第六节 方向性电流保护
电流保护和方向性电流保护

电流保护和方向性电流保护前言在电路设计中,为了保证电路的安全性和稳定性,电流保护是至关重要的。
电流保护的作用是在电路中的温度和电压超过规定范围时,自动断开电路,以保护电路和电子元件的安全。
而方向性电流保护则是扩展了电流保护的概念,它主要是保护电路中不希望发生反向电流的器件,避免其中的基极被反向激活,并对保护的结果进行非对称的判断。
电流保护电流保护的作用是当电路中所承受的电流超过所允许的最大值时,安全地切断电路,以避免电路受到不可逆的伤害。
电流保护的原理是利用响应电路的电阻特性,产生一定的热量,当电流超过一定范围时,就会将热量转换成温度将电路断开,以达到保护的目的。
电流保护器的分类电流保护器根据其保护范围的不同可分为两种类型:通用电流保护器和专用电流保护器。
通用电流保护器的作用范围比较广泛,它适用于各种类型的电子电路中,其保护范围为0.5A至30A。
专用电流保护器的作用范围比较局限,它主要是针对一些特定的电子器件,如半导体电源等。
其保护范围为0.01A至2A。
电流保护器的保护方式可以分为以下几种:1.热联保护热联保护是指利用热电效应,将电路中消耗的热量和电流值进行比较,当电流值超过保护范围时,就会产生过高的温度,触发热敏保护器,切断电路,保护电路和元器件。
这种保护方式主要应用于回路和电路板和其它电子设备中。
2.电磁式保护电磁式保护是指利用电流在线圈中产生的磁场和电磁绕组的相互作用,当电流超过保护范围时,磁场会引起保护线圈的动作,打开断路器,切断电路。
这种保护方式主要应用于动力电路、电力电路和自动化设备中。
3.脱扣式保护脱扣式保护是指保护器不采用导电保护方式,而是采用非导电保护方式,如磁性断路器和热敏断路器等。
这种保护方式一般应用于低、中、高压电力系统中。
方向性电流保护方向性电流保护主要是针对电路中不希望发生反向电流的装置,比如半导体器件、电极、接头等,它主要是保护这些器件不被反向激活,保证其正常工作和使用寿命。
2-2 方向性保护

X AB
X BC.M
I AB.M
X 2s
I BC.M
M
115 115 ( X AB X 1s ) I AB.M X 2 s ( I BC .M I AB.M ) 3 3
I BC .M X AB X1s X 2 s K fz I AB.M X 2s
4 3 5 2 6 1 7 8
E1
A
B I'
d1
d1
'' I d1 C
D
E2
I dz.3 I dz.2 I dz.1
I dz.7 I dz.6 I dz.5
I dz.7 K ph I dz.6 1.1 ~ 1.15I dz.6
?
目的:保证选择性,防止越级跳闸。
动作时限:将动作方向一致的保护,按逆向 阶梯原则进行。
例 1:
解:
1、对保护1进行限时电流速断的整定
1)动作电流
•求 I dz.3
Kk I dz.1 I dz.3 K fz.min
115 3
A
B
X 1s.min
115 3
X AB
X BC
X min ( X AB X 1s.min ) // X 2 s.min (0.4 20 2) 15 6() 0.4 20 2 15
d1
d1
'' I d1 C
D
E2
误动产生的原因:是由所保护线路反方向发生 故障,由对侧电源供给电流引起的。 特点 该电流由线路流向母线
与线路故障时短路功率方向(由母线到 线路)相反 解决方法 ——加设一个功率方向闭锁元件 由母线到线路,动作 该元件 由线路到母线,不动作
方向电流保护

一、方向性电流保护的工作原理1、1、问题的提出2.解决办法d1点短路:保护1的短路功率由线路指向母线,保护6的短路功率由母线指向线路。
d2点短路:保护1的短路功率由母线指向线路,保护6的短路功率由线路指向母线。
利用这个特点可构成一种保护,这种保护要求:凡是流过保护的短路功率是由母线指向线路时(正),保护就起动;凡是流过保护的短路功率是由线路指向母线时(负),保护就不起动。
d1点短路:保护2、3、6、7、起动,根据阶梯时限原则t2 <t3,t6 <t7 ,保护2和6动作,保护3、7返回,从而保证有选择地切除故障d2点短路:保护1、2、3、7起动,t1 <t2 <t3 ,故保护1和7起动,保护2、3返回,判断短路功率方向,一般采用功率方向继电器。
d1 点短路时:Pd1 =UId1 cos ϕ1 为正值,功率方向继电器动作。
d2 点短路时:Pd2 =UId2 cos ϕ 2 为负值,功率方向继电器不动作。
式中ϕ为电压U与电流I之间的夹角3.方向过电流保护方向过电流保护:增加了功率方向元件的过电流保护。
即是利用功率方向元件与过电流保护配合使用的一种保护装置,其原理接线图下图所示。
二. 整流型功率方向继电器 组成:电压形成回路、比较回路、执行元件1. 电压形成回路电压形成回路把输入的交流电压或电流以及它们的相位,经过小型中间变压器或电抗变压器转换成便于测量的电压,该电压经整流滤波后变成与变流量成正比的直流电压,然后送到比较回路进行比较,以确定继电器是否动作,最后由执行元件表示继电器的工作状态(动作或返回)。
(1)、电抗变换器(TX )作用:将输入的一次侧较大电流量按比例地变换成二次侧的较低电压U2 。
k j j I e I K U ϕ..=2(2)电压变换器(TM )作用:将一次侧的强电压成比例地变换成二次侧的弱电压。
式中 KU 为电压变换器的变换系数。
a.相位比较式:设以电网对地电压为基准且为正,电流由母线流向线路为电流的正方向。
方向电流保护

