山东省淄博市中考数学试卷(word解析版)

合集下载

2021年山东省淄博市中考数学真题附答案解析版

2021年山东省淄博市中考数学真题附答案解析版

由旋转的性质,A′B=AB=CD=6m,BP′=BP,A'P′=AP,∠P′BP=60°,∠A'BA=
60°,
∴△P′BP 是等边三角形, ∴BP=PP', ∴PA+PB+PC=A'P′+PP'+PC, 根据两点间线段距离最短,可知当 PA+PB+PC=A'C 时最短,连接 A'C,与 BD 的交点即为 P 点,即点 P 到 A,B,C 三点距离之和的最小值是 A′C. ∵∠ABC=∠DCE=∠α=30°,∠A′BA=60°,
的度数;
〔3〕直线 l 继续向下平移,当点 P 恰好落在对角线 BD 上时,交边 CD 于点 G,如图 3 所 示.设 AB=2,BF=x,DG=y,求 y 与 x 之间的关系式.
【答案】〔1〕证明见解析局部. 〔2〕45°.
〔3〕y=
〔0≤x≤2〕.
【解答】〔1〕证明:如图 1 中,
∵四边形 ABCD 是正方形, ∴AB=AD,∠B=∠BAD=90°, ∵DE⊥AF, ∴∠APD=90°, ∴∠PAD+∠ADE=90°,∠PAD+∠BAF=90°, ∴∠BAF=∠ADE, ∴△ABF≌△DAE〔ASA〕, ∴BF=AE. 〔2〕解:如图 2 中,连接 AQ,CQ.
C.2
D.4
11. 如图,在 Rt△ABC 中,∠ACB=90°,CE 是斜边 AB 上的中线,过点 E 作 EF⊥AB 交 AC 于点 F.假设 BC=4,△AEF 的面积为 5,那么 sin∠CEF 的值为〔 A 〕
A.
B.
C.
D.
12.如图,在平面直角坐标系中,四边形 AOBD 的边 OB 与 x 轴的正半轴重合,AD∥OB,DB ⊥x 轴,对角线 AB,OD 交于点 M.AD:OB=2:3,△AMD 的面积为 4.假设反比例函数 y = 的图象恰好经过点 M,那么 k 的值为〔 B 〕

2019年山东省淄博市中考数学试卷(A卷)word+答案解析

2019年山东省淄博市中考数学试卷(A卷)word+答案解析

2019年山东省淄博市中考数学试卷(A卷)word+答案解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(4分)比﹣2小1的数是()A.﹣3 B.﹣1 C.1 D.32.(4分)国产科幻电影《流浪地球》上映17日,票房收入突破40亿元人民币,将40亿用科学记数法表示为()A.40×108B.4×109C.4×1010D.0.4×10103.(4分)下列几何体中,其主视图、左视图和俯视图完全相同的是()A.B.C.D.4.(4分)如图,小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20方向行走至点C处,则∠ABC等于()A.130°B.120°C.110°D.100°5.(4分)解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)6.(4分)与下面科学计算器的按键顺序:对应的计算任务是()A.0.6×+124B.0.6×+124C.0.6×5÷6+412D.0.6×+4127.(4分)如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.B.2 C.2D.68.(4分)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC 的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a9.(4分)若x1+x2=3,x12+x22=5,则以x1,x2为根的一元二次方程是()A.x2﹣3x+2=0 B.x2+3x﹣2=0 C.x2+3x+2=0 D.x2﹣3x﹣2=0 二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果.10.(4分)单项式a3b2的次数是.11.(4分)分解因式:x3+5x2+6x.12.(4分)如图,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=度.13.(4分)某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦“演讲比赛,则恰好选中一男一女的概率是.14.(4分)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.15.(5分)解不等式16.(5分)已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.17.(8分)文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:组别年龄段频数(人数)第1组10≤x<20 5第2组20≤x<30 a第3组30≤x<40 35第4组40≤x<50 20第5组50≤x<60 15(1)请直接写出a=,m=,第3组人数在扇形统计图中所对应的圆心角是度.(2)请补全上面的频数分布直方图;(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?18.(8分)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润=售价﹣成本).其每件产品的成本和售价信息如下表:A B成本(单位:万元/件) 2 4售价(单位:万元/件) 5 7 问该公司这两种产品的销售件数分别是多少?19.(8分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC 上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.20.(9分)如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF 的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.21.(9分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.2019年山东省淄博市中考数学试卷(A卷)答案解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.【答案解析】解:﹣2﹣1=﹣(1+2)=﹣3.故选:A.2.【答案解析】解:40亿用科学记数法表示为:4×109,故选:B.3.【答案解析】解:A、圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,不符合题意;C、长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,不符合题意;D、球的三视图都是大小相同的圆,符合题意.故选:D.4.【答案解析】解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20方向行走至点C 处,∴∠DAB=40°,∠CBF=20°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∵∠EBF=90°,∴∠EBC=90°﹣20°=70°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.5.【答案解析】解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.6.【答案解析】解:与下面科学计算器的按键顺序对应的计算任务是0.6×+124,故选:B.7.【答案解析】解:由题意可得,大正方形的边长为=2,小正方形的边长为,∴图中阴影部分的面积为:×(2﹣)=2,故选:B.8.【答案解析】解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.9.【答案解析】解:∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,而x1+x2=3,∴9﹣2x1x2=5,∴x1x2=2,∴以x1,x2为根的一元二次方程为x2﹣3x+2=0.故选:A.二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果. 10.【答案解析】解:单项式a3b2的次数是3+2=5.故答案为5.11.【答案解析】解:x3+5x2+6x,=x(x2+5x+6),=x(x+2)(x+3).12.【答案解析】解:如图,连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E∵CC1,AA1的垂直平分线交于点E,∴点E是旋转中心,∵∠AEA1=90°∴旋转角α=90°故答案为:9013.【答案解析】解:画树状图为:共20种等可能的结果数,其中选中一男一女的结果数为12,∴恰好选中一男一女的概率是=,故答案为:.14.【答案解析】解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn==.故答案为:.三、解答题:本大题共7个小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.15.【答案解析】解:将不等式两边同乘以2得,x﹣5+2>2x﹣6解得x<3.16.【答案解析】证明:∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE∴∠CAB=∠EAD,且AB=AD,AC=AE∴△ABC≌△ADE(SAS)∴∠C=∠E17.【答案解析】解:(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360°×=126°,故答案为:25,20,126;(2)由(1)值,20≤x<30有25人,补全的频数分布直方图如右图所示;(3)300×=60(万人),答:40~50岁年龄段的关注本次大会的人数约有60万人.18.【答案解析】解:设A,B两种产品的销售件数分别为x件、y件;由题意得:,解得:;答:A,B两种产品的销售件数分别为160件、180件.19.【答案解析】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OE,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠FAD,∵DO∥AB,∴∠PDA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠FAD,∴AF=DF=OA=OD,∴△OFD、△OFA是等边三角形,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.20.【答案解析】(1)证明:如图1中,延长DM交FG的延长线于H.∵四边形ABCD,四边形BCFG都是正方形,∴DE∥AC∥GF,∴∠EDM=∠FHM,∵∠EMD=∠FMH,EM=FM,∴△EDM≌△FHM(AAS),∴DE=FH,DM=MH,∵DE=2FG,BG=DG,∴HG=DG,∵∠DGH=∠BGF=90°,MH=DM,∴GM⊥DM,DM=MG,连接EB,BF,设BC=a,则AB=2a,BE=2a,BF=a,∵∠EBD=∠DBF=45°,∴∠EBF=90°,∴EF==a,∵EM=MF,∴BM=EF=a,∵HM=DM,GH=FG,∴MG=DF=a,∴==.(2)解:(1)中的值有变化.理由:如图2中,连接BE,AD交于点O,连接OG,CG,BF,CG交BF于O′.∵DO=OA,DG=GB,∴GO∥AB,OG=AB,∵GF∥AC,∴O,G,F共线,∵FG=AB,∴OF=AB=DF,∵DF∥AC,AC∥OF,∴DE∥OF,∴OD与EF互相平分,∵EM=MF,∴点M在直线AD上,∵GD=GB=GO=GF,∴四边形OBFD是矩形,∴∠OBF=∠ODF=∠BOD=90°,∵OM=MD,OG=GF,∴MG=DF,设BC=m,则AB=2m,易知BE=2OB=2•2m•sinα=4m sinα,BF=2BO°=2m•cosα,DF=OB=2m•sinα,∵BM=EF==,GM=DF=m•sinα,∴==.21.【答案解析】解:(1)∵抛物线y=ax2+bx+3过点A(3,0),B(﹣1,0)∴解得:∴这条抛物线对应的函数表达式为y=﹣x2+2x+3(2)在y轴上存在点P,使得△PAM为直角三角形.∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴顶点M(1,4)∴AM2=(3﹣1)2+42=20设点P坐标为(0,p)∴AP2=32+p2=9+p2,MP2=12+(4﹣p)2=17﹣8p+p2①若∠PAM=90°,则AM2+AP2=MP2∴20+9+p2=17﹣8p+p2解得:p=﹣∴P(0,﹣)②若∠APM=90°,则AP2+MP2=AM2∴9+p2+17﹣8p+p2=20解得:p1=1,p2=3∴P(0,1)或(0,3)③若∠AMP=90°,则AM2+MP2=AP2∴20+17﹣8p+p2=9+p2解得:p=∴P(0,)综上所述,点P坐标为(0,﹣)或(0,1)或(0,3)或(0,)时,△PAM为直角三角形.(3)如图,过点I作IE⊥x轴于点E,IF⊥AD于点F,IH⊥DG于点H∵DG⊥x轴于点G∴∠HGE=∠IEG=∠IHG=90°∴四边形IEGH是矩形∵点I为△ADG的内心∴IE=IF=IH,AE=AF,DF=DH,EG=HG∴矩形IEGH是正方形设点I坐标为(m,n)∴OE=m,HG=GE=IE=n∴AF=AE=OA﹣OE=3﹣m∴AG=GE+AE=n+3﹣m∵DA=OA=3∴DH=DF=DA﹣AF=3﹣(3﹣m)=m∴DG=DH+HG=m+n∵DG2+AG2=DA2∴(m+n)2+(n+3﹣m)2=32∴化简得:m2﹣3m+n2+3n=0配方得:(m﹣)2+(n+)2=∴点I(m,n)与定点Q(,﹣)的距离为∴点I在以点Q(,﹣)为圆心,半径为的圆在第一象限的弧上运动∴当点I在线段CQ上时,CI最小∵CQ=∴CI=CQ﹣IQ=∴CI最小值为.。

