即r r opX K X 过量继电器:反应电气量增加而动作的继电器。

其返回系数小于1,不小于0.85。

欠量继电器:反应电气量降低而动作的继电器。

其返回系数大于1,不大于1.2。

(2)继电保护装置的基本分类● 按动作原理:电磁型、感应型、整流型、晶体管型、集成电路型、微机型等继电器。

● 按反应的物理量:电流继电器、电压继电器、功率方向继电器、阻抗继电器和频率继电器等。

● 按作用:起动继电器、时间继电器、中间继电器、信号继电器和出口继电器等。

Y Y min 0(3)过电流继电器动作电流(I op ):使继电器动作的最小电流。

返回电流(I re ):使继电器由动作状态返回到起始位置时的最大电流。

2.单侧电源网络相间短路时电流量值特征正常运行:负荷电流短路:三相短路、两相短路k k s E I K Z Z ϕϕ=+式中,E ϕ——系统等效电源的相电动势;s Z ——保护安装处至系统等效电源之间的阻抗;k Z ——短路点至保护安装处之间的阻抗;K ϕ——短路类型系数(三相短路取1,两相短路取2)。

电力系统继电保护第二章习题和答案解析

电力系统继电保护第二章习题和答案解析

2电流的电网保护2.1在过量(欠量)继电器中,为什么要求其动作特性满足“继电特性”?若不满足,当加入继电器的电量在动作值附近时将可能出现什么情况?答:过量继电器的继电特性类似于电子电路中的“施密特特性“,如图2-1所示。

当加入继电器的动作电量(图中的k I )大于其设定的动作值(图中的op I )时,继电器能够突然动作;继电器一旦动作以后,即是输入的电气量减小至稍小于其动作值,继电器也不会返回,只有当加入继电器的电气量小于其设定的返回值(图中的re I )以后它才突然返回。

无论启动还是返回,继电器的动作都是明确干脆的,它不可能停留在某一个中间位置,这种特性称为“继电特性”。

为了保证继电器可靠工作,其动作特性必须满足继电特性,否则当加入继电器的电气量在动作值附近波动时,继电器将不停地在动作和返回两个状态之间切换,出现“抖动“现象,后续的电路将无法正常工作。

126534op I kI reI 1E 0E2.2 请列举说明为实现“继电特性”,电磁型、集成电路性、数字型继电器常分别采用那些技术?答:在过量动作的电磁型继电器中,继电器的动作条件是电磁力矩大于弹簧的反拉力矩与摩擦力矩之和,当电磁力矩刚刚达到动作条件时,继电器的可动衔铁开始转动,磁路气隙减小,在外加电流(或电压)不变的情况下,电磁力矩随气隙的减小而按平方关系增加,弹簧的反拉力矩随气隙的减小而线性增加,在整个动作过程中总的剩余力矩为正值,衔铁加速转动,直至衔铁完全吸合,所以动作过程干脆利落。

继电器的返回过程与之相反,返回的条件变为在闭合位置时弹簧的反拉力矩大于电磁力矩与摩擦力矩之和。

当电磁力矩减小到启动返回时,由于这时摩擦力矩反向,返回的过程中,电磁力矩按平方关系减小,弹簧力矩按线性关系减小,产生一个返回方向的剩余力矩,因此能够加速返回,即返回的过程也是干脆利落的。

所以返回值一定小于动作值,继电器有一个小于1 的返回系数。

这样就获得了“继电特性”。

2011继电保护 第2章 电网的电流保护双侧电源

2011继电保护 第2章 电网的电流保护双侧电源
级 set K b
(2)外汲电流的影响 限时电流速断保护整定时 分支电路的影响 考虑分支系数
I
set
K rel I set .下一级 K b
3.过电流保护装设方向元件的一般方法 反方向保护的延时小于本线路保护的动作延时,本保护可不用方向元件
0 60 C相继电器能够动作的条件 分析结论:三相短路和任意两相短路,当 0 90 K 使故障相方向继电器动作的条件为 30 60 90°接线方式的优点 缺点 (1)两相短路没有死区

