生物药剂学的定义

合集下载

生物药剂学

生物药剂学

23、单隔室模型:某些药物进入体内后迅速向全身组织器官分布,并达到动态分布平衡。此 时整个机体可视为一个隔室,以此建立的药动学模型称为单隔室模型。包括:
(1)静脉注射给药:
lgC = lgC 0− kt
2 .3 0 3
消除速率常数(k):k=-2.303×斜率(斜率的求算:作图法;2. 线性回归法。)
XC = X 0(α − k 21) e−αt + X 0(k21 − β ) e−β t
(3)血管外给药(X0:给药剂量;F :吸收率;Xa:吸收部位的药量;ka:一级吸收速率
常数;X:体内药量;k:一级消除速率常数。)
C = kaFX 0 (e−kt − e−kat )
V (ka − k)
消除速率常数(k): lg C
=
kaFX lg
V (ka −
0
k)

k 2.303
t
C
=
kaFX V (ka −
7、Handreson - Hasselbach 方程式:描述胃肠液中未解离型与解离型药物浓度之比是药物解 离 常 数 pKa 消 化 道 pH 的 函 数 , 其 中 弱 酸 性 药 物 : pKa – pH = lg (Cu /Ci) 弱碱性药物:pKa– pH = lg (Ci/ Cu)。式中 Cu,Ci 分别为未解离型和解离型药物的浓度。 8、影响溶出速度的因素:1、粒径大小 2、溶解度 3、粘度和温度 9、注射给药: (1)静脉注射:不存在吸收过程,作用迅速生物利用度高 上腔静脉-----下腔静脉------心------------肺(肺首过效应)-------全身作用部位 (2)肌内注射:注射部位常为臀部肌,药物起效比静脉注射稍慢 吸收过程:注射部位—结缔组织—毛细血管—血液循环 (3)皮下注射:吸收较肌内注射慢,需延长作用时间的药物采用皮下注射 (4)皮内注射:注射于真皮下,血管细小,吸收差,一般用作诊断与过敏试验 (5)动脉注射:不存在吸收过程和肺首过效应 (6)鞘内注射:注射部位:椎管内,可克服血脑屏障 (7)腹腔内注射:主要吸收途径:门静脉,多用于动物实验

生物药剂学

生物药剂学
21临街颗粒:是指不影响药物吸收的最大粒径。
22多晶型:化学结构相同的药物,由于结晶条件不同,可得到数种晶格排列不同飞晶型,这种现象称为多晶型。
23溶剂化物:药物含有溶媒而构成的结晶。
24崩解:系指固体制剂在检查时限内全部崩解或溶解成碎粒的过程。
25溶出度:是指在规定溶出介质中,药物从片剂或胶囊剂等固体制剂溶出的速度和程度。
组织隔室:浅外室为血流灌注较差的组织和器官。
70达坪分数:是指n次给药后的血药浓度与坪浓度相比,相当于坪浓度的分数。
71平稳血药浓度:当血药浓度到达到稳态后。在一个计量间隔时间内血药浓度-时间曲线下面积处以间隔时间t所得的商。
72量积系数:系指稳态血药浓度与第一次给药后的血药浓度的比例值,以r表示,也是一个很有价值的表示药物在体内蓄积程度。
55药物动力学:是应用动力学原理与数学处理方法,定量地描述药物通过各种途径进入体内的吸收,分布,代谢,排泄过程的“量时”变化或“血药浓度经时”变化动态规律的一门科学。
56隔室模型:时将身体视为一个系统,系统内部按动力学特点,分为若干室
57二室模型:从速度论的观点将机体划分为药物分布均匀程度不同的两个独立系统。
36外翻环法:为一种研究肠道组织摄取药物能力的方法。
37蓄积:是长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高的趋势,这种现象称为蓄积。
38表观分布容积;是用来描述药物在体内分布状况的重要参数,时将全血或血浆中的药物浓度与体内药量关联起来的比例常数。
39淋巴:是静脉循环系统的辅助组成部分,主要由淋巴管。淋巴器官。淋巴液和淋巴组织组成。
40内吞:是指微生物被内状内皮系统细胞,特别是单核巨噬细胞作为外来异物吞噬进入细胞内,并迅速被溶酶体消化裂解释放药物。