淄博市2020年部编人教版中考数学试题及答案精析(word版)

淄博市2020年部编人教版中考数学试题及答案精析(word版)

山东省淄博市2020 年中考数学试卷一、选择题:本题共12 小题,在每题所给出的四个选项中,只有一个是正确的.每题4分,错选、不选或选出的答案超出一个,均记零分.1.( 4 分)( 2020?淄博)比﹣ 2020 小 1 的数是()A .﹣2020B . 2020C .﹣ 2020D . 2020考点:有理数的减法.剖析:依据题意列式即可求得结果. 解答:解:﹣ 2020﹣ 1=﹣2020 .应选 C .评论:本题考察了有理数的减法,熟记有理数的减法的法例是解题的重点.2.( 4 分)( 2020?淄博)以下式子中正确的选项是( )A .()﹣2=﹣9B .(﹣ 2)3=﹣6 C . =﹣2D .(﹣3)0=1考点:二次根式的性质与化简;有理数的乘方;零指数幂;负整数指数幂.剖析:依据二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂逐个运算,判断即可.解答:解: A 、 =9,故本项错误;3B 、(﹣ 2) =﹣ 8,故本项错误;D 、(﹣ 3) =1,故本项正确,评论:本题考察了二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂,娴熟掌握运算法例是解题的重点.3.( 4 分)( 2020?淄博)将图1 围成图2 的正方体,则图1 中的红心 “”标记所在的正方形是正方体中的( )A . 面 CDHEB . 面 BCEFC . 面 ABFGD . 面 ADHG考点:睁开图折叠成几何体.剖析:由平面图形的折叠及正方体的睁开图解题.注意找准红心 “”标记所在的相邻面.解答:解:由图 1 中的红心 “”标记,可知它与等边三角形相邻,折叠成正方体是正方体中的面 CDHE .应选 A .评论:本题考察了正方体的睁开图形,解题重点是从相邻面下手进行剖析及解答问题. 4.( 4 分)( 2020?淄博)已知 x= , y=,则 x 2+xy+y 2的值为()A .2B .4C . 5D .7考点:二次根式的化简求值.剖析:先把 x、y 的值代入原式,再依据二次根式的性质把原式进行化简即可.解答:解:原式 =( x+y )2﹣ xy2=( +)﹣×=5﹣ 1=4.应选 B.评论:本题考察的是二次根式的化简求值,熟知二次根式混淆运算的法例是解答本题的重点.5.( 4 分)( 2020?淄博)已知是二元一次方程组的解,则A.±2 B. C.±2m﹣ n 的平方根为(D. 2)考点:二元一次方程组的解;平方根.剖析:由 x=2 ,y=1 是二元一次方程组的解,将x=2,y=1 代入方程组求出求出 2m﹣ n 的值,利用平方根的定义即可求出2m﹣ n 的平方根.解答:解:∵ 将代入中,得:,解得:m 与n 的值,从而∴2m﹣ n=6 ﹣2=4,则 2m﹣ n 的平方根为±2.应选: A.评论:本题考察了二元一次方程组的解,以及平方根的定义,解二元一次方程组的方法有两种:加减消元法;代入消元法.6.( 4 分)( 2020?淄博)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有 4 个同样的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本商场一次性花费满200 元,就能够在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客恰好花费200 元,则该顾客所获取购物券的金额不低于30 元的概率()A.B.C.D.考点:列表法与树状图法.剖析:列表法或画树状图法能够不重复不遗漏地列出全部可能的结果,合适于两步达成的事件.解答:解:列表:第二次0102030第一次0﹣﹣1020301010﹣﹣3040202030﹣﹣5030304050﹣﹣从上表能够看出,共有12 种可能结果,此中大于或等于30 元共有所以 P(不低于 30 元) ==.应选: C.评论:本题主要考察用列表法或树状图求概率.解决本题的重点是弄清题意,满摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率8 种可能结果,200 元能够=所讨状况数与总状况数之比.7.( 4 分)( 2020?淄博)若锐角α知足cosα<且tanα<,则α的范围是()A . 30°<α<45°B. 45°<α< 60°C. 60°<α< 90°D. 30°<α< 60°考点:锐角三角函数的增减性.专题:应用题.剖析:先由特别角的三角函数值及余弦函数随锐角的增大而减小,殊角的三角函数值及正切函数随锐角的增大而增大,得出α< 60°.解答:解:∵ α是锐角,得出45°<α<90°;再由特0<α< 60°;从而得出 45°<∴cosα> 0,∵ cosα<,∴0< cosα<,又∵ cos90°=0 ,cos45°=,∴ 45°<α< 90°;∵ α是锐角,∴tanα> 0,∵ tanα<,∴0< tanα<,又∵ tan0°=0, tan60°=,0<α< 60°;故 45°<α< 60°.应选 B.评论:本题主要考察了余弦函数、正切函数的增减性与特别角的余弦函数、正切函数值,熟记特别角的三角函数值和认识锐角三角函数的增减性是解题的重点.8.(4 分)( 2020?淄博)如图,在四边形 ABCD 中, DC∥AB ,CB ⊥AB ,AB=AD 点 E、 F 分别为 AB 、 AD 的中点,则△ AEF 与多边形BCDFE 的面积之比为(,CD=AB),A .B.C.D.考点:相像三角形的判断与性质;三角形的面积;三角形中位线定理.专题:压轴题.剖析:依据三角形的中位线求出EF=BD , EF∥BD ,推出△AEF ∽ △ ABD ,得出 =,求出 ==,即可求出△ AEF 与多边形BCDFE 的面积之比.解答:解:连结 BD ,∵ F、E 分别为 AD 、 AB 中点,∴EF=BD , EF∥ BD ,∴△AEF∽ △ABD ,∴==,∴△ AEF 的面积:四边形 EFDB 的面积 =1: 3,∵ CD=AB ,CB ⊥DC, AB ∥CD ,∴==,∴ △ AEF 与多边形 BCDFE 的面积之比为 1:( 3+2 ) =1:5,应选 C.评论:本题考察了三角形的面积,三角形的中位线等知识点的应用,主要考察学生运用性质进行推理和计算的能力,题目比较典型,难度适中.9.( 4 分)( 2020?淄博)如图,在菱形 ABCD 和菱形 BEFG 中,点 P 是线段 DF 的中点,连结 PG,PC.若∠ ABC= ∠ BEF=60 °,则 =(A 、 B、 E 在同向来线上,)A .B.C.D.考点:菱形的性质;全等三角形的判断与性质;等腰三角形的判断与性质.专题:计算题;压轴题.剖析:可经过建立全等三角形求解.延伸GP 交 DC 于 H,可证三角形DHP 和 PGF 全等,已知的有 DC∥ GF,依据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有 DP=PF,所以组成了全等三角形判断条件中的(AAS),于是两三角形全等,那么HP=PG ,可依据三角函数来得出PG、 CP 的比率关系.解答:解:如图,延伸 GP交 DC 于点 H,∵ P 是线段 DF 的中点,∴ FP=DP ,由题意可知DC ∥ GF,∴ ∠ GFP=∠HDP ,∵ ∠ GPF=∠HPD ,∴ △ GFP≌ △HDP ,∴ GP=HP , GF=HD ,∵四边形 ABCD 是菱形,∴ CD=CB ,∴ CG=CH ,∴ △ CHG 是等腰三角形,∴ PG⊥ PC,(三线合一)又∵ ∠ ABC= ∠ BEF=60°,∴ ∠ GCP=60°,∴ =;应选 B.评论:本题主要考察了菱形的性质,以及全等三角形的判断等知识点,依据已知和所求的条件正确的建立出有关的全等三角形是解题的重点.10.( 4 分)( 2020?淄博)若对于A . m< 6B. m> 6x 的方程+=2的解为正数,则C. m< 6 且 m≠0m 的取值范围是(D. m> 6 且m≠8)考点:分式方程的解.剖析:先得出分式方程的解,再得出对于m 的不等式,解答即可.解答:解:原方程化为整式方程得:2﹣ x﹣ m=2( x﹣ 2),解得: x=2﹣,因为对于 x 的方程 +=2 的解为正数, 可得:,解得: m < 6,因为 x=2 时原方程无解, 所以可得, 解得: m ≠0. 应选 C .评论:本题考察分式方程,重点是依据分式方程的解法进行剖析.11.( 4 分)( 2020?淄博)如图是一块 △ABC 余料,已知 AB=20cm , BC=7cm ,AC=15cm ,现将余料裁剪成一个圆形资料,则该圆的最大面积是()A . πcm 2B . 2πcm 2C . 4πcm 2D . 8πcm 2考点:三角形的内切圆与心里.剖析:当该圆为三角形内切圆时面积最大,设内切圆半径为r ,则该三角形面积可表示为:=21r ,利用三角形的面积公式可表示为 ?BC?AD ,利用勾股定理可得AD ,易得三角形ABC 的面积,可得r ,求得圆的面积.解答:解:如图 1 所示,S △ABC =?r?( AB+BC+AC ) ==21r , 过点 A 作 AD ⊥ BC 交 BC 的延伸线于点 D ,如图 2,设 CD=x ,由勾股定理得:在 Rt △ ABD 中,AD 2=AB 2﹣ BD 2 =400﹣( 7+x ) 2,2 2 2 2在 Rt △ ACD 中, AD =AC ﹣ x =225 ﹣ x ,22∴ 400﹣( 7+x ) =225﹣ x ,∴ AD=12 ,∴ S △ABC == ×7×12=42, ∴ 21r=42 ,∴ r=2 ,该圆的最大面积为: S=πr 222), =π?2 =4π( cm 应选 C .