(2)选择继电器的内角在30°和 60° 之间,各种相间短路都能保证动作的方向性 在保护安装地点附近正方向发生三相短路时,方 向保护存在动作的死区
0 90 K

的情况下均能动作,应选择
0 90
在三相对称的情况下,当功率因数为1时,加入继电 器的电流和电压相位相差90°(这只是加入继电器的 电压和电流的一种组合,并无实际意义)
之间才能满足要求
同一相的电流元件与功率元件必须串联,然后再 与其它相并联,一起起动其它元件
2.正方向发生两相短路 (1)短路点位于保护安装地点附近 为使故障相方向继电器在任何 0 90 K 的情况下均能动作,应选择 之间才能满足要求 0 90 (2)短路点远离保护安装地点 120 B相继电器能够动作的条件 30 C相继电器能够动作的条件 30 60 正方向发生两相短路 B相继电器能够动作的条件 30 90
五、方向性电流保护的应用特点 1.电流速断保护可以取消方向元件的情况 速断保护的整定值躲过反方向短路时流过保护的最大短路电流, 保护可以不用方向元件
2.限时电流速断保护整定时分支电路的影响 (1)助增电流的影响 分支系数 故障线路流过的短路电 流 K b 前一级保护所在线路上 流过的短路电流

电力系统继电保护第二节 电网相间短路的方向性电流保护

电力系统继电保护第二节  电网相间短路的方向性电流保护
第二章 电网的电流保护
第二节 双侧电源网络相间短路的 方向性电流保护



双侧电源网络相间短路时的功率方向
1. 问题的提出

三段式电流保护是以单侧电源网络为基础进 行分析的,各保护都安装在被保护线路靠近 电源的一侧,或者说线路的始端。仅利用相 间短路后电流幅值增大的特征来区分故障与 正常运行状态的,以动作电流的大小和动作 时限的长短配合来保证有选择的切除故障。
k 2
~
Ik 2
180o k 2
故利用判别短路功率方向或电流、电压
之间的相位关系便可判别发生故障的方向.
4. 要求
继电保护中对方向元件(继电器)的基本要求: 1) 应具有明确的方向性 即正前方发生各种故障时,能可靠动作, 而在反方向故障时,可靠不动作。 2) 故障时继电器的动作有足够的灵敏度。
UA
60o
电流超前电压 I k1A
在这种情况下继电器 的最大灵敏角设计为:
sen k 90 30
0
0
30o
UBC
UC 正方向短路时,能灵敏动作。
I k 2 A 150o
电流滞后电压
UB
习惯上采用 90o k 方向继电器的内角。
, 称为功率
e j 动作方程为: arg U J 90o IJ
8
~
当k1点短路时,按照选择性的要求,应由保护2和保护 EⅡ 供给的短路电流 I k1 也将通 6动作切除故障.但由于 I k1 大于保护装置1 过保护1.若保护1采用电流速断且 的起动电流 I set 1 ,则保护1的电流速断就要误动(母线 上可能挂有其它分支线路)。造成C变电所全部停电。
同样的分析其它短路点时,对有关的保护装置也能 得出相应的结论。