生物药剂学

生物药剂学

生物药剂学生物药剂学概述生物药剂学是药学中的一个重要分支,研究的是利用生物技术生产、开发和应用药物的原理和方法。

它结合了生物工程、制药学、分子生物学、生物技术等多个学科的知识,致力于生产高效、安全、低毒副作用的药物,为人类健康事业做出了巨大的贡献。

本文将围绕生物药剂学的定义、发展历程、应用领域以及未来发展进行探讨。

一、生物药剂学的定义与发展历程生物药剂学是药学的一个分支,主要研究生物技术制备药物和药物传递系统(药剂)的原理和方法。

它通过发掘和改造生物资源,利用生物合成和重组工程等技术,生产具有特殊药理和治疗效果的药物。

生物药剂学的起源可追溯到20世纪70年代,当时分子生物学和基因工程技术的快速发展为该领域的研究和应用提供了技术支持。

随着原创药物市场饱和和新的药物研发策略的提出,生物药剂学逐渐成为新药研发的热点领域。

现代生物药剂学的发展,可以分为三个阶段:第一阶段是70年代到80年代初,主要研究基因重组技术对药物生产的应用;第二阶段是80年代初到90年代,研究方向主要是生物技术在药物制剂和传递系统中的应用;第三阶段是90年代后至今,研究重点从基因重组技术扩展到基因表达调控以及药物输送系统等。

二、生物药剂学的应用领域1. 基因工程药物基因工程药物是指利用重组DNA技术生产的药物,包括重组蛋白药物、重组病毒疫苗和基因治疗等。

利用基因工程技术,生物药剂学研究人员可以将需要的基因导入细胞中,促使细胞表达出特定蛋白,从而产生具有治疗效果的药物。

2. 抗体药物抗体药物是现代生物制药的重要组成部分。

生物药剂学通过对抗体的结构和功能进行研究,探索抗体在治疗方面的潜力。

此外,利用重组技术和单克隆抗体等生物技术手段,生物药剂学还研发了一系列具有独特疗效和作用机制的抗体药物。

3. 微生物药物微生物药物是指利用微生物生产的药物,包括抗生素、酶制剂和免疫调节剂等。

利用生物药剂学方法,可以通过菌株筛选和发酵工艺优化,提高微生物药物的产量和纯度,为临床治疗提供高品质的药物。

生物药剂学

生物药剂学
生物药剂学
信阳职业技术学院 药剂教研室
过去,人们认为药物的疗效和副作用纯 粹是由药物的化学结构决定 20世纪60年代,澳大利亚报道抗癫痫药 苯妥英钠胶囊中毒事件,原因是生产厂 家将赋形剂从原来的硫酸钙改为乳糖, 药物的吸收增加,导致血药浓度过高引 起中毒。 人们开始重视生物药剂学的重要性。
第一节 生物药剂学概述
• 促进扩散:药物在载体的作用下,由高 浓度区转运到低浓度区 特点:
需要载体,有同类物竞争抑制现象和饱和现象 不需要能量,不受细胞代谢抑制剂的影响
• 主动转运:药物在载体和酶促系统的作 用下,由低浓度区到高浓度区的转运过 程。 特点:
• 逆浓度梯度转运
• 需要载体,有结构特异性,存在同类物竞争 现象和饱和现象 • 需要能量,受细胞代谢抑制剂的影响
V无生理学意义
• 影响分布的因素 • 血液循环及血管通透性 • 药物与血浆蛋白结合能力 • 血脑屏障与胎盘屏障 • 药物与组织的亲和力 • 药物相互作用对分布的影响
二、药物的代谢
• 概念 药物在体内发生化学结构的变化过程。 场所:肝脏、血浆、胃肠道等 作用:激活、灭活、增强活性、降低活性、产生 毒性代谢物 过程:
小肠的结构与药物的吸收
• 上皮细胞(epithelial cells)
• 小肠约长5~7m,直径约4cm。小肠黏膜表面有环 状皱壁,黏膜上有大量的绒毛和微绒毛,故有效 吸收面积极大,可达100m2。其中绒毛和微绒毛最 多的是十二指肠,向下逐渐减少。
• 小肠是药物吸收的主要部位,吸收以被动扩散为 主。由于小肠中(特别是十二指肠)存在着许多 特异性载体,所以小肠也是某些药物主动转运的 特异吸收部位(特别是十二指肠)。 • 肠液的pH约5-7,是弱碱性药物吸收的最佳环境