评论:本题主要考察了三角形的内切圆的有关知识及勾股定理的运用,运用三角形内切圆的半径表示三角形的面积是解答本题的重点.12.( 4 分)( 2020?淄博)如图, △ABC 中, ∠ ACB=90 °, ∠ A=30 °, AB=16 .点 P 是斜边 AB 上一点.过点 P 作 PQ ⊥AB ,垂足为 P ,交边 AC (或边 CB )于点 Q .设 AP=x , △APQ 的面积为 y ,则 y 与 x 之间的函数图象大概是( )A .B .C .D .考点:动点问题的函数图象.剖析:第一过点 C 作 CD ⊥ AB 于点 D ,由 △ ABC 中, ∠ ACB=90 °, ∠A=30 °,可求得 ∠ B的度数与 AD 的长,再分别从当 0≤AD ≤12 时与当 12< x ≤16 时,去剖析求解即可求得答案.解答:解:过点 C 作 CD ⊥AB 于点 D ,∵ ∠ ACB=90 °, ∠ A=30 °, AB=16 , ∴ ∠ B=60 °, BC=AB=8 , ∴ ∠ BCD=30 °,∴ BD=BC=4 ,∴ AD=AB ﹣BD=12 .如图 1,当 0≤AD ≤12 时, AP=x , PQ=AP?tan30°=x ,∴ y=x ?x=x 2;如图 2:当 12< x ≤16 时, BP=AB ﹣ AP=16 ﹣ x ,∴ PQ=BP?tan60°=( 16﹣ x ),∴ y=x ?( 16﹣ x )=﹣ x 2+8x , 应选 D .评论:本题考察了动点问题, 注意掌握含 30°直角三角形的性质与二次函数的性质; 注意掌握分类议论思想的应用.二、填空题:本题共 5 小题,满分15 分.只需求填写最后结果,每题填对得 4 分.13.( 3 分)( 2020?淄博)计算: = 3 .考点:二次根式的乘除法.剖析:依据二次根式的乘法法例计算. 解答:解:原式 == =3. 故填 3.评论:主要考察了二次根式的乘法运算.二次根式的乘法法例=.14.( 3 分)( 2020?淄博)如图,已知正五边形则 ∠ DFA= 36 度.ABCDE,AF ∥CD ,交DB的延伸线于点F ,考点:多边形内角与外角;平行线的性质.剖析:第一求得正五边形内角∠ C 的度数,而后依据 CD=CB 求得 ∠ CDB 的度数,而后利用平行线的性质求得∠ DFA的度数即可.解答:解:∵正五边形的外角为360°÷5=72°,∴ ∠ C=180°﹣ 72°=108 °,∵CD=CB ,∴∠ CDB=36 °,∵AF ∥ CD,∴ ∠ DFA= ∠ CDB=36 °,故答案为: 36.评论:本题考察了多边形的内角和外角及平行线的性质,解题的重点是求得正五边形的内角.15.( 3 分)( 2020?淄博)如图,经过点 B(﹣ 2,0)的直线 y=kx+b 与直线 y=4x+2 订交于点 A (﹣ 1,﹣ 2),则不等式 4x+2< kx+b < 0 的解集为﹣ 2< x<﹣ 1 .考点:一次函数与一元一次不等式.剖析:由图象获取直线y=kx+b 与直线 y=4x+2 的交点 A 的坐标(﹣ 1,﹣ 2)及直线y=kx+b 与 x 轴的交点坐标,察看直线 y=4x+2 落在直线 y=kx+b 的下方且直线 y=kx+b 落在 x 轴下方的部分对应的 x 的取值即为所求.解答:解:∵经过点 B(﹣ 2,0)的直线y=kx+b 与直线 y=4x+2 订交于点 A (﹣ 1,﹣ 2),∴直线 y=kx+b 与直线 y=4x+2 的交点 A 的坐标为(﹣ 1,﹣ 2),直线 y=kx+b 与 x 轴的交点坐标为 B(﹣ 2, 0),又∵当 x<﹣ 1 时, 4x+2 <kx+b ,当 x>﹣ 2 时, kx+b < 0,∴不等式 4x+2 < kx+b < 0 的解集为﹣ 2< x<﹣ 1.故答案为:﹣2< x<﹣ 1.评论:本题考察了一次函数与一元一次不等式的关系:从函数的角度看,就是追求使一次函数 y=ax+b 的值大于(或小于) 0 的自变量 x 的取值范围;从函数图象的角度看,就是确立直线 y=kx+b 在 x 轴上(或下)方部分全部的点的横坐标所组成的会合.16.( 3 分)( 2020?淄博)现有一张圆心角为 108°,半径为角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为40cm的扇形纸片,小红剪去圆心10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为18° .考点:圆锥的计算.剖析:已知扇形底面半径是10cm,就能够知道睁开图扇形的弧长是20πcm,依据弧长公式l=n πr ÷180 获取.解答:解: 20π=,解得: n=90 °,∵扇形彩纸片的圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣ 90°=18 °.剪去的扇形纸片的圆心角为18°.故答案为: 18°.评论:本题综合考察有关扇形和圆锥的有关计算.解题思路:解决此类问题时重要紧抓住二者之间的两个对应关系:( 1)圆锥的母线长等于侧面睁开图的扇形半径;( 2)圆锥的底面周长等于侧面睁开图的扇形弧长. 正确对这两个关系的记忆是解题的重点.17.( 3 分)( 2020?淄博)如图,我们把一个半圆与抛物线的一部分围成的关闭图形称为“果2圆 ”.已知点 A 、 B 、 C 、 D 分别是 “果圆 ”与坐标轴的交点,抛物线的分析式为 y=x ﹣ 2x ﹣3, AB 为半圆的直径,则这个“果圆 ”被 y 轴截得的弦CD 的长为 3+.考点:二次函数综合题.剖析:连结 AC ,BC ,有抛物线的分析式可求出A ,B ,C 的坐标,从而求出 AO , BO ,DO的长,在直角三角形ACB 中,利用射影定理可求出CO 的长,从而可求出CD 的长.解答:解:连结 AC , BC ,2∵ 抛物线的分析式为 y=x ﹣ 2x ﹣ 3,∴ OD 的长为 3,设 y=0 ,则 0=x 2﹣ 2x ﹣ 3, 解得: x= ﹣ 1 或 3,∴A (﹣ 1,0),B (3,0)∴ AO=1 ,BO=3 , ∵ AB 为半圆的直径,∴ ∠ ACB=90 °, ∵ CO ⊥AB ,∴ CO 2=AO ?BO=3 , ∴ CO= ,∴ CD=CO+OD=3+ ,故答案为: 3+.评论:本题是二次函数综合题型, 主要考察了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解 “果圆 ”的定义是解题的重点.三、解答题:本大题共7 小题,共52 分.解答要写出必需的文字说明、证明过程或演算步骤.18.( 4 分)( 2020?淄博)解不等式组: ,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.剖析:先求出每个不等式的解集,再找出不等式组的解集,最后在数轴上表示出来即可. 解答:解:∵ 解不等式 ① 得: x >﹣ 1, 解不等式 ② 得: x ≥3, ∴ 不等式组的解集是 x ≥3,在数轴上表示不等式组的解集为: .评论:本题考察认识一元一次不等式(组) ,在数轴上表示不等式组的解集的应用,解本题的重点是求出不等式组的解集.19.( 4 分)( 2020?淄博)如图,在△ ABC ( 1)作图:作 BC 边的垂直均分线分别交与中, AB=4cm ,AC=6cm .AC , BC 于点 D, E(用尺规作图法,保存作图印迹,不要求写作法);( 2)在( 1)的条件下,连结BD ,求△ ABD 的周长.考点:作图—复杂作图.剖析:( 1)运用作垂直均分线的方法作图,(2)运用垂直均分线的性质得出BD=DC ,利用△ ABD 的周长 =AB+BD+AD=AB+AC即可求解.解答:解:( 1)如图 1,( 2)如图 2,∵ DE 是 BC 边的垂直均分线,∴BD=DC ,∵AB=4cm , AC=6cm .∴ △ ABD 的周长 =AB+BD+AD=AB+AC=4+6=10cm.评论:本题主要考察了作图﹣复杂作图及垂直均分线的性质,解题的重点是熟记作垂直均分线的方法.20.( 9 分)( 2020?淄博)某中学为落实市教育局提出的“全员育人,创立特点学校”的会议精神,信心打造“书香校园”,计划用不超出1900 本科技类书本和1620 自己文类书本,组建中、小型两类图书角共30 个.已知组建一此中型图书角需科技类书本80 本,人文类书本50 本;组建一个小型图书角需科技类书本30 本,人文类书本60 本.( 1)切合题意的组建方案有几种?请你帮学校设计出来;( 2)若组建一此中型图书角的花费是860 元,组建一个小型图书角的花费是570 元,试说明( 1)中哪一种方案花费最低,最低花费是多少元?考点:一元一次不等式组的应用.剖析:( 1)设组建中型两类图书角x 个、小型两类图书角(30﹣ x)个,因为组建中、小型两类图书角共30 个,已知组建一此中型图书角需科技类书本80 本,人文类书本50 本;组建一个小型图书角需科技类书本30 本,人文类书本60 本.若组建一此中型图书角的花费是860 本,组建一个小型图书角的花费是570 本,所以能够列出不等式组,解不等式组而后去整数即可求解.( 2)依据( 1)求出的数,分别计算出每种方案的花费即可.解答:解:( 1)设组建中型图书角x 个,则组建小型图书角为(30﹣ x)个.由题意,得,化简得,解这个不等式组,得18≤x≤20.因为 x 只好取整数,∴ x 的取值是18, 19, 20.当 x=18 时, 30﹣ x=12;当 x=19 时, 30﹣ x=11;当 x=20 时, 30﹣ x=10.故有三种组建方案:方案一,中型图书角18 个,小型图书角12 个;方案二,中型图书角19 个,小型图书角11 个;方案三,中型图书角20 个,小型图书角10 个.