应用多元统计分析课后习题答案高惠璇(第四章部分习题解答

合集下载

应用多元统计分析课后习题答案高惠璇第四章部分习题解答

应用多元统计分析课后习题答案高惠璇第四章部分习题解答


4
第四章 回归分析

L(a0 , 2 ) 2 2 L(a0 , ) 2 [( y1 a0 ) ( y2 a0 ) 3( y3 3a0 ) 0 a0 2
可得
令 ln L(a ˆ0 , 2 ) 3 1 2 ˆ [( y a ) ] 0 1 0 2 2 2 2 2 2( ) drf 可得 ˆ 2 1 2 ˆ0 ) 2 ( y2 a ˆ0 ) 2 ( y3 3a ˆ0 ) 2 ˆ0 ( y1 a
1
经验证:① B-A是对称幂等阵; ② rank(B-A)=tr(B-A)=2-1=1;
25 80 35 1 256 112 330 49
8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y AY与Y ( B A)Y相互独立;也就是 ˆ ˆ 与 ˆ 相互独立.
ˆi y ˆ ) ( yi y )( y i 1
n n n i 1 i 1 2
R
2
2 2 ˆ ˆ ( y y ) ( y y ) i i

2 ˆi y ) ( y i 1
n n n i 1 i 1
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
(因 1n C张成的空间 , 这里有H1n 1n )
n n i 1 i 1
(2) 因 ( yi y )( y ˆi y ˆ ) ( yi y ˆi y ˆ i y )( y ˆi y )
ˆ i )( y ˆi y ) ( y ˆi y )2 ( yi y

应用多元统计分析课后习题答案高惠璇

应用多元统计分析课后习题答案高惠璇

x1 y2 (2)第二次配方.由于 x y y 1 2 2
14
第二章
2 1 2 2 2 1 2 1 2 2
多元正态分布及参数的估计
2 x x 2 x1 x2 22x1 14x2 65 y y 22 y2 14( y1 y2 ) 65 y 14 y1 49 y 8 y2 16 ( y1 7) ( y2 4)
X 1 X 2 ~ N ( 1 2 ,2 (1 ));
2
X 1 X 2 ~ N ( 1 2 ,2 (1 )).
2
5
第二章
多元正态分布及参数的估计
1 2 , 2 1
2-3 设X(1)和X(2) 均为p维随机向量,已知
3 解三:两次配方法
2 1 2 2 2 (1)第一次配方: 2 x12 2 x1 x2 x2 ( x1 x2 ) 2 x12
2 1 x1 2 1 1 1 1 1 因2 x 2 x1 x2 x ( x1 , x2 ) , 而 BB, 1 1 x2 1 1 1 0 1 0 y1 1 1 x1 x1 x2 2 2 2 2 令y , 则 2 x 2 x x x y y 1 1 2 2 1 2 y x x 1 0 2 1 2
12
第二章
1 2
多元正态分布及参数的估计

2 1
解二:比较系数法 1 1 f ( x , x ) exp 设 ( 2 x 2 2
1 21 2
2 x2 2 x1 x2 22x1 14x2 65)

应用多元统计分析课后答案 .doc

应用多元统计分析课后答案 .doc

2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。

应用多元统计分析课后题答案

应用多元统计分析课后题答案


c) c)2
2( x1

a)( x2

c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12

2 2

1/
2
exp

1 2
(x

μ)

12 21
12

2 2
1
(x

μ)


2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )

2[(d

c)( x1

a)
(b a)(x2 (b a)2 (d

μ)

1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)

nE(X

μ)(X

μ)


Σ

故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2

c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2

应用多元统计分析习题解答 第四章

应用多元统计分析习题解答 第四章

第四章判别分析4.1 简述欧几里得距离与马氏距离的区别和联系。

答:设p维欧几里得空间中的两点X=和Y=。

则欧几里得距离为。

欧几里得距离的局限有①在多元数据分析中,其度量不合理。

②会受到实际问题中量纲的影响。

设X,Y是来自均值向量为,协方差为的总体G中的p维样本。

则马氏距离为D(X,Y)=。

当即单位阵时,D(X,Y)==即欧几里得距离。

因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。

4.2 试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。

设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。

判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。

4.3 简述距离判别法的基本思想和方法。

答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。

其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。

①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X ,要判断它来自哪个总体。

计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X,D 2(X ,G 1)D 2(X ,G 2)X,D 2(X ,G 1)> D 2(X ,G 2,具体分析,2212(,)(,)D G D G -X X111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X,W(X)X,W(X)<0②多个总体的判别问题。

应用回归分析第4章课后习题集参考答案

应用回归分析第4章课后习题集参考答案

第4章违背基本假设的情况思考与练习参考答案4.1 试举例说明产生异方差的原因。

答:例4.1:截面资料下研究居民家庭的储蓄行为Y i=0+1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。