生物药剂学名词解释

生物药剂学名词解释

生物药剂学名词解释生物药剂学是药学的一个分支学科,研究生物药剂的制备、贮存、稳定性和评价等相关理论和技术。

在现代医药领域,生物药剂已经成为新药研发的主要方向之一,因其具有高效、低毒、高靶向性等特点,逐渐成为药物治疗的首选。

1.生物药剂:生物药剂是指以生物制品为原料,并采用生物技术手段制备的药物。

生物制品可以是从人或动物身上提取的或是通过基因工程技术制备的。

生物药剂具有高度特异性、高效性和低毒性的特点。

2.贮存:贮存是指生物药剂在生产完成后的一系列保管工作。

生物药剂的贮存要求其在一定的温度、光照和湿度下,能够保持其稳定性和活性。

贮存条件对于生物药剂的质量和安全性具有重要影响。

3.稳定性:稳定性是指生物药剂在贮存和使用过程中的物理、化学和生物学性质的保持程度。

稳定性是生物药剂质量评价的一个重要指标。

药物的不稳定性可能导致其活性降低、降解产物增多或者丧失药效等问题。

4.评价:评价是对生物药剂质量和活性的定量和定性分析。

通过对生物药剂的药效、毒性、纯度、质量、稳定性等方面进行评价,可以判断其是否符合药物的标准,并为药物研发和治疗提供依据。

5.生物技术:生物技术是指利用生物体的化学、物理、生物学等特性和原理,通过对生物材料的处理、转化和改造等手段,实现对生物产物的制备和利用的一种技术。

在生物药剂学中,生物技术被广泛应用于生物药剂的制备过程中,以提高药物的活性和稳定性。

6.高效性:高效性是指生物药剂在治疗过程中的药效成效。

相较于传统药物,生物药剂具有高效、高选择性和低毒性等特点,可以更好地满足特定患者的治疗需求,提高治疗效果。

7.低毒性:低毒性是指生物药剂在治疗过程中对人体的毒副作用较小。

由于生物药剂具有高效性和高度特异性,可以在较低的剂量下发挥疗效,从而减少对人体的负面影响。

总之,生物药剂学是研究生物药剂制备、贮存、稳定性和评价等相关理论和技术的学科,生物药剂因其高效、低毒、高度特异性等特点而成为现代药物研发的主要方向之一,具有广阔的应用前景。

生物药剂学

生物药剂学

上皮细胞膜液态镶嵌模型示意图
(二)生物膜性质
1.膜的流动性 具有流动性。 构成的脂质分子层是液态的,
2.膜结构的不对称性 膜的蛋白质、脂 类及糖类物质分布不对称。
3.膜结构的半透性
膜结构具有半透性, 某些药物能顺利通过,另一些药物则不能通过。
(三)膜转运途径
1.细胞通道转运 (transcellular pathway):
被动转运与载体媒介转运速率示意图
载体: 离子泵: Na-K-ATP Ca2+泵 I 2泵
药物溢出泵”(drug flux pump),P-糖蛋 白(P-glycoprotein): 可能量依赖性的将细胞内药物泵出到细胞外。 PepT1、 PepT2
二、药物转运机制
药物跨膜转运机制示意图
(一)被动转运
定义:被动转运(passive transport) 是指药物的膜转运 服从浓度梯度扩散原理,即从高浓度一侧向低浓度一侧扩散 的过程。
1.单纯扩散 单纯扩散是指药物的跨膜转运受膜两侧浓 度差限制过程。单纯扩散属于一级速率过程,服从Fick’s扩 散定律: dC/dt = -DAk(CGI - C)/h 当药物口服后,胃肠道中的浓度大于血中的药物浓度, P=DAk/h 。 则上式可简化为: dC/dt = PCGI
代 谢 产 物
三、生物药剂学的研究内容
1、研究药物的理化性质与体內转运的关系
溶解度、分配系数 -------------渗透速率
粒径、晶型、晶癖-------------溶出、释放
稳定性
-------------代谢
溶解度 好
不好 慢 溶出速率 快 不好
•筛选合适的盐 •筛选不同的晶型 •改善化合物结构 •微粉化 包合物 固体 分散体 无影响 相互作用 •增加脂溶性 •改善化合物结构 •加入P-糖蛋白抑制剂