第二章电流保护和方向性电流保护

第二章电流保护和方向性电流保护

曲线 max :系统最大运行方式下发生三相 短路情况。 曲线min:系统最小运行方式下发生两相 短路情况。
(线路上某点两相短路电流
为该点三相短路电流的 倍)
3 2
(2) 动作电流整定
原则:按躲开下条线路出口(始端)短路时流过本保护的 最大短路电流整定(以保证选择性): IIdz.1 > I(3)d.B.max 取:IIdz.1= KБайду номын сангаасI· I(3)d.B.max IIdz.2 > I(3)d.c.max IIdz.2= KkI· I(3)d.C.max
可靠系数: KkII = 1.1~1.2
(Id中非周期分量已
衰减,故比K I稍小)
2、动作时限的配合 为保证本线路电流II段与
下条线路电流I段的保护范围
重叠区内短路时的动作选择 性,动作时限按下式配合: tII1=tI2+t≈t (t: 0.35s~0.6s,一般取0.5s) 3、保护装置灵敏性的校验 对于过量保护,灵敏系数:
(可靠系数:KkI = 1.2~1.3)
(3) 灵敏性校验
该保护不能保护本线路全长, 故用保护范围来衡量: max:最大保护范围. min:最小保护范围.
Exx / 3 Exx / 3 3 I 由: Kk 2 Z s.max z1lmin Z s.min z1L
3 Z s.min z1L 可求得:lmin ( Z s.max ) / z1 I 2 Kk
为保证动作选择性,动作
时限按“阶梯原则”整定:
tIII1=Max{tIII2,tIII3,tIII4}+t
对定时限过流保护,当故障越靠近电源端时,此时短路电
流Id越大,但过流保护的动作时限反而越长 ——— 缺点 ∴ 定时限过流保护一般作为后备保护,但在电网的终端可以 作为主保护。

电力系统继电保护 中国电力出版社方向保护(2-2)

电力系统继电保护 中国电力出版社方向保护(2-2)
发现差异:保护2的方向与 IK 的方向相反; 保护3的方向与 IK 的方向相同。
为此,如果我们设计一个方法能够区分“正方向”
和“反方向”(差异),那么,问题就迎刃而解了。
4/48
M 1
N
2
3
P 4
IK
K1
区分方向的问题,必须采用至少 2 个电气量的相
量比较。
经过研究、分析,采用:以保护安装处的电压作
算出口短路?何处算正方向短路?何处算反方向
(或区外)短路?
44/48
图2.29供了解,那是晶体管、集成电路的实现 框图。
提前说明:在后续介绍的距离保护(阻抗保护) 中,既可以实现短路范围的判别(现在已学习的 是:电流判别),还可以识别短路的方向(现在 已学习的是:方向元件),另外,距离保护受系 统运行方式的影响要小很多。
9、2段、3段的整定原则?灵敏度校验的公式 10、延时的选择 11、近后备?远后备? 12、TA接线方式 13、方向元件为什么能够判别短路方向? 14、方向元件的接线方式 15、最大灵敏角 16、方向元件的动作特性(动作区域) 17、配置方向元件的原则 18、何谓方向元件的死区?
29/48
为此,方向元件的配置应该按照 “少而精” 的原则。 1)电流整定值能保证选择性时,不加方向元
件; 2)在线路一端加方向元件后满足选择性要求
时,不必在线路两端都加方向元件。
30/48
具体选择的方法: (1)对于电流速断(1段、2段)
如果反方向的最大短路电流小于本保护的定值, 可以不加方向元件(不会误动)。 (2)对于过电流保护(3段)
取何
m


后面再说明

U'm Im.3 U'm-Im.3 类似于判别:

3继电保护-方向(2-2)

3继电保护-方向(2-2)

第 2.2节双侧电源网络相间短路的方向性电流保护双电源及多电源系统供电更可靠。

如下图,即使断路器1、2跳开(无论何原因),则变电站M 、N 、P 的供电情况受到的影响较小。

变电站M 、P 背后的电源可能是多个电源,但是,经戴维南原理等效后,突出了所要研究的M ~ P 之间的线路情况。

M N P1234K I→找差异保护2不满足“选择性”要求,怎么办?对于上图的故障情况,按选择性要求,希望:保护3、4跳闸,保护1、2不跳闸。

一、问题的提出如果保护1~4均按照第一节的方法进行整定,那么,在K 1 点发生短路时,如果短路电流I K 大于保护2 和3 的定值,则保护3属于应当动作跳闸,但,保护2 的动作属于误动,从而导致变电站N 被停电。