由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。

例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A i1K i2L i3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。

由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。

这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。

4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。

4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。

答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。

其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。

在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。

然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。

由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。

所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。

应用多元统计分析_课后答案

应用多元统计分析_课后答案

图 2.1
Descriptives 对话框
2.
单击 Options 按钮,打开 Options 子对话框。在对话框中选择 Mean 复选框,即计 算样本均值向量,如图 2.2 所示。单击 Continue 按钮返回主对话框。
图 2.2 Options 子对话框 3. 单击 OK 按钮,执行操作。则在结果输出窗口中给出样本均值向量,如表 2.1,即 样本均值向量为(35.3333,12.3333,17.1667,1.5250E2) 。
2.5 解: 依据题意,X= 57000 40200 21450 21900 45000 28350

15 16 12 8 15 8
27000 18750 12000 13200 21000 12000
144 36 381 190 138 26
′ E(X)= ∑6 α=1 x(α) = (35650,12.33,17325,152.5) n σ1 σ2 ρ2 (x1 −μ1 )2 σ2 1
+
σ2 1
(x2 −μ2 )2 σ2 2 )2
= = [
(x1 −μ1 )2 σ2 1 ρ(x1 −μ1 ) σ1
− −
2ρ(x1 −μ1 )(x2 −μ2 ) σ1 σ2 (x2 −μ2 ) 2 ] σ2
+
E( X ) μ
n→∞
lim E(
1 1 ������) = lim E( ������) = Σ n→∞ ������ n−1
2.7 试证多元正态总体 的样本均值向量 ̅) = E ( ΣX 证明: E(������ (α) ) = E (ΣX (α) ) =
n n 1 1 nμ n 1 n2
exp[−

最新应用多元统计分析课后习题答案高惠璇PPT课件

最新应用多元统计分析课后习题答案高惠璇PPT课件
X2~N(0,1).
(2) 考虑随机变量Y= X1-X2 ,显然有
YX 1X2 0 X 1X 1,当 估计
P{Y0}P{X11或 X11} P{X11}P{X11} (X1~N(0,1)) 2(1)0.317 04
若(X1 , X2 ) 是二元正态分布,则由性质4可知,
31
第三章 多元正态总体参数的检验
证明 记rk(A)=r.
若r=n,由AB=O,知B= On×n,于是 X′AX与X′BX
若r=0时,则A=0,则两个二次型也是独 立的.
以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
32
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是
P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
P{X1x}(x) 17
第二章 多元正态分布及参数的估计
当-1≤x≤1时,
P{X2 x}P{X2 1}P{1X2 x} P{X1 1}P{xX1 1} P{X1 1}P{1X1 x} P{X1 x}(x)
它的任意线性组合必为一元正态. 但Y= X1-X2 不是正态分布,故(X1 , X2 ) 不是二元正态分布.
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面
f(x;μ,Σ)= a
是一个椭球面. (2) 当p=2且
比较上下式相应的系数,可得:
1
2 2
2
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i 1
i 1
14
第四章 回归分析
应用多元统计分析
第四章部分习题解答
第四章 回归分析
4-1

y1 y2
a 2a
1,
b
2
,
y3 a 2b 3,
1
2 3
~
N3 (0,
2I3),
(1) 试求参数a,b
解:用矩阵表示以上模型:

Y
y1 y2 y3
1 2 1
201
a b
1 2 3
def
X
ˆ
aˆ bˆ
( X X
Y
y1 y2 y3
1
1 3
a0
1 2 3
def
Za0
,且Y
~
N3 (Za0 ,
2I3)
ˆ
2 0
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
7
第四章 回归分析
1 3
(Y
Zaˆ0
)(Y
Zaˆ0
)
1 3
Y
(I3
Z
(Z Z
)1 Z
)Y
1 Y BY
i 1
i 1
(其中yˆ
1 n
n i 1
yˆi ),
试证明:(1) yˆ y;
n
n
(2) R2 ( yˆi y)2
( yi y)2 ;
i 1
i 1
n
(3)残差平方和 Q(ˆ) (1 R2 ) ( yi y)2. i 1 13
第四章 回归分析
证明:(1)估计向量为 Yˆ Cˆ C(CC)1CY HY
L
2
3
2
2
1
2( 2 )2
[( y1
aˆ)2
]
0
可得
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3