生物药剂学

生物药剂学

生物药剂学生物药剂学是一门重要的生物学分支学科,它研究生物制剂的生物学、制剂学、疗效学以及应用方面的问题。

生物制剂是以生物体或其组成部分为原料,用长时间培养、提取、纯化等方法制备的药品。

生物制剂不仅包括大分子药物,如重组蛋白、抗体等,也包括小分子化合物,如抗生素等。

生物药剂学一直是研究热点领域,具有广阔的应用前景。

随着生物科技的不断发展,生物制剂的种类和应用场合不断增加,如生物制剂用于治疗肿瘤、免疫缺陷病等已经得到广泛应用。

生物药剂学的研究内容包括:生物药品的生物学特征和生产工艺、药效学、剂型设计、质量控制、药代动力学和药效动力学等。

其中,生产工艺是生物制剂研究的重要组成部分,生产工艺的关键技术包括培养细胞的培养基、细胞种类、生产设备和控制条件等,这些都直接影响到药品的质量和效果。

生物制剂的药效学是指药物在体内的作用机理和效果。

其中,抗体药物是生物制剂的重要组成部分,它们通过干扰疾病是否起源于肿瘤,改变正常细胞和肿瘤细胞之间的通讯,从而达到治疗肿瘤的作用。

剂型设计是针对生物制剂的药物形态设计,涵盖了微量注射、口服、喷雾和膜系列剂型等,同时需要考虑到药物的自由基和药物稳定性等问题,所以剂型设计是生物制剂的重要组成部分。

质量控制是确保生物制剂质量稳定的一系列控制措施,它包括原料质量控制、生产环节控制、储存控制等,同时需要考虑到药品的微生物污染、电子混杂等问题。

药代动力学和药效动力学是指药物在人体内的动力学特征和作用效果,也是生物制剂的重要组成部分。

药代动力学探究药物在人体内的吸收、分布、代谢和排泄过程,了解药物的药物动力学特征,以便进行临床应用。

药效动力学是指药物作用的效应速度、持续时间和疗效水平,它是生物制剂治疗效果的关键。

总之,生物药剂学是一门综合性学科,它涉及了多个学科的知识,涵盖了药物生产、药效学、剂型设计、质量控制等多个方面,目标是实现药物的高效治疗,维护人类健康。

生物药剂学概述

 生物药剂学概述

生物药剂学概述一、生物药剂学的基本概念生物药剂学(biopharmaceutics)是关于药物制剂或剂型用于生命有机体(或组织)的科学。

是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物剂型因素、机体生物因素与药物效应三者之间的相互关系的科学。

(一)剂型因素1.药物的某些化学因素如同一药物的不同盐、酯、络合物或衍生物。

2.药物的某些物理因素如粒子大小、晶型、晶癖、溶解度、溶出速度等。

3.药物的剂型及用药方法。

4.制剂处方中所用的辅料种类、性质和用量。

5.处方中药物的配伍及相互作用。

6.制剂的工艺过程、操作条件和贮存条件等。

(二)生物因素主要包括:1.种属差异2.性别差异3.年龄差异新生儿因葡萄糖醛酸结合酶不足,加之肾功能发育不全,服用氯霉素后的消除过程受到影响,血药浓度升高,易蓄积中毒而致“灰婴综合征”。

又如肝脏对药物的生物转化功能随年龄增长而降低,老年人使用主要经肝脏代谢灭活的药物,如苯巴比妥、对乙酰氨基酚、保泰松、吲哚美辛、氨茶碱、三环类抗抑郁药,血药浓度可能增高1倍;同时半衰期往往延长作用时间延长。