M N P1234K 1'KIM N P1234K 1发现差异:保护2的规定正方向与的方向相反;保护3的规定正方向与的方向相同。

我们规定继电保护工作的“正方向”:由继电保护安装处指向被保护元件。

{教材中,正方向规定为:由母线指向线路(仅适用于线路)}K I K IK I电压正方向:电压升(目的:便于相量的加减)。

a U b U ab UM N P 1234K 1区分方向的问题,必须采用至少 2 个电气量的相量比较。

经过研究、分析,较多地采用:以保护安装处的电压作为参考相量。

于是,保护2和3的电气量有如下的相量关系:K I为此,我们试图设计一种方法,如果能够区分是“正方向”还是“反方向”(差异),并且,只让对应为“正方向”的保护动作,那么,问题就迎刃而解了。

K IM N P 1234K 13.m I 2.m Im U m U 3.m I 2.m I kϕ可以设法仅满足“正方向”时才动3.m K m I Z U =由电路原理可得:按照标定的方向,2.m K IZ -=KZ 分界线保护3的正向为线路阻抗角k ϕ如果实现了上述的“短路方向”判别,那么,只要在方向相同的保护之间进行“配合”即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 反映线路相间短路的方向电流保护 一、方向电流保护的原理
(一)方向电流保护的基本原理
? 当K1点短路时:应3、4先动作
t ? t III op .2
III op .3
? 当K2点短路时:应1、2先动作
t ? t III op .2
III op .3
? 当K1点短路时: ? 保护2
短路功率方向为从线路到母线,不应动作; ? 保护3
对于U相的方向元件: I&r ? I&u U&r ? U&vw
? r ? ? (90 o ? ? k ) ? ? 45 o ~- 30o 左右。
方向元件的最大灵敏角 ? s
应根据实际线路的短路阻抗角来整定:
当 ? k 在 60? 附近时,方向元件的最大灵敏角? s
应整定在- 30o ;
当 ? k 在 45o附近时,方向元件的最大灵敏角 ? s
短路功率方向为从母线到线路,应该动作。
当K2点短路时: ? 保护3
短路功率方向为从线路到母线,不该动作; ? 保护2
短路功率方向为从母线到线路,应该动作。
? 方向电流保护:加装了用来判断短路功率方 向元件的电流保护;
? 功率方向元件(方向元件):用来判断短路 功率方向的元件;
? 正方向:规定的方向元件动作的方向。 ? 反映相间短路的电流保护,方向元件动作的
靠系数均取 1.2)
I
L1
K1
K2
? 对于整流型功率方向继电器,其接线方式是指加在 各相方向继电器电流线圈上的电流与电压线圈上的 电压的组合方式。
? 对于微机型保护装置,其功率方向元件的接线方式 是指保护在进行短路功率方向判别的计算时,所取 的电流与电压的组合方式。
90 ? 接线方式:采用故障相的电流与另外两相线电 压的组合方式。
?
?t
……。
? 逆向阶梯形原则
t III
op.6
?
t III
op.4
?
?t
t III
op.4
?
t III
op.2
?
?t
……。
(二)方向电流保护的构成举例 1.机电型方向过电流保护
XB
KW
2.微机型带低电压闭锁的方向过电流保护
低压控制字= 0
Ua,b,c V/V
低压控制字= 1 低电压元件
≥1 &
方向元件 U相方向元件 V相方向元件 W相方向元件
Ir
Ur
I&u U&vw
I&v U&wu
I&w U&uv
设:三相对称且同名相电流与电压同相位
则:加入方向元件的电流超前电压的相角为 90? 。
对于反映相间短路故障的方向元件, 通常采用 90? 接线方式。
设:保护安装处正方向发生三相短路故障