为什么要加功率方向继电器?
为了保证保护动作的选择性。 瞬时电流速断在什么情况下加方向元件? 定时限过电流保护在什么情况下加方向元 件? 限时电流速断在什么情况下加方向元件?
方向元件与电流继电器接点关系
串联(具有“与”的关系)
功率方向判别元件特性
灵敏角 死区 动作区
作功率方向继电器的动作区
评价 接线方式 整定计算 展开图 适用范围Leabharlann 分支电路 对电流保护计算的影响
助增网 外汲网
助增网
外汲网
助增网
外汲网
结论:
对第一段:没有影响 对第二段:灵敏度有影响。在整定计算 中考虑。 对第三段:对近后备没有影响。对远后 备进行灵敏度校验时,要考虑分支电路 的影响。
0, =70
φsen
0 =-30
二相短路故障时继电器动作分析
φk=700, φsen=-300
保护安装处发生AB相故障
UA
UK.A UK.B
UC
UB
二相短路故障时继电器动作分析
φk=700, φsen=-300
UA UBC
UK.A UK.B
UB UC
二相短路故障时继电器动作分析
φk=700, φsen=-300
功率方向判别元件的内角
定义:α=900-φk 300≤ α ≤ 600 φsen=-α
900接线
所谓900接线方式是指系统三相对称, COSφ=1时,加入继电器的电流超前电 压900。
接线图
测量电压、灵敏线、灵敏角、 动作区之间的关系
动作区 灵敏线
灵敏角 Um
三相短路故障时继电器动作分析
φk
作正常运行时的电压相量图。 作故障时的电压相量图。 根据灵敏角作灵敏线。 作灵敏线的垂线,指向灵敏线方向的为 动作区。当电流在动作区内时,功率方 向继电器动作。
《方向过电流保护》课件

2
熔断器
使用金属丝融化来断开电路。熔断器的优点是速度快且廉价,但需要替换。
3
保险丝
在电流过高时断开电路。保险丝的优点是价格低,但需要替换。它们也可能与熔断器类似的 问题。
4
电子保险丝ຫໍສະໝຸດ 使用微电子器件实现,可以控制电流并断开电路。电子保险丝的优点是速度快,但价格较高。
5
箱式电子保险丝
具有精确和短路保护功能,价格也相对较高。它们经常在汽车电路中使用。
方向过电流保护
这里是有关方向过电流保护的PPT课件,你将学到方向过电流保护的一些基 础知识,以及其在不同领域中的应用和选型要点。让我们开始吧!
概述
1 什么是方向过电流保
护?
它是一种电子保护装置, 用于保护电路中的元件免 受方向过电流损害。
2 作用和意义
它可以在电流方向反转时 断开电路,保护负载和元 件。这在许多场合都能起 到至关重要的作用。
选型要点
1 额定电流
选择时要确保保护器的额定电流大于负载的 工作电流。
2 过流保护时间
电路过载的时间长短会影响选择要点。过流 的时间越长,需要保护的级别越高。
3 压降
需要考虑最大压降参数,以确保在最大工作 电流下电路仍能正常工作。
4 工作电压
选择时需要确保保护器的工作电压范围符合 电路的要求。
5 过温保护
总结
作用和意义
方向过电流保护器可以保护电路和元件免受过 电流损害。
选型要点
选择适当的保护器需要考虑许多因素,如额定 电流、过流保护时间、过温保护等。
分类和实现方法
方向过电流保护器通常使用限流型或过流型电 子保护元件实现。
市场现状和未来发展趋势
随着电子设备的普及,方向过电流保护器市场 将继续增长,未来产品将更加智能化和高效化。
方向电流保护的基本原理