(2)方案一的花费是:860×18+570 ×12=22320 (元);方案二的花费是: 860×19+570 ×11=22610(元);方案三的花费是: 860×20+570 ×10=22900(元).故方案一花费最低,最低花费是22320 元.评论:本题主要考察了一元一次不等式组在实质生活中的应用,解题的重点是第一正确理解题意,而后依据题目的数目关系列出不等式组解决问题,同时也利用了一次函数.21.( 10 分)(2020?淄博)某校团委举办了一次“中国梦,我的梦”演讲比赛,满分 10 分,学生得分均为整数,成绩达 6 分以上为合格,达到9 分以上(含9 分)为优异.此次比赛中甲、乙两组学生成绩散布的条形统计图以下.( 1)增补达成以下的成绩统计剖析表:组别均匀分中位数方差合格率优异率甲 6.76 3.4190%20%乙7.17.5 1.6980%10%(2)小明同学说:“此次比赛我得了 7 分,在我们小组中排名属中游略偏上!”察看上表可知,小明是甲组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优异率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不一样意甲组同学的说法,以为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的原因.考点:条形统计图;算术均匀数;中位数;方差.专题:计算题.剖析:( 1)先依据条形统计图写出甲乙两组的成绩,而后分别计算甲的中位数,乙的均匀数和方差;(2)比较两组的中位数进行判断;(3)经过乙组的均匀数、中位数或方差进行说明.解答:解:( 1)甲组: 3,6, 6,6, 6, 6,7, 8, 9,10,中位数为6;2乙组: 5,5, 6, 7, 7, 8,8, 8, 8,9,均匀数 =7.1, S 乙 =1.69;(2)因为甲组的中位数为 6,所以 7 分在甲组排名属中游略偏上;故答案为 6, 7.1,1.69;甲;(3)乙组的均匀数高于甲组;乙组的中位数高于甲组,所以乙组的成绩要好于甲组.评论:本题考察了条形统计图:从条形图能够很简单看出数据的大小,便于比较.也考察了中位数和方差.22.( 10 分)( 2020?淄博)如图 1 是一把折叠椅子,图 2 是椅子完整翻开销稳后的侧面表示图,此中 AD 和 BC 表示两根较粗的钢管, EG 表示座板平面, EG 和 BC 订交于点 F,MN 表示地面所在的直线, EG∥MN ,EG 距 MN 的高度为 42cm,AB=43cm ,CF=42cm ,∠ DBA=60 °,∠DAB=80 °.求两根较粗钢管 AD 和 BC 的长.(结果精准到 0.1cm.参照数据: sin80°≈0.98,cos80°≈0.17, tan80°≈5.67, sin60°≈0.87, cos60°≈0.5, tan60°≈1.73)考点:解直角三角形的应用.专题:应用题.剖析:作 FH ⊥ AB 于 H ,DQ ⊥ AB 于 Q,如图 2, FH=42cm ,先在 Rt△ BFH 中,利用∠ FBH 的正弦计算出 BF ≈48.28,则 BC=BF+CF= ≈90.3( cm),再分别在 Rt△BDQ 和 Rt△ ADQ中,利用正切定义用 DQ 表示出 BQ 和 AQ ,得 BQ= ,AQ= ,则利用 BQ+AQ=AB=43 获取+=43 ,解得 DQ≈56.999,而后在 Rt△ ADQ 中,利用 sin∠ DAQ 的正弦可求出 AD的长.解答:解:作 FH⊥AB 于 H, DQ⊥ AB 于 Q,如图 2,FH=42cm ,在 Rt△ BFH 中,∵ sin∠ FBH= ,∴BF= ≈48.28,∴BC=BF+CF=48.28+42 ≈90.3(cm);在 Rt△ BDQ 中,∵ tan∠ DBQ= ,∴BQ= ,在 Rt△ ADQ 中,∵ tan∠ DAQ= ,∴AQ= ,∵BQ+AQ=AB=43 ,∴+=43 ,解得 DQ ≈56.999,在 Rt△ ADQ 中,∵ sin∠ DAQ= ,∴AD= ≈58.2( cm).答:两根较粗钢管AD 和 BC 的长分别为58.2cm、 90.3cm .评论:本题考察认识直角三角形的应用:将实质问题抽象为数学识题(画出平面图形,结构出直角三角形转变为解直角三角形问题).依据题目已知特点采用合适锐角三角函数或边角关系去解直角三角形,获取数学识题的答案,再转变获取实质问题的答案.23.( 10 分)( 2020?淄博)如图 1,在 Rt△ ACB 中,∠ACB=90 °, AC=3 , BC=4 ,有一过点 C 的动圆⊙ O 与斜边 AB 相切于动点 P,连结 CP.( 1)当⊙ O 与直角边AC 相切时,如图 2 所示,求此时⊙ O的半径r的长;( 2)跟着切点P 的地点不一样,弦C P 的长也会发生变化,试求出弦CP 的长的取值范围.( 3)当切点P 在哪处时,⊙ O 的半径 r 有最大值?试求出这个最大值.考点:圆的综合题.剖析:( 1)先依据勾股定理求出AB 的长,再由切线的性质求出PB 的长,过P 作 PQ⊥ BC 于 Q,过 O 作 OR⊥ PC 于 R,依据 PQ∥AC 得出 PC 的长,再由△ COR∽ △ CPQ 即可得出 r 的值;( 2)依据最短PC 为 AB 边上的高,最大PC=BC=4 即可得出结论;( 3)当 P 与 B 重合时,圆最大.这时,O 在 BD 的垂直均分线上,过O 作 OD ⊥BC 于 D,由 BD=BC=2 ,因为 AB 是切线可知∠ ABO=90 °,∠ABD+ ∠ OBD= ∠ BOD+ ∠ OBD=90 °,故可得出∠ ABC= ∠ BOD ,依据锐角三角函数的定义即可得出结论.解答:( 1)解:如图1,∵ 在 Rt△ACB 中,∠ ACB=90 °,AC=3 , BC=4 ,∴AB===5 .∵ AC 、 AP 都是圆的,圆心在BC 上, AP=AC=3 ,∴PB=2 ,过 P 作 PQ⊥BC 于 Q,过 O 作 OR⊥PC 于 R,∵PQ∥AC ,∴===,∴ PQ=, BQ= ,∴CQ=BC ﹣ BQ= ,∴PC== ,∵点 O 是 CE 的中点,∴CR=PC= ,∴∠ PCE=∠PCE,∠ CRO= ∠ CQP,∴△ COR ∽ △ CPQ,∴=,即 =,解得 r=;( 2)解:∵最短 PC 为 AB 边上的高,即PC== ,最大 PC=BC=4 ,∴ ≤PC≤4;( 3)解:如图 2,当 P 与 B 重合时,圆最大.O 在 BD 的垂直均分线上,过 O 作 OD ⊥ BC 于 D,由 BD=BC=2 ,∵AB 是切线,∴∠ ABO=90 °,∴ ∠ ABD+ ∠ OBD= ∠ BOD+∠OBD=90 °,∴∠ABC= ∠BOD ,∴ =sin∠ BOD=sin ∠ABC== ,∴ OB= ,即半径最大 .点 :本 考 的是 的 合 ,熟知切 的性 、勾股定理、相像三角形的判断与性 等知 是解答此 的关 .24.( 10 分)( 2020?淄博)( 1)抛物 1 1 1 2 1 11与自 量 x 之 的部 m : y =a x +b x+c 中,函数 y 分 如表:x ⋯2 1 1 2 45 ⋯ y 1 ⋯5 0 4 3 512⋯抛物 m 1 的 点 P ,与 y 的交点 C , 点 P 的坐(1,4) ,点 C 的坐(0, 3) .( 2)将 抛物 m 1222222212 .沿 x 翻折,获取抛物 m :y =a x +bx+c, 当 x= 3 ,y =( 3)在( 1)的条件下,将抛物 m 1 沿水平方向平移,获取抛物 m 3. 抛物 m 1与 x交于 A ,B 两点(点 A 在点 B 的左 ),抛物 m 3 与 x 交于 M , N 两点(点 M 在点 N 的左 ). 点 C 作平行于 x 的直 ,交抛物 m 3 于点 K . :能否存在以 A ,C ,K ,M点的四 形是菱形的情况?若存在, 求出点 K 的坐 ;若不存在, 明原因.考点:二次函数 合 .: 合 .剖析:( 1)先利用待定系数法求出抛物m 1 的分析式2y 1= x +2x+3 ,再配成 点式可得 到 P 点坐 ,而后 算自 量0 的函数 即可获取 C 点坐 ;( 2)依据抛物 的几何 获取抛物m 1 与抛物 m 2 的二次 系数互 相反数,然后利用 点式写出抛物m 2 的分析式,再 算自 量 3 的函数 ;( 3)先确立 A 点坐 ,再依据平移的性 获取四 形 AMKC 平行四 形,依据菱形的判断方法,当 CA=CK,四 形 AMKC 菱形,接着 算出 AC= , CK= ,而后依据平移的方向不一样获取 K 点坐 .2解答:解:( 1)把( 1,0),( 1, 4),( 2,3)分 代入得,y 1=a 1x +b 1x+c 1解得.所以抛物 m 1 的分析式 y 1= x 2+2x+3= ( x 1) 2+4, P (1, 4),当 x=0 , y=3 , C ( 0, 3);( 2)因 抛物 m 1 沿 x 翻折,获取抛物m 2,222所以 y 2 =(x1)4,当 x= 3 , y 2=( x+1 ) 4= ( 3 1) 4=12.( 3)存在.当 y 1=0 , x 2+2x+3=0 ,解得 x 1= 1,x 2=3, A ( 1, 0),B ( 0,3),∵ 抛物 m 1 沿水平方向平移,获取抛物 m 3 , ∴CK ∥AM ,CK=AM , ∴ 四 形 AMKC平行四 形,当 CA=CK ,四 形 AMKC 菱形,而 AC== , CK= ,当抛物 m 1 沿水平方向向右平移个 位,此 K (, 3);当抛物 m 1 沿水平方向向左平移个 位,此 K ( , 3).点 :本 考 了二次函数的 合 :熟 掌握二次函数的性 和菱形的判断;会利用待定系数法求二次函数分析式;会运用数形 合的数学思想方法解决 .。