线路的短路阻抗角 ? k一般在 60? ~ 45? 左右。
2.动作范围
? ? 方向元件的动作条件: Pk ? Ur Ir cos ?r ? ? s ? 0
动作范围为: -90o+? s ? ? r ? 90o ? ? s
设:某方向元件的最大灵敏角 ? s 整定在-30?
则该方向元件的动作范围为:
? ? ?
90 o ? 30 o
?
? ?;。 r
90 o
?
30 amp;r之间的夹角,用
? s 表示。
令: Pk ? Ur Ir cos?? r ? ? s ?
? ? 则:当
? ? ? r
时 s , ;
cos?r ??s ?, 1
P k 最大,方向元件动作最灵敏。
反应相间短路的功率方向元件,最大灵敏角
?
s
一般整定在:- 30? ~- 45? 左右。
? 潜动:在只加电流,没有加电压;或只加电压, 没有加电流的情况下,方向元件有误动作的现 象。
? 对于只加电流时产生的潜动,称为电流潜动; ? 对于只加电压时产生的潜动,称为电压潜动。
? 死区:有可能造成方向元件拒动的区域,称为 方向元件的死区。
(四)功率方向元件的接线方式
? 指加入方向元件的电流与电压的组合方式。
Ia,b,c I/V
方向控制字= 0 方向控制字= 1
方向元件
≥1 &
过电流元件 过电流保护软压板
&t
出口
二、功率方向元件
(一)功率方向元件的原理 ? 以保护安装处母线电压为基准,当短路电流由母线
流向线路时,短路功率方向为正。
功率方向元件的原理
K1点短路时:
I&KM 与 U&之间的夹角
0 o ? ? 1 ? ? k 1 ? 90 o
正方向为:从母线流向线路。
保护1、3、5的动作方向相同,在对它们进行整定计算时, 只需要考虑M侧电源的影响; 保护2、4、6的动作方向相同,在对它们进行整定计算时, 只需要考虑N侧电源的影响。
例如: ?
t III op .1
?
t III op .3
?
?t
t III op.3
?
t III op .5
应整定在- 45o
(五)按相起动原则
在机电型保护装置中 ,要求仅同名相的电流继电器 与功率方向继电器的常开触点串联连接。
+
KAu
KWu
KT
-
KAw
KWw
在微机型继电保护装置中 ,其电流元件、方向元件 均应取故障相的电流及其对应相的电压进行计算、 判别。
复习题
? 1、方向元件动作的正方向。 ? 2、逆向阶梯形原则 ? 3、功率方向元件的最大灵敏角和动作范围 ? 4、功率方向元件的潜动和死区 ? 5、功率方向元件的接线方式 ? 6、按相起动原则
7.计算题( 10分) 通过计算确定 10KV线路L1的相间电流保护,并校验 II、
III段灵敏度。
已知:L1输送的最大负荷功率为 2.5 MW ,cOSΦ=0.9
Kss=1.5 。 最小运行方式下 K1点三相短路电流为 1000A,K2 点 三相短路电流为 700A; 最大运行方式下 K1点三相短 路电流为1200A,K2 点三相短路电流为 800A.(各段可
? 1 ? ? k1
通过保护3的短路功率 Pk1 ? UIKM cos?1 ? 0
K2点短路时: I&KN 与 U& 之间的夹角
? 2。 ? ? k 2 ? 180 o


180 o ? ? 2 ? 270 o
通过保护3的短路功率 Pk2 ? UI KN cos ? 2 ? 0
(二)功率方向元件的最大灵敏角和动作范围
,即 ? 120 o ? ? r ? 60 o
r
制动 区
r
?120o
? 30o
60o
动作区 U? j r
I? jr
? 考虑到电流互感器、电压互感器的角度误差、 计算误差以及短路电流中非工频分量等因素
对保护的影响,为了防止反方向故障时方向
元件误动作,功率方向元件的实际动作范围 应小于180o。
(三)功率方向元件的潜动和死区
相关文档
最新文档