2bˆ)2
似然比统计量的分母为
L(aˆ,
bˆ,ˆ
2
)
(2
3
)2

2
)
3 2
exp[
3
].
2
当H0:a=b=a0成立时,样本的似然函数为
L(a0, 2)
1
2
2
3
exp
3
考虑
ˆ
2 0
ˆ
2
1 Y (B 3
A)Y
B A X ( X X )1 X Z (Z Z )1 Z
1 25
330
80 256
4139152
经验证:① B-A是对称幂等阵;
② rank(B-A)=tr(B-A)=2-1=1; 8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y
(
I
3
X
(
X
X
)1
X
)Y
1 Y AY , 且rank( A) tr( A) 3 2 1
3
6
第四章 回归分析
因 Y ~ N3 ( X , 2I3 ), A为对称幂等阵,
Y AY
2
~
2 (1, ),因
1
2
( X )AX
0
Y AY ~ 2 (1) 2
当H0:a=b=a0成立时,回归模型为
~ F(1,1)
3
因 V 2 ,
ˆ 2
V
ˆ
2 0
,
故 V 或V ,
1V
1
否定域为
{ } {V V } { f }
10
第四章 回归分析
4-2 在多元线性回归模型(4.1.3)中(p=1),试求出参数 向量β和σ2的最大似然估计.
解:模型(4.1.3)为
Y
~
C Nn (0,
2
[(
y1
aˆ0
)2
]
0
可得
ˆ 2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量的分子为
L(aˆ0
, ˆ 0 2
)
(2
3
)2

2 0
)
3 2
exp[
3 2
].
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
)1
X Y
1 0
2 1
21
1 2 1
201
1
1 0
2 1
21
y1 y2 y3
2
第四章 回归分析
6 0
0 5
1
y1 2 y2
y2y1 2 y2 y3 ( y2 2 y3)
)
(2) 试导出检验H0:a=b的似然比统计量,并指出当假 设成立时,这个统计量的分布是什么?

0
2
)
3 2

2
)
3 2
ˆ 2 ˆ 0 2
3
2
V
3 2
以下来讨论与V等价的统计量分布:
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3
aˆ 2bˆ)2
1 3
( y1
yˆ1 ) 2
( y2
yˆ2 )2
( y3
yˆ3 )2
1 3
(Y
Xˆ )(Y
Xˆ )
1 3
解:样本的似然函数为
L(a,b, 2)
1
2
2
3
exp
1
2 2
[(y1 a)2
( y2
2a b)2
( y3
a 2b)2 ]
L(aˆ,bˆ, 2)
1
2
2
3
exp
1
2
2
[(
y1
aˆ)2
( y2
2aˆ bˆ)2
( y3 aˆ 2bˆ)2 ]
3
第四章 回归分析

ln
1
2
2
[(
y1
a0
)2
( y2
a0 )2
( y3 3a0 )2 ]
4
第四章 回归分析

L(a0 ,
a0
2)
L(a0 ,
2 )
2
2
2
[( y1
a0 )
(
y2
a0 )
3( y3
3a0
)
0
可得 令
ln
aˆ0
1 11
L(aˆ0 , 2 )
2
( y1
y2 3y3)
3 1
2 2 2( 2 )2
2
2
1
2( 2 )2
(Y
C )(Y
C )
0
可得参数向量β和σ2的最大似然估计为:
ˆ ˆ
(CC)1CY
2 1 (Y Cˆ)(Y
n
Cˆ ).
12
第四章 回归分析
4-6 称观测向量Y和估计向量Y^的相关系数R为
全相关系数.即n
( yi y)(yˆi yˆ)
R
i 1
n
n
( yi y)2 ( yˆi yˆ)2

1 n
n i 1
yˆi
1 n
1n

1 n
1n
HY
1 n
(
H1n
)Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)(yˆi yˆ) n ( yi yˆi yˆi y)(yˆi y)
i 1
i 1
n
n
( yi yˆi )(yˆi y) ( yˆi y)2
In
),
样本的似然函数为
L(
,
2)
(2
n
)2
(
)2
n 2
exp
1
2
2
(Y
C
)(Y
C
)
ln
L( ,
2)
ln(2
n
)2
ln(
2
)
n 2
1
2
2
(Y
C )(Y
C
)
ln(2
n
)2
ln(
2
)
n 2
1
2
2
(Y Y
2Y C
CC
)
11
第四章 回归分析

ln L
1
2
2
2(Y C)
2CC
0
ln
L
2
n
Y AY与Y (B A)Y相互独立;也就是
ˆ
2 0
ˆ
2与ˆ
2相互独立.
由第三章§3.1的结论4知(H0:a=b成立时)
Y (B A)Y
2
~
2 (1, ),因
1
2
(Za0 )(B
A)Za0
0
3(ˆ
2 0
ˆ
2
)
2
Y (B A)Y
2
~
2 (1)
9
第四章 回归分析
所以
ˆ 2 ˆ02 ˆ 2
YAY Y(B A)Y
相关文档
最新文档