方向电流保护的基本原理咱先说说电流保护。
电流保护其实就是根据电路里电流的大小来判断是不是出问题了。
你想啊,正常的时候电流就该在一个合适的范围里溜达,就像人正常走路速度是有个大概范围的。
要是电流突然变得老大或者老小,那可能就是电路里有啥故障了,比如说短路了电流就会突然变得特别大,像洪水猛兽一样。
这时候电流保护就该发挥作用啦,它就像个小警察,发现电流不正常就赶紧采取措施,比如切断电路,不让故障进一步扩大。
但是呢,单纯的电流保护有时候会有点迷糊。
为啥这么说呢?因为在一些复杂的电网里,电流的变化可能不是那么单纯的因为故障。
比如说有一些电流的分流啊之类的情况。
这时候就需要方向电流保护来帮忙啦。
方向电流保护呢,它除了看电流大小,还会看电流的方向。
这就好比小卫士不仅要看进来的人数量对不对,还要看这些人是从哪个方向来的。
在电路里,电流是有它正常的流向的。
当有故障的时候,电流的流向可能就会发生变化。
比如说在一条线路的某一处发生了短路故障,正常情况下电流从电源流向负载,这时候故障点就像个大磁铁,把电流吸引得往它那儿跑,电流的方向就改变了。
方向电流保护装置就能敏锐地察觉到这个电流方向的变化。
它里面有一些特殊的元件,就像小触角一样,能感受电流的方向。
如果电流的方向不符合正常的运行情况,再加上电流大小也不正常,那这个保护装置就会判定是发生了故障,然后果断地采取行动,比如把故障线路给断开,保护其他正常的线路和设备。
你可以想象成一个大的电路家族,每个线路都是家族里的一员。
方向电流保护就像是家族里的智慧长者,它时刻盯着电流这个小家伙的一举一动,既看它的数量,又看它的走向。
要是电流这个小家伙调皮捣蛋,乱跑乱闯,不符合家族的规矩,智慧长者就会出手,把这个捣乱的线路隔离开,让整个电路家族继续平稳地运行下去。
而且啊,方向电流保护还很有团队精神呢。
在一个大的电网里,有很多个方向电流保护装置分布在不同的地方。
它们就像一群小伙伴,各自守护着自己的小地盘。
方向性电流保护

保护2、4、6只反映由右侧电源提供的短路电流,它们之间相互配合,
矛盾得以解决;
20
电流保护
+
功率方向判断元件
方向性电流保护
21
(4)方向性电流保护的原理接线
22
2. 功率方向继电器
23
功率方向继电器:用于判别短路功 率方向或测定电压电流间的夹角的 继电器,简称方向元件。由于正、 反向故障时短路功率方向不同,它 将使保护的动作具有一定的方向。
17
(3)原因分析
规定:短路功率的正方向为从母线流向线路
S EA A
k2
SB S
S
C
S
1
2 3 误动 4 5
S D EB 6
I k2 A
I k2B
结论:误动的保护,其短路电流的 方向总是为反方向。
18
(4)解决方法 —利用方向元件和电流元件结合 就构成了方向性电流保护; —由于元件动作具有一定的方向, 可在反向故障时把保护闭锁; —正方向故障时方向电流保护可 能动作,按正方向分组。
EA A
K1
B
K2
C
K3
D EB
1
2
3
4
5
6
1为正方向;1、3为正方向;1、3、5为正方向;
2、4、6为正方向 4、6为正方向 6为正方向 19
这样,双侧电源系统的保护系统转换为成针对两个单侧电源的子系统
EA A
B
C
D EB
1
2
3
4
5
6
A
EA A
B
2
C
4
+
B
C
6 D EB
D
方向电流保护及功率方向继电器