山东省淄博市中考数学试卷(word解析版)

山东省淄博市中考数学试卷(word解析版)

C.60°<α<90°
考点:锐角三角函数的增减性. 专题:应用题. 分析:先由特殊角的三角函数值及余弦函数随锐角的增大而减小,得出 45°<α<90°; 再由特 殊角的三角函数值及正切函数随锐角的增大而增大,得出 0<α<60°;从而得出 45°< α<60°. 解答:解:∵α 是锐角, ∴cosα>0,
事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖
国奉献力量!
B、 (﹣2)3=﹣8,故本项错误; C、 ,故本项错误;
D、 (﹣3)0=1,故本项正确, 故选:D. 点评:本题考查了二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂,熟练 掌握运算法则是解题的关键. 3. (4 分) (2015•淄博)将图 1 围成图 2 的正方体,则图 1 中的红心“ 是正方体中的( ) ”标志所在的正方形
-1-
A.面 CDHE
B.面 BCEF
C.面 ABFG
D.面 ADHG
ห้องสมุดไป่ตู้
考点:展开图折叠成几何体. 分析: 由平面图形的折叠及正方体的展开图解题.注意找准红心“
.
”标志所在的相邻面.
解答: 解:由图 1 中的红心“
”标志,
可知它与等边三角形相邻,折叠成正方体是正方体中的面 CDHE. 故选 A. 点评:本题考查了正方体的展开图形,解题关键是从相邻面入手进行分析及解答问题. 4. (4 分) (2015•淄博)已知 x= A. 2 B.4 ,y= ,则 x2+xy+y2 的值为( ) C.5 D. 7
故选:C. 点评:本题主要考查用列表法或树状图求概率.解决本题的关键是弄清题意,满 200 元可以 摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总 情况数之比.

淄博中考数学试题及答案

淄博中考数学试题及答案

淄博中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7x - 1B. 3x - 5 = 2x + 3C. 4x + 2 = 6x - 4D. 5x - 7 = 3x + 1答案:B2. 计算下列哪个表达式的值等于10?A. 2(3x + 4)B. 3(2x - 1)C. 4(5x - 2)D. 5(4x + 3)答案:A3. 已知函数y = 2x + 3,当x = 2时,y的值是多少?A. 7B. 8C. 9D. 10答案:A4. 以下哪个图形是轴对称图形?A. 平行四边形C. 等腰三角形D. 不规则多边形答案:C5. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 30π厘米D. 40π厘米答案:B6. 一个长方体的长宽高分别为3cm、4cm、5cm,那么它的体积是多少?A. 12立方厘米B. 24立方厘米C. 30立方厘米D. 60立方厘米答案:C7. 以下哪个选项是等腰三角形?A. 两边长分别为3cm和5cmB. 两边长分别为4cm和4cmC. 两边长分别为5cm和6cmD. 三边长分别为3cm、4cm、5cm答案:B8. 一个等差数列的首项为2,公差为3,那么第5项是多少?B. 14C. 11D. 8答案:A9. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 - 4x + 4C. y = 3x - 2D. y = 5x答案:B10. 一个直角三角形的两条直角边长分别为3cm和4cm,那么斜边的长度是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A二、填空题(每题3分,共15分)11. 已知一个数的平方是25,那么这个数是______。

答案:±512. 一个数的绝对值是4,那么这个数是______。

答案:±413. 一个数的立方根是2,那么这个数是______。

2023年山东省淄博市中考数学试卷及其答案

2023年山东省淄博市中考数学试卷及其答案

2023年山东省淄博市中考数学试卷一、选择题:本大题共10个小题,每小题4分,共40分。

在每小题所给出的四个选项中,只有一项是符合题目要求的。

1.(4分)﹣|﹣3|的运算结果等于()A.3B.﹣3C.D.2.(4分)在如图所示的几何体中,其主视图、左视图和俯视图完全相同的是()A.B.C.D.3.(4分)下列计算结果正确的是()A.3a+2a=5a B.3a﹣2a=1C.3a•2a=6a D.(3a)÷(2a)=a4.(4分)将含30°角的直角三角板按如图所示放置到一组平行线中,若∠1=70°,则∠2等于()A.60°B.50°C.40°D.30°5.(4分)已知x=1是方程的解,那么实数m的值为()A.﹣2B.2C.﹣4D.46.(4分)下列函数图象中,能反映y的值始终随x值的增大而增大的是()A.B.C.D.7.(4分)为贯彻落实习近平总书记关于黄河流域生态保护和高质量发展的重要讲话精神,某学校组织初一、初二两个年级学生到黄河岸边开展植树造林活动.已知初一植树900棵与初二植树1200棵所用的时间相同,两个年级平均每小时共植树350棵.求初一年级平均每小时植树多少棵?设初一年级平均每小时植树x棵,则下面所列方程中正确的是()A.B.C.D.8.(4分)“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从A,B,C三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是()A.B.C.D.9.(4分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D是BC边上一点,连接AD 并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为()A.B.C.D.10.(4分)勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG,DG.若正方形ABCD与EFGH的边长之比为:1,则sin∠DGE等于()A.B.C.D.二、填空题:本大题共5个小题,每小题4分,共20分。

2023年山东省淄博市中考数学真题试卷(解析版)

2023年山东省淄博市中考数学真题试卷(解析版)