4.不同生理病理状态导致的差异5.遗传因素(三)药物效应包括治疗效果、副作用和毒性,是药学学科与药学工作者关注的核心。

二、药物体内过程吸收(absorption)是指药物从用药部位进入体循环的过程。

药物从体循环向各组织、器官或体液转运的过程称为分布(distribution)。

药物在吸收过程或进人体循环后,受肠道菌群或体内酶系统的作用,结构发生转变的过程称为代谢(metabolism)或生物转化(biotransformation)。

药物或其代谢产物排出体外的过程称排泄(excretion)。

药物的吸收、分布和排泄过程统称为转运(transport),而分布、代谢和排泄过程称为处置(disposition),代谢与排泄过程称为消除(elimination)。

三、生物药剂学的研究工作及其在新药开发中的应用(一)生物药剂学的研究工作①研究药物的理化性质对药物体内转运行为的影响;②研究剂型、制剂处方和制剂工艺对药物体内过程的影响;③根据机体的生理功能设计缓控释制剂;④研究微粒给药系统在血液循环系统的命运;⑤研究新的给药途径与给药方法;⑥研究中药制剂的溶出度和生物利用度;⑦研究生物药剂学的试验方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
5、转运(transport) 吸收+分布+排泄
6、处置(disposition) 分布+代谢+排泄
7、 消除(elimination) 代谢+排泄
各种给药途径的药物体内过程
各种剂型的体内过程
胆汁
崩解—分散—溶解

作用部位
血液

片 剂
胶 囊 剂
颗 粒 剂
散 溶栓 剂 液剂

舌 下 片
吸 入 剂
溶解度、分配系数 -------------渗透速率 粒径、晶型、晶癖-------------溶出、释放
稳定性
-------------代谢
溶解度 好
透过性 好
不好 慢
溶出速率 快
•筛选合适的盐 •筛选不同的晶型 •改善化合物结构 •微粉化 包合物 固体 分散体
不好
无影响
P-糖蛋白底物
•增加脂溶性
3、剂型因素
• 药物的化学性质 • 药物和剂型的物理性质 • 剂型、用药方法 • 辅料的性质、用量 • 处方中药物的配伍、相互作用 • 制剂工艺、操作条件、贮存条件
4、生物因素
• 种族差异 • 性别差异 • 年龄差异 • 生理差异 病理差异 • 遗传因素
5、药效
• 疗效 • 副作用 • 毒性反应
药物在正辛醇和水中的 分配系数的对数值( logP)
(三)多肽及蛋白类药物非注射给药研究
传统给药方式:注射途径给药
缺点:生物半衰期短,需长期反复给药,病人顺应性差
非注射给药途径的新剂型:
✓口服给药新剂型 ✓非胃肠道黏膜给药系统(口腔黏膜给药、鼻黏膜给药、直 肠黏膜给药、眼黏膜给药等) ✓肺内给药系统 ✓透皮给药系统 ✓皮下埋植系统 新剂型缺陷:生物利用度仍然较低 研究内容:考察影响多肽及蛋白类药物吸收的因素与寻找 促进的方法,重点在如何提高多肽的生物膜透过性和抵抗 酶降解
四、生物药剂学的发展
(一)生物药剂学分类系统