操作后应检查设备是否正常运行 ,如有异常应立即停机检查并联
系专业人员进行维修。
04
THANKS
感谢观看
功率方向继电器的定义与作用
定义
功率方向继电器是一种用于检测 和判断功率方向的继电器,它可 以根据电流的方向和大小来控制 电路的通断。
作用
在电力系统中,功率方向继电器 主要用于方向电流保护,防止因 电流反向而引起的设备损坏和安 全事故。
工作原理与结构
工作原理
功率方向继电器通过比较输入电流和电压之间的相位关系,判断功率方向,从而控制触 点的通断。当电流和电压同相时,继电器判定为正向功率;当电流和电压反相时,继电
03
CATALOGUE
方向电流保护的配置与整定
方向电流保护的配置原则
独立性
确保方向电流保护的独立性,避免与其他保 护装置相互干扰。
选择性
确保方向电流保护具有选择性,只切除故障 线路,避免误动作影响其他线路。
可靠性
选用高质量的继电器和设备,确保保护装置 在故障时能够可靠动作。
速动性
要求保护装置在故障发生时快速动作,减小 故障对系统的影响。
加强维护与保养
对保护装置进行定期维护和保养,确保其长期稳 定运行。
ABCD
注意系统的运行方式
在运行过程中,应密切关注系统的运行方式和负 荷变化,及时调整保护装置的定值。
配合其他保护装置使用
在复杂系统中,方向电流保护应与其他保护装置 配合使用,提高系统的安全性和可靠性。
04
CATALOGUE
功率方向继电器的应用与选型
检查接线端子
确保接线端子紧固,无松动或腐蚀现象。
测试功能
定期进行功能测试,确保继电器在正常工作状态下运行良好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节方向性电流保护
本节主要讲方向性电流保护工作原理以及中性点直接接地电网中接地短路的零序电流及方向保护。
一、方向性电流保护工作原理
前面所讲的三段式电流保护是以单侧电源网络为基础进行分析的,各保护都安装在被保护线路靠近电源的一侧,在发生故障时,它们都是在短路功率从母线流向被保护线路的情况下,按照选择性的条件和灵敏性的配合来协调工作的。
短路功率:一般指短路时某点电压与电流相乘所得到的感性功率,在无串联电容也不考虑分布电容的线路上短路时,认为短路功率从电源流向短路点。
目前双侧电源供电较为普遍。
在下图的双侧电源网络接线中,由于两侧都有电源,则在每条线路的两侧均需装设断路器和保护装置。
假设断路器8断开,电源不存在,则发生短路时,保护1、2、3、4的动作情况和由电源单独供电是一样的,它们之间的选择性是能够保证的。
如果电源不存在,则保护5、6、7、8由电源单独供电,此时它们之间也同能够保证动作的选择性。
图2-29 双侧电源网络接线
如果两个电源同时存在,当点短路时,按照选择性的要求,应该由距故障点最近的保护2、
6动作切除故障。
但由电源供给的短路电流也将通过保护1,如果保护1采用电流速断且
大于保护装置的起动电流,则保护1的电流速断就要误动作;如果保护1采用过电流保护且其动作时限,则保护1的过电流保护也将误动作。
(b)中k2点短路时,本应由保护1和7动作切除故障,但是由电源供给的短路电流将通
过保护6,如果,则保护6的电源速断要误动作;如果过电流保护的动作时限,则保护6的过电流保护也要误动作。
其他亦如此。
图2-30 方向过电流保护的原理接线图
方向性继电保护的主要特点就是在原有保护的基础上增加一个功率方向判别元件,以在反方向故障时保证保护不致误动作。
原理图如上图所示,主要由方向元件、电流元件和时间元件组成,方向元件和电流元件必须都动作之后,才能去起动时间元件,再经过预定的延时后动作于跳闸。
二、中性点直接接地电网中接地短路的零序电流及方向保护
图2-31
当中性点直接接地的电网(或称大接地电流系统)中发生接地短路时,将出现很大的零序电流,而在正常运行情况下它们是不存在的,因此利用零序电流来构成接地短路的保护,具有显著优点。
在电力系统中发生接地短路时(图a),可以利用对称分量的方法将电流和电压分解为正序、负序和零序分量,并利用复合序网来表示它们之间的关系。
短路计算的零序等效网络如图b所示,零序电流可以看成是在故障点出现一个零序电压而产生的,它必须经过变压器接地的中性点构成回路。
零序电流的方向仍然采用母线流向故障点为正,而对零序电压的方向,是线路高于大地的电压为正,如图b中的“↑”所示。
零序分量的参数特点:
(1)故障点的零序电压最高,系统中距离故障点越远处的零序电压越低,零序电压的分布如图c所示。
(2)当忽略回路的电阻时,按照规定的正方向画出零序电流和电压的矢量图。
而当计算回路电阻时,如取零序阻抗角为80度。
(3)对于发生故障的线路,两端零序功率的方向与正序功率的方向相反,零序功率方向实际上都是由线路流向母线的。
(4)在电力系统运行方式变化时,如果送电线路和中性点接地的变压器数目不变,则零序阻抗和零序等效网络是不变的。
零序电压过滤器:
为了取得零序电压,通常采用图a所示的三个单相式电压互感器或图b所示的三相五柱式电压互感器,其一次绕组接成星形并将中性点接地,其二次绕组接成开口三角形,这样从m、n端子上得到的输出电压。
而对正序或负序分量的电压,因三相相加后等于零,没有输出。
所以这种接线实际上就是零序电压过滤器。
另外,当发电机的中性点经电压互感器或消弧线圈接地时,图c给出从它的二次绕组中取得的零序电压。
在集成电路和微机保护中,由电压形成回路取得三个相电压后,利用加法器将三个相电压相加,也可以从内部合成零序电压。