2023年山东省淄博市中考数学真题试卷及答案本试卷共8页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将区县、学校、姓名、考试号、座号填写在答题卡和试卷规定位置,并核对条形码.2.选择题每小题选出答案后,用2B铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.非选择题必须用0.5毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指定区域内;如需改动,先划掉原来答案,然后再写上新答案.严禁使用涂改液、胶带纸、修正带修改.不允许使用计算器.4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记.5.评分以答题卡上的答案为依据.不按以上要求作答的答案无效.一、选择题:本大题共10个小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 的运算结果等于()A. 3B.C.D.【答案】B【解析】根据绝对值的性质:负数的绝对值等于它的相反数直接求解即可得到答案;解:由题意可得,,故选:B;【点拨】本题考查去绝对值符号,解题的关键是熟练掌握负数的绝对值等于它的相反数.2. 在如图所示的几何体中,其主视图、左视图和俯视图完全相同的是()A. B.C. D.【答案】D【解析】分别确定各几何体的三视图,从而得解.A. ,主视图、左视图和俯视图分别为长方形,长方形,长方形,三长方形大小不一定相同,故本选项不合题意;B. ,主视图、左视图和俯视图分别是长方形,长方形,圆,故本选项不合题意;C. ,主视图、左视图和俯视图分别是三角形,三角形,圆,故本选项不合题意;D. ,主视图、左视图和俯视图分别是圆,圆,圆,故本选项符合题意;故选:D【点拨】本题考查常见几何体的三视图;掌握常见几何体的三视图是解题的关键.3. 下列计算结果正确的是()A. B. C. D.【答案】A【解析】根据整式的加减运算法则,单项式乘以单项式的运算法则,单项式除以单项式的运算法则即可解答.解:∵与是同类项,∴,故项符合题意;∵与是同类项,∴,∴错误,故项不符合题意;∵,∴错误,故项不符合题意;∵,∴错误,故项不符合题意;故选.【点拨】本题考查了整式的加法法则,整式的减法法则,整式的乘法法则,整式的除法法则,掌握对应法则是解题的关键.4. 将含角的直角三角板按如图所示放置到一组平行线中,若,则等于()A. B. C. D.【答案】C【解析】由平行线的性质,得,由外角定理,得,可推证,从而求得.解:如图,∵,∴.∵,∴.∴.故选:C【点拨】本题考查平行线的性质,对顶角相等,三角形外角性质;由平行线的性质得到等角是解题的关键.5. 已知是方程的解,那么实数的值为()A. B. 2 C. D. 4【答案】B【解析】将代入方程,即可求解.解:将代入方程,得解得:故选:B.【点拨】本题考查分式方程的解,解题的关键是将代入原方程中得到关于的方程.6. 下列函数图象中,能反映的值始终随值的增大而增大的是( )A. B.C. D.【答案】C【解析】观察图象,由函数的性质可以解答.解:由图可知:A.函数值具有对称性.在对称轴的左侧y的值随x值的增大而增大,对称轴的右侧y的值随x值的增大而减小,该选项不符合题意;B.增减性需要限定在各个象限内,该选项不符合题意;C.图象是函数y的值随x值的增大而增大,该选项符合题意;D.图象在原点左侧是函数y的值随x值的增大而减小,该选项不符合题意;故选:C.【点拨】本题考查了二次函数图象,一次函数图象,正比例函数图象,反比例函数图象,准确识图并理解函数的增减性的定义是解题的关键.7. 为贯彻落实习近平总书记关于黄河流域生态保护和高质量发展的重要讲话精神,某学校组织初一、初二两个年级学生到黄河岸边开展植树造林活动.已知初一植树棵与初二植树棵所用的时间相同,两个年级平均每小时共植树棵.求初一年级平均每小时植树多少棵?设初一年级平均每小时植树棵,则下面所列方程中正确的是()A. B. C. D.【答案】D【解析】根据初一植树棵与初二植树棵所用的时间相同列式求解即可得到答案.解:由题意可得,,故选:D;【点拨】本题考查分式方程解决应用问题,解题的关键是找到等量关系式.8. “敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从,,三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是()A. B. C. D.【答案】B【解析】画出树状图展示所有9种等可能的结果数,找出两人恰好选择同一场所的结果数,然后根据概率公式求解.解:画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一场所的结果数为3,∴明明和亮亮两人恰好选择同一场馆的概率,故选:B.【点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.9. 如图,是的内接三角形,,,是边上一点,连接并延长交于点.若,,则的半径为()A. B. C. D.【答案】A【解析】连接, 根据等腰三角形的性质得到, 根据等边三角形的性质得到,根据相似三角形的判定和性质即可得到结论.连接,∵,∴∴,∵,∴是等边三角形,∴,∵,,∴,,∴,∵,,,即的半径为,故选: .【点拨】本题考查了圆周角定理,等腰三角形的性质,等边三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质度量是解题的关键.10. 勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接,.若正方形与的边长之比为,则等于()A. B. C. D.【答案】A【解析】设的长直角边为a,短直角边为b,大正方形的边长为,小正方形的边长为x,由题意得,解得,即可求解.解:过点D作交的延长线于点N,由题意可得,两个正方形之间是4个相等的三角形,设的长直角边为a,短直角边为b,大正方形的边长为,小正方形的边长为x,即,,,由题意得,,解得,在中,,则,,则,∴,故选:A.【点拨】本题考查解直角三角形的应用、正方形的性质及勾股定理,确定A.b和x之间的关系是解题的关键.二、填空题:本大题共5个小题,每小题4分,共20分.11. 25的平方根是_____.【答案】±5【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.∵(±5)2=25,∴25平方根是±5.【点拨】本题主要考查了平方根的意义,正确利用平方根的定义解答是解题的关键.12. 在边长为1的正方形网格中,右边的“小鱼”图案是由左边的图案经过一次平移得到的,则平移的距离是________.【答案】6【解析】确定一组对应点,从而确定平移距离.解:如图,点是一组对应点,,所以平移距离为6;故答案为:6【点拨】本题考查图形平移;确定对应点从而确定平移距离是解题的关键.13. 分解因式:2a2﹣8b2=________.【答案】【解析】先提取公因式2,再对余下的多项式利用平方差公式继续分解即可.2a2﹣8b2=2(a2﹣4b2)=2(a+2b)(a﹣2b).故答案为2(a+2b)(a﹣2b).【点拨】本题考查了提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.14. 如图,在直线:上方的双曲线上有一个动点,过点作轴的垂线,交直线于点,连接,,则面积的最大值是________.【答案】3【解析】设,则,将三角形面积用代数式的形式表示出来,然后根据二次函数的最值,即可求解.解:依题意,设,则,则∴∵,二次函数图象开口向下,有最大值,∴当时面积的最大值是,故答案为:.【点拨】本题考查了二次函数的性质,反比例数与一次函数的性质,根据题意列出函数关系式是解题的关键.15. 如图,与斜坡垂直的太阳光线照射立柱(与水平地面垂直)形成的影子,一部分落在地面上,另一部分落在斜坡上.若米,米,斜坡的坡角,则立柱的高为________米(结果精确到米).科学计算器按键顺序计算结果(已取近似值)【答案】19.2米【解析】如图,过点D作,垂足为H,过点C作,垂足为G,则四边形为矩形,可得米,,.于是.解,得,从而(米),解中,(米).于是(米).解:如图,过点D作,垂足为H,过点C作,垂足为G,则四边形为矩形,∴米,.∴.∴.中,,(米).∴(米).中,,∴(米).∴(米).故答案为:19.2米.【点拨】本题考查解直角三角形;添加辅助线,构造直角三角形、矩形,从而运用三角函数求解线段是解题的关键.三、解答题:本大题共8个小题,共90分.解答要写出必要的文字说明、证明过程或演算步骤.16. 先化简,再求值:,其中,.【答案】;【解析】直接利用整式的混合运算法则化简进而合并得出答案.原式,当时,原式.【点拨】此题主要考查了整式的混合运算二次根式的运算,正确合并同类项是解题关键.17. 如图,在中,,分别是边和上的点,连接,,且.求证:(1);(2).【答案】(1)见解析(2)见解析【解析】(1)证明四边形是平行四边形即可;(2)用证明即可.(1)证明:四边形是平行四边形,,又.四边形是平行四边形.平行四边形对角相等(2)四边形是平行四边形,,,四边形是平行四边形,,,,在和中,,.【点拨】本题考查了平行四边形的性质和三角形全等的判定,熟练掌握平行四边形性质是解本题的关键.18. 若实数,分别满足下列条件:(1);(2).试判断点所在的象限.【答案】点在第一象限或点在第二象限【解析】运用直接开平方法解一元二次方程即可;解不等式求出解题,在分情况确定,的符号确定点所在象限解题即可.解:或,;,解得:;∴当,时,,,点在第一象限;当,时,,,点在第二象限;【点拨】本题考查点在平面直角系的坐标特征,解不等式,平方根的意义,利用不等式的性质判断点的坐标特征是解题的关键.19. 举世瞩目中国共产党第二十次全国代表大会于2022年10月在北京成功召开.为弘扬党的二十大精神,某学校举办了“学习二十大,奋进新征程”的知识竞赛活动.赛后随机抽取了部分学生的成绩(满分:100分),分为,,,四组,绘制了如下不完整的统计图表:组别成绩(:分)频数2060学生成绩频数分布直方图学生成绩扇形统计图根据以上信息,解答以下问题:(1)直接写出统计表中的________,________;(2)学生成绩数据的中位数落在________组内;在学生成绩扇形统计图中,组对应的扇形圆心角是________度;(3)将上面的学生成绩频数分布直方图补充完整;(4)若全校有1500名学生参加了这次竞赛,请估计成绩高于90分的学生人数.【答案】(1)40,80(2),72(3)见解析(4)1050【解析】(1)由题意知,共调查(人),根据,计算可得值,根据,计算求解即可;(2)根据中位数为第100,101位的数的平均数,进行判断即可,根据,计算求解即可;(3)补全统计图即可;(4)根据,计算求解即可.(1)解:由题意知,共调查(人),∴(人),∴(人),故答案为:40,80;(2)解:由题意知,中位数为第100,101位的数的平均数,∵,,∴中位数落在组内,∴,故答案为:,72;(3)解:补全条形统计图如下:【小问4详解】解:∵(人),∴估计成绩高于90分的学生人数为1050人.【点拨】本题考查了条形统计图,频数分布表,扇形统计图,中位数,圆心角,用样本估计总体.解题的关键在于从图表中获取正确的信息.20. 如图,直线与双曲线相交于点,.(1)求双曲线及直线对应的函数表达式;(2)将直线向下平移至处,其中点,点在轴上.连接,,求的面积;(3)请直接写出关于的不等式的解集.【答案】(1),(2)(3)【解析】将代入双曲线,求出的值,从而确定双曲线的解析式,再将点代入,确定点坐标,最后用待定系数法求直线的解析式即可;由平行求出直线的解析式为过点作交于,设直线与轴的交点为,与轴的交点为, 可推导出, 再由,求出则的面积数形结合求出x的范围即可.(1)将代入双曲线,∴,∴双曲线的解析式为,将点代入,∴,∴,将代入,,解得,∴直线解析式为;(2)∵直线向下平移至,∴,设直线的解析式为将点代入∴解得∴直线的解析式为∴过点作交于,设直线与轴的交点为,与轴的交点为,∴,∵,∴,∵,,,∵,,,∴的面积(3)由图可知时,【点拨】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,直线平移是性质,数形结合是解题的关键.21. 某古镇为发展旅游产业,吸引更多的游客前往游览,助力乡村振兴,决定在“五一”期间对团队*旅游实行门票特价优惠活动,价格如下表:购票人数(人)每人门票价(元)605040*题中的团队人数均不少于10人现有甲、乙两个团队共102人,计划利用“五一”假期到该古镇旅游,其中甲团队不足50人,乙团队多于50人.(1)如果两个团队分别购票,一共应付5580元,问甲、乙团队各有多少人?(2)如果两个团队联合起来作为一个“大团队”购票,比两个团队各自购票节省的费用不少于1200元,问甲团队最少多少人?【答案】(1)甲团队有48人,乙团队有54人(2)18【解析】(1)设甲团队有人,则乙团队有人,依题意得,,计算求解,然后作答即可;(2)设甲团队有人,则乙团队有人,依题意得,,计算求解即可.(1)解:设甲团队有人,则乙团队有人,依题意得,,解得,,∴(人),∴甲团队有48人,乙团队有54人;(2)解:设甲团队有人,则乙团队有人,依题意得,,解得,,∴甲团队最少18人.【点拨】本题考查了一元一次方程的应用,一元一次不等式的应用.解题的关键在于根据题意正确的列等式和不等式.22. 在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片和拼成“L”形图案,如图①.试判断:的形状为________.(2)深入探究小红在保持矩形不动的条件下,将矩形绕点旋转,若,.探究一:当点恰好落在的延长线上时,设与相交于点,如图②.求的面积.探究二:连接,取的中点,连接,如图③.求线段长度的最大值和最小值.【答案】(1)等腰直角三角形(2)探究一:;探究二:线段长度的最大值为,最小值为【解析】(1)由,可知是等腰三角形,再由,推导出,即可判断出是等腰直角三角形,(2)探究一:证明,可得,再由等腰三角形的性质可得,在中,勾股定理列出方程,解得,即可求的面积;探究二:连接,取的中点,连接,取、的中点为、,连接,,,分别得出四边形是平行四边形,四边形是平行四边形,则,可知点在以为直径的圆上,设的中点为,,即可得出的最大值与最小值.(1)解:两个完全相同矩形纸片和,,是等腰三角形,,.,,,∵,∴,∴,,,,是等腰直角三角形,故答案为:等腰直角三角形;(2)探究一:,,,,,,,,,,,在中,,,解得,,的面积;探究二:连接,取的中点,连接,,取、的中点为、,连接,,,是的中点,,且,,,,,且,四边形是平行四边形,,,,,,,四边形是平行四边形,,,点在以为直径的圆上,设的中点为,,最大值为,最小值为.【点拨】本题考查四边形的综合应用,熟练掌握矩形的性质,直角三角形的性质,三角形全等的判定及性质,平行四边形的性质,圆的性质,能够确定H点的运动轨迹是解题的关键.23. 如图,一条抛物线经过的三个顶点,其中为坐标原点,点,点在第一象限内,对称轴是直线,且的面积为18(1)求该抛物线对应的函数表达式;(2)求点的坐标;(3)设为线段的中点,为直线上的一个动点,连接,,将沿翻折,点的对应点为.问是否存在点,使得以,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.【答案】(1)(2)(3)存在,点的坐标为或或或【解析】(1)根据对称轴为直线,将点代入,进而待定系数法求解析式即可求解;(2)设,过点作轴交于点,过点作交于点,继而表示出的面积,根据的面积为,解方程,即可求解.(3)先得出直线的解析式为,设,当为平行四边形的对角线时,可得,当为平行四边形的对角线时,,进而建立方程,得出点的坐标,即可求解.(1)解:∵对称轴为直线,∴①,将点代入得,∴②,联立①②得,,∴解析式为;(2)设,如图所示,过点作轴交于点,过点作交于点,∴,,则,∴解得:或(舍去),(3)存在点,使得以,,,为顶点的四边形是平行四边形,理由如下:∵,∴,设直线的解析式为,∴,解得:,∴直线的解析式为,设,如图所示,当BP为平行四边形的对角线时,,,∵,∴,由对称性可知,,∴,∴解得:∴点的坐标为或如图3,当为平行四边形的对角线时,,,由对称性可知,,∴,∴,解得:或,∴点的坐标为或综上所述,点的坐标为或或或.【点拨】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行四边形的性质,轴对称的性质是解题的关键.。