III
溶解度好 透过性不好
I
溶解度好
透过性好
溶解度低ຫໍສະໝຸດ IV溶解度不好 透过性不好
II
溶解度不好 透过性好


透过性
(二)药物的吸收预测
“The rule of flve”: 当化合物的理化参数满足下列任意两项时,化合物 在小肠中的吸收就差 分子量大于500; 氢键给体数大于5个; 氢键受体数大于10个; logP值大于5.0
(四)分子生物药剂学
在细胞与分子水平研究药物与给药系统和生物大 分子的相互作用及药物在给药系统中的分子状态对药 物吸收、分布、代谢和排泄的影响。
在分子和细胞水平研究剂型因素对药物作用的影 响。
1、药物与生物膜和生物大分子的相互作用
2、载体的结构对药物生物转运的影响
Figure 6 DTA PEG
相互作用 •改善化合物结构
•加入P-糖蛋白抑制剂
胃中稳定性
稳 定
不稳定
•以处方保护药物 •筛选更加稳定的药物
代谢稳定性 •肠代谢 •肝脏代谢
不稳定
代谢稳定
生物利用度好
•研究代谢产物 •改善化合物结构
2、研究剂型、制剂处方和制剂工艺对药物体内过程影响
剂型-----吸收过程------生物利用度
制剂处方-------溶出速率、稳定性--生物利用 度 制剂工艺 ------溶出速率、稳定性---生物利用 度
2、研究生物药剂学的目的
• 正确评价药剂质量 • 设计合理的剂型、处方、生产工艺 • 为临床合理用药提供科学依据 • 使药物发挥最佳的治疗作用
近年随着化学工业原料及制药工艺技术 的迅速发展,药剂学家己考虑到药物制 剂如何
✓能更适合临床用药需求
✓提高药效
✓降低毒副反应
✓加强病人用药依从性等方面
而研制多种各型的新制剂
二、药物的体内过程
1、吸收(absorption)速度、量
药物从用药部位进入体循环的过程
2、分布(distribution)
药物进入体循环后向各组织、器官或 者体液转运的过程
3、代谢(metabolism)
药物在吸收过程或进入体循环后,受 肠道菌丛或体内酶系统的作用,结构发 生转变的过程
4、排泄(excretion) 药物或其代谢产物排出体外的过程
静 注
组织

尿
便
肌透 排

注皮 泄

机体对药物的处置过程
药物制剂
外周室(组织) 组织储存
崩解或释放
分布 作用部位
药物颗粒
中央室
(血液)
溶解
体外
胃肠道 肝 游离型 蛋白结合型




汁 代谢
排泄
重吸收

粪便 (灭活,活化)(尿、胆汁)(肾小管、肝肠循环)
代 谢 产 物
三、生物药剂学的研究内容
1、研究药物的理化性质与体內转运的关系
Cholesterol)
Polyethylene Glycol
5、研究新的给药途径与给药方法
6、研究中药制剂的溶出度和生物利用度
7、研究生物药剂学的研究方法
✓研究溶出速率测定方法 如改进溶出度测定装置、溶出介质等实验条件
✓建立各种新给药途径体外实验方法 ✓建立模拟体内吸收的体外模型
如建立鼻腔给药、口腔黏膜给药、经皮给药等体 外实验方法以及研究其合理性、实验结果的正确性
内容概要:
一 生物药剂学的定义 二 药物的体内过程 三 生物药剂学的研究内容 四 生物药剂学的发展 五 生物药剂学与相关学科的关系
一、生物药剂学的定义
1、生物药剂学的定义 (Biopharmaceutics)
研究药物及其剂型在体内的吸收、 分布、代谢、排泄的过程, 阐明药 物的剂型因素、机体生物因素和 药物疗效之间相互关系的科学。
diINF-7 Anti-EGFR
3、药物的细胞内靶向与胞内动力学
4、根据药物的分子结构预测药物的吸收
✓可根据药物的分子片段、原子贡献、分子容积、氢键等, 计算药物通过各种生物膜的渗透性,预测药物吸收 ✓药物透过小肠的渗透系数受形成氢键能力、分子大小、 分子所带电荷和极化率等因素影响 ✓用动力学分子极性表面积(PSAD)预测药物在小肠等生物 膜中的吸收速率 ✓以氢键酸度和氢键碱度表示化合物形成氢键的能力,与 药物经皮渗透系数相关 ✓用原子净电荷预测药物透过角膜的吸收能力,氢键给体的 正电荷和氢键受体的负电荷较大时,药物透过角膜的吸收 系数较小,说明化合物形成氢键能力较强时对药物透过角 膜的吸收不利
3、根据机体的生理功能设计缓控释制剂
胃漂浮制剂 结肠定位给药
根据消化道各pH值, 药物转运时间、酶与 细菌对药物及辅料的 作用,设计胃肠道给 药系统
4、研究微粒给药系统在血液循环中的命运 为靶向给药系统设计奠定基础
长循环脂质体
Doxorubicin
85~100 nm
Lipid Membrane (Phospholipid +
相关文档
最新文档