山东省淄博市2020年中考数学真题试题(Word版+答案+解析)

山东省淄博市2020年中考数学真题试题(Word版+答案+解析)

山东省淄博市2020年中考数学试卷一、单选题(共12题;共24分)1.若实数a的相反数是﹣2,则a等于()A. 2B. ﹣2C. 12D. 02.下列图形中,不是轴对称图形的是()A. B. C. D.3.李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A. 4,5B. 5,4C. 5,5D. 5,64.如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A. 30°B. 35°C. 40°D. 45°5.下列运算正确的是()A. a2+a3=a5B. a2•a3=a5C. a3÷a2=a5D. (a2)3=a56.已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是()A. B. C. D.7.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED8.化简a2+b2a−b +2abb−a的结果是()A. a+bB. a﹣bC. (a+b)2a−b D. (a−b)2a+b9.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=kx的图象上,则k的值为()A. 36B. 48C. 49D. 6410.如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O所经过的最短路径的长是()A. 2π+2B. 3πC. 5π2D. 5π2+211.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A. 12B. 24C. 36D. 4812.如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A. a2+b2=5c2B. a2+b2=4c2C. a2+b2=3c2D. a2+b2=2c2二、填空题(共5题;共5分)13.计算:√−83+√16=________.14.如图,将△ABC 沿BC 方向平移至△DEF 处.若EC =2BE =2,则CF 的长为________.15.已知关于x 的一元二次方程x 2﹣x+2m =0有两个不相等的实数根,则实数m 的取值范围是________. 16.如图,矩形纸片ABCD ,AB =6cm ,BC =8cm ,E 为边CD 上一点.将△BCE 沿BE 所在的直线折叠,点C 恰好落在AD 边上的点F 处,过点F 作FM ⊥BE ,垂足为点M ,取AF 的中点N ,连接MN ,则MN =________cm .17.某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是________个.三、解答题(共7题;共77分)18.解方程组: {3x +12y =82x −12y =219.已知:如图,E 是▱ABCD 的边BC 延长线上的一点,且CE =BC . 求证:△ABC ≌△DCE .20.某校数学实践小组就近期人们比较关注的五个话题:“A .5G 通讯; B .民法典;C .北斗导航;D .数字经济; E .小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有________人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a=________,话题D所在扇形的圆心角是________度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“民法典”的人数大约有多少?21.如图,在直角坐标系中,直线y1=ax+b与双曲线y2=k(k≠0)分别相交于第二、四象限内的A(m,x4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=2.3(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;的解集.(3)直接写出当x<0时,不等式ax+b>kx22.如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100千米,√2≈1.4,√3≈1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?23.如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF⊥BC于点F,设⊙O的半径为R,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)求证:AB•AC=2R•h;(3)设∠BAC=2α,求AB+AC的值(用含α的代数式表示).AD24.如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+8(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.3(1)求这条抛物线对应的函数表达式;,求点R的坐标;(2)已知R是抛物线上的点,使得△ADR的面积是平行四边形OABC的面积的34(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.答案解析部分一、单选题1.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:∵2的相反数是﹣2,∴a=2【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数.即可求出a的值.2.【答案】D【考点】轴对称图形【解析】【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意.故答案为:D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.3.【答案】C【考点】中位数,众数【解析】【解答】解:这组数据4,3,4,6,5,5,6,5,4,5中,出现次数最多的是5,因此众数是5,将这组数据从小到大排列后,处在第5、6位的两个数都是5,因此中位数是5.故答案为:C.【分析】根据中位数、众数的意义和计算方法进行计算即可.4.【答案】C【考点】平行线的性质,三角形内角和定理【解析】【解答】解:∵AC⊥BC,∴∠ACB=90°,又∵∠B=50°,∴∠CAB=90°﹣∠B=40°,∵CD∥AB,∴∠DCA=∠CAB=40°.故答案为:C.【分析】由AC⊥BC可得∠ACB=90°,又∠B=50°,根据直角三角形两个锐角互余可得∠CAB=40°,再根据平行线的性质可得∠DCA=∠CAB=40°.5.【答案】B【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A.a2+a3≠a5,所以A选项不符合题意;B.a2•a3=a5,所以B选项符合题意;C.a3÷a2=a,所以C选项不符合题意;D.(a2)3=a6,所以D选项不符合题意;故答案为:B.【分析】A.根据合并同类项的定义即可判断;B.根据同底数幂的乘法,底数不变,指数相加即可判断;C.根据同底数幂的除法,底数不变,指数相减即可判断;D.根据幂的乘方,底数不变,指数相乘即可判断.6.【答案】D【考点】计算器—三角函数【解析】【解答】解:∵已知sinA=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0,∴按下的第一个键是2ndF.故答案为:D.【分析】根据计算器求锐角的方法即可得结论.7.【答案】B【考点】三角形全等及其性质【解析】【解答】解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项不符合题意,B选项符合题意,故答案为:B.【分析】根据全等三角形的性质即可得到结论.8.【答案】B【考点】分式的加减法【解析】【解答】解:原式=a2+b2a−b −2aba−b=a2+b2−2aba−b=(a−b)2a−b=a﹣b.故答案为:B.【分析】跟据同分母分式相加减的运算法则计算.同分母分式相加减,分母不变,分子相加减.9.【答案】A【考点】待定系数法求反比例函数解析式,三角形的面积,角平分线的性质,勾股定理,几何图形的面积计算-割补法【解析】【解答】解:过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A(0,4),B(3,0),∴OA=4,OB=3,∴AB=√32+42=5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P(t,t),则PC=t,∵S△PAE+S△PAB+S△PBD+S△OAB=S矩形PEOD,∴12×t×(t﹣4)+ 12×5×t+ 12×t×(t﹣3)+ 12×3×4=t×t,解得t=6,∴P(6,6),把P(6,6)代入y=kx得k=6×6=36.故答案为:A.【分析】过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,利用勾股定理计算出AB=5,根据角平分线的性质得PE=PC=PD,设P(t,t),利用面积的和差得到12×t×(t﹣4)+ 12×5×t+ 12×t×(t﹣3)+ 12×3×4=t×t,求出t得到P点坐标,然后把P点坐标代入y=kx中求出k的值.10.【答案】C【考点】弧长的计算,图形的旋转【解析】【解答】解:如图,点O的运动路径的长=的长+O1O2+ 的长=90·π·2180+ 45·π·2180+ 90·π·2180=5π2,故答案为:C.【分析】利用弧长公式计算即可.11.【答案】D【考点】三角形的面积,通过函数图象获取信息并解决问题,动点问题的函数图象【解析】【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC=√BC2−BP2=√102−82=6,△ABC的面积=12×AC×BP=12×8×12=48,故答案为:D.【分析】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP =8),即可求解.12.【答案】A【考点】列式表示数量关系,三角形的角平分线、中线和高,勾股定理【解析】【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AF=12AC=12b,BD=12a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=14b2,②在Rt△BFD中,x2+4y2=14a2,③②+③得5x2+5y2=14(a2+b2),∴4x2+4y2=15(a2+b2),④①﹣④得c2﹣15(a2+b2)=0,即a2+b2=5c2.故答案为:A.【分析】设EF=x,DF=y,根据三角形重心的性质得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=14b2,x2+4y2=14a2,然后利用加减消元法消去x、y得到a、b、c的关系.二、填空题13.【答案】2【考点】算术平方根,立方根及开立方【解析】【解答】解:√−83+ √16=﹣2+4=2.故答案为:2【分析】分别根据立方根的定义与算术平方根的定义解答即可.14.【答案】1【考点】平移的性质【解析】【解答】解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=2,∴BE=1,∴CF=1.故答案为1.【分析】利用平移的性质得到BE=CF,再用EC=2BE=2得到BE的长,从而得到CF的长.15.【答案】m<18【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵方程有两个不相等的实数根,a=1,b=﹣1,c=2m∴△=b2﹣4ac=(﹣1)2﹣4×1×2m>0,解得m<18,故答案为m<18.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.16.【答案】5【考点】矩形的性质,轴对称的性质,翻折变换(折叠问题),三角形的中位线定理【解析】【解答】解:连接AC,FC.由翻折的性质可知,BE垂直平分线段CF,∴FM⊥BE,∴F.M,C共线,FM=MC,∵AN=FN,∴MN=1AC,2∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=√AB2+BC2=√62+82=10(cm),∴MN=1AC=5(cm),2故答案为5.【分析】连接AC,FC,求出AC,利用三角形的中位线定理解决问题即可.17.【答案】210【考点】待定系数法求二次函数解析式,探索数与式的规律,二次函数的其他应用【解析】【解答】解:当一辆快递货车停靠在第x个服务驿站时,快递货车上需要卸下已经通过的(x﹣1)个服务驿站发给该站的货包共(x﹣1)个,还要装上下面行程中要停靠的(n﹣x)个服务驿站的货包共(n﹣x)个.根据题意,完成下表:由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,当x=14或15时,y取得最大值210.答:在整个行程中,快递货车装载的货包数量最多是210个.故答案为:210.【分析】根据理解题意找出题目中所给的等量关系,找出规律,写出货包数量的函数解析式,再根据二次函数最值的求法求出快递货车装载的货包数量最多的站.三、解答题18.【答案】 解: {3x +12y =8①2x −12y =2② , ①+②,得:5x =10,解得x =2,把x =2代入①,得:6+ 12 y =8,解得y =4,所以原方程组的解为 {x =2y =4. 利用加减消元法解答即可.【考点】解二元一次方程组【解析】【分析】用加减消元法解二元一次方程组,y 的系数互为相反数,先消掉y ,可以求出x=2,再求出y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


=
=,
∴△AEF 与多边形 BCDFE 的面积之比为 1:(3+2)=1:5, 故选 C. 点评:本题考查了三角形的面积,三角形的中位线等知识点的应用,主要考查学生运用性质 进行推理和计算的能力,题目比较典型,难度适中. 9.(4 分)(2015•淄博)如图,在菱形 ABCD 和菱形 BEFG 中,点 A、B、E 在同一直线上,
考点:分式方程的解. .
分析:先得出分式方程的解,再得出关于 m 的不等式,解答即可. 解答:
解:原方程化为整式方程得:2﹣x﹣m=2(x﹣2),
解得:x=2﹣ ,
-6-
因为关于 x 的方程 + =2 的解为正数,
可得:

解得:m<6, 因为 x=2 时原方程无解,
所以可得

解得:m≠0. 故选 C. 点评:此题考查分式方程,关键是根据分式方程的解法进行分析. 11.(4 分)(2015•淄博)如图是一块△ABC 余料,已知 AB=20cm,BC=7cm,AC=15cm,现 将余料裁剪成一个圆形材料,则该圆的最大面积是( )
解得:x=9, ∴AD=12,
∴S△ABC=
= ×7×12=42,
∴21r=42, ∴r=2, 该圆的最大面积为:S=πr2=π•22=4π(cm2), 故选 C. 点评:本题主要考查了三角形的内切圆的相关知识及勾股定理的运用,运用三角形内切圆的 半径表示三角形的面积是解答此题的关键. 12.(4 分)(2015•淄博)如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点 P 是斜边 AB 上一点.过点 P 作 PQ⊥AB,垂足为 P,交边 AC(或边 CB)于点 Q.设 AP=x,△APQ 的面 积为 y,则 y 与 x 之间的函数图象大致是( )
解答: 解:由图 1 中的红心“ ”标志,
可知它与等边三角形相邻,折叠成正方体是正方体中的面 CDHE. 故选 A. 点评:本题考查了正方体的展开图形,解题关键是从相邻面入手进行分析及解答问题.
4.(4 分)(2015•淄博)已知 x=
,y=
,则 x2+xy+y2 的值为( )
A.2
B. 4
C. ﹣2016
D. 2016
考点:有理数的减法. 分析:根据题意列式即可求得结果. 解答: 解:﹣2015﹣1=﹣2016.
故选 C.
点评:本题考查了有理数的减法,熟记有理数的减法的法则是解题的关键.
2.(4 分)(2015•淄博)下列式子中正确的是( )
A.( )﹣2=﹣9
B. (﹣2)3=﹣6
的解,则 2m﹣n 的平方根为
( )
A.±2
B.
C. ±
D. 2
考点:二元一次方程组的解;平方根.
-2-
分析:由 x=2,y=1 是二元一次方程组的解,将 x=2,y=1 代入方程组求出 m 与 n 的值,进而
求出 2m﹣n 的值,利用平方根的定义即可求出 2m﹣n 的平方根.
解答: 解:∵将
-9-
行线的性质求得∠DFA 的度数即可. 解答:解:∵正五边形的外角为 360°÷5=72°,
∴∠C=180°﹣72°=108°, ∵CD=CB, ∴∠CDB=36°, ∵AF∥CD, ∴∠DFA=∠CDB=36°, 故答案为:36. 点评:本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角. 15.(3 分)(2015•淄博)如图,经过点 B(﹣2,0)的直线 y=kx+b 与直线 y=4x+2 相交于点 A (﹣1,﹣2),则不等式 4x+2<kx+b<0 的解集为 ﹣2<x<﹣1 .
3.(4 分)(2015•淄博)将图 1 围成图 2 的正方体,则图 1 中的红心“ ”标志所在的正方形 是正方体中的( )
-1-
A.面 CDHE
B.面 BCEF
C.面 ABFG
D.面 ADHG
考点:展开图折叠成几何体.
分析: 由平面图形的折叠及正方体的展开图解题.注意找准红心“
”标志所在的相邻面.
∴= ;
故选 B.
点评:本题主要考查了菱形的性质,以及全等三角形的判定等知识点,根据已知和所求的条 件正确的构建出相关的全等三角形是解题的关键.
10.(4 分)(2015•淄博)若关于 x 的方程 + =2 的解为正数,则 m 的取值范围是( )
A.m<6
B. m>6
C.m<6 且 m≠0
D.m>6 且 m≠8
C.
=﹣2 D.(﹣3)0=1
考点:二次根式的性质与化简;有理数的乘方;零指数幂;负整数指数幂.
分析:根据二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂逐一运算,判
断即可.
解答: 解:A、
=9,故本项错误;
B、(﹣2)3=﹣8,故本项错误;
C、
,故本项错误;
D、(﹣3)0=1,故本项正确, 故选:D. 点评:本题考查了二次根式的性质与化简、有理数的乘方、零指数以及负整数指数幂,熟练 掌握运算法则是解题的关键.
知的有 DC∥GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又 有 DP=PF,因此构成了全等三角形判定条件中的(AAS),于是两三角形全等,那么 HP=PG,可根据三角函数来得出 PG、CP 的比例关系. 解答:解:如图, 延长 GP 交 DC 于点 H, ∵P 是线段 DF 的中点, ∴FP=DP, 由题意可知 DC∥GF, ∴∠GFP=∠HDP, ∵∠GPF=∠HPD, ∴△GFP≌△HDP, ∴GP=HP,GF=HD, ∵四边形 ABCD 是菱形, ∴CD=CB, ∴CG=CH, ∴△CHG 是等腰三角形, ∴PG⊥PC,(三线合一) 又∵∠ABC=∠BEF=60°, ∴∠GCP=60°,
∴AD=AB﹣BD=12.
-8-
如图 1,当 0≤AD≤12 时,AP=x,PQ=AP•tan30°= x, ∴y= x• x= x2; 如图 2:当 12<x≤16 时,BP=AB﹣AP=16﹣x, ∴PQ=BP•tan60°= (16﹣x), ∴y= x• (16﹣x)=﹣ x2+8 x, 故选 D.
客在本超市一次性消费满 200 元,就可以在箱子里先后摸出两个小球(每一次摸出后不放
回).某顾客刚好消费 200 元,则该顾客所获得购物券的金额不低于 30 元的概率( )
A.
B.
C.
D.
考点:列表法与树状图法.
分析:列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事
件.
=
=3.
故填 3.
点评:主要考查了二次根式的乘法运算.二次根式的乘法法则
=.
14.(3 分)(2015•淄博)如图,已知正五边形 ABCDE,AF∥CD,交 DB 的延长线于点 F,
则∠DFA= 36 度.
考点:多边形内角与外角;平行线的性质. 分析:首先求得正五边形内角∠C 的度数,然后根据 CD=CB 求得∠CDB 的度数,然后利用平
P 是线段 DF 的中点,连接 PG,PC.若∠ABC=∠BEF=60°,则 =( )
A.
B.
C.
D.
-5-
考点:菱形的性质;全等三角形的判定与性质;等腰三角形的判定与性质. 专题:计算题;压轴题. 分析:可通过构建全等三角形求解.延长 GP 交 DC 于 H,可证三角形 DHP 和 PGF 全等,已
摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总 情况数之比.
-3-
7.(4 分)(2015•淄博)若锐角 α 满足 cosα< 且 tanα< ,则 α 的范围是( )
A.30°<α<45°
B. 45°<α<60°
C. 60°<α<90°
D. 30°<α<60°
考点:锐角三角函数的增减性. 专题:应用题. 分析:先由特殊角的三角函数值及余弦函数随锐角的增大而减小,得出 45°<α<90°;再由特
殊角的三角函数值及正切函数随锐角的增大而增大,得出 0<α<60°;从而得出 45°< α<60°. 解答:解:∵α 是锐角, ∴cosα>0,
∵cosα< ,
∴0<cosα< ,
义务教育基础课程初中教学资料
山东省淄博市 2015 年中考数学试卷
一、选择题:本题共 12 小题,在每小题所给出的四个选项中,只有一个是正确的.每小题 4 分,错选、不选或选出的答案超过一个,均记零分.
1.(4 分)(2015•淄博)比﹣2015 小 1 的数是( )
A. ﹣2014
B. 2014
根据三角形的中位线求出 EF= BD,EF∥BD,推出△AEF∽△ABD,得出
= ,求

=
解答:
= ,即可求出△AEF 与多边形 BCDFE 的面积之比.
解:连接 BD, ∵F、E 分别为 AD、AB 中点, ∴EF= BD,EF∥BD,
∴△AEF∽△ABD,

=
=,
∴△AEF 的面积:四边形 EFDB 的面积=1:3, ∵CD= AB,CB⊥DC,AB∥CD,
S△ABC= •r•(AB+BC+AC)=
=21r,
过点 A 作 AD⊥BC 交 BC 的延长线于点 D,如图 2,
设 CD=x, 由勾股定理得:在 Rt△ABD 中,
-7-
AD2=AB2﹣BD2=400﹣(7+x)2,
在 Rt△ACD 中,AD2=AC2﹣x2=225﹣x2,
∴400﹣(7+x)2=225﹣x2,
解答:解:列表:
第二次 0
10
20
30
第一次
0
10
20
301010Fra bibliotek3040
相关文档
最新文档