石灰石化学分析准确性的鉴定
石灰石化学分析方法

石灰石化学分析方法分析化验联系电话0519886339130找李主任1. 烧失量的测定称取1.0000克试样,至于瓷坩埚中,放在马弗炉内,从低温逐渐升高温度,在900~1000℃下灼烧1h。
2. 二氧化硅的测定称取约0.6g试样,精确至0.0001g ,置于铂坩埚中,将盖斜置于坩埚上,并留有一定缝隙,在900~1000℃下灼烧5min,取出坩埚冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g无水碳酸钠混匀,再将坩埚置于950~1000℃下灼烧10min ,取下冷却至室温。
将烧结块移入瓷蒸发皿中,加少量水润湿,盖上表面皿,从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解安全,用热盐酸(1+1)清洗坩埚数次,洗液合并于蒸发皿中,将蒸发皿置于沸水浴上,皿上放一玻璃三角架,再盖上表面皿,蒸发至糊状后,加入1g氯化氨,充分搅匀,在沸水浴上蒸发至干后继续蒸发10~15min 。
取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶性盐溶解。
用中速滤纸过滤,用胶头檫棒以热水檫洗玻璃棒及蒸发皿,用热水洗涤10~12次。
滤液及洗液保存于250mL容量瓶中。
将沉淀连同滤纸一并移入原铂坩埚中,干燥、灰化后,放入已升温至950~1000℃的马弗炉内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。
向坩埚内加数滴水润湿沉淀,加3滴硫酸(1+4)和5mL氢氟酸,放入通风橱缓慢加热,蒸发至干,升高温度继续加热至三氧化硫白烟完全散尽。
将坩埚放入已升温至950~1000℃内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。
经氢氟酸处理后得到的残渣中加入1g焦硫酸钾,在500~600℃下熔融至透明,熔块用热水和数滴盐酸(1+1)溶解,溶液并入分离二氧化硅后得到的滤液和洗液中,用水稀释至标线,摇匀。
3. 氧化钙的测定吸取25mL于400mL烧杯中,加水稀释约200mL,加5mL三乙醇胺(1+2)及适量的CMP(1.000g钙黄绿素、1.000g甲基百里香酚蓝、0.200g酚酞、50g已在105℃烘干过的硝酸钾)混合指示剂,在搅拌下加入氢氧化钾(200g/L)至出现绿色荧光后再过量5~8mL ,以EDTA(0.015mol/L)滴定至绿色荧光消失并出现红色。
石灰石化学分析方法

石灰石化学分析方法总 则a) 本标准适用于工业用石灰石的化学分析b) 分析用的水均指除盐水,所用化学试剂除另有说明外应为分析纯、优级纯。
用于标定的试剂,除另有说明外应为基准试剂。
c) 称取试样时应准确至0.0002克,分析步骤须严格按照本方法规定的分析步骤进行。
d) 凡以百分浓度表示的试剂,均按100毫升溶剂中所加溶质的克数配制,所用之酸或氨水,凡未注明浓度者均为浓酸或浓氨水。
e) 所用分析天平不应低于四级,天平与砝码应定期进行检定,所用滴定管、容量瓶、移液管应进行校正。
容量法测定低含量元素时,应采用10毫升或25毫升滴定管。
f) 分析前,试样应于105—110℃干燥2小时,然后置于干燥器中冷却至室温。
g) 分析时,必须同时作烧失量的测定,其他各项测定应同时进行空白实验,并对所测结果加以校正。
h) 各项分析结果(%)的数值,须修约至小数点后第二位。
采样石灰石样必须具有代表性和均匀性,根据化工用石灰石采样与样品制备方法 GB/T 15057.1―94 的采样方法,汽车车厢按图由5点采取份样。
采样点应离车壁、底部不小于0.3m ,离表面不小于0.2m 。
制样根据建材用石灰石化学分析方法 GB/T 5762―2000的试样制备方法,将采集的石灰石样品,经破碎、制粉等步骤,混匀并用四分法或缩分器缩分。
将试样缩减至25克。
然后放在玛瑙乳钵中研磨至全部通过0.08毫米方孔筛,装入清洁、干燥的磨口试样瓶中,一份供● ● ● ● ●试验分析使用,一份作为原样保存备用。
并注明生产单位名称、采样人员及采样日期。
样品保存期为个月。
一、石灰石试样溶液的制备1、方法提要:试样置于铂金坩埚中以碳酸钾—硼砂混合熔剂熔融,熔融物以硝酸加热浸取。
2、化验试剂:(1)碳酸钾—硼砂(1+1)混合熔剂:将1份重量的碳酸钾与一份重量的无水硼砂混匀研细,贮存于磨口瓶中。
(2)硝酸(1+6):将1体积的硝酸与6体积的水混合。
3、制备步骤:称取约0.5克试样于铂金坩埚中,加2克碳酸钾—硼砂混合熔剂混匀,再以少许熔剂清洗玻璃棒,并铺于试样的表面。
石灰石的测定

石灰石的测定1 烧失量的测定1.1 方法提要试样在950~1000℃的马弗炉中灼烧,驱除水分和二氧化碳,同时将存在的易氧化元素氧化。
1.2 分析步骤称取约1g试样,精确至0.0001g,置于已灼烧恒量的瓷坩埚中,将盖斜置于坩埚上,放在马弗炉内从低温开始逐渐升温,在950~1000℃下灼烧40min,取出坩埚置于干燥器中冷却至室温,称量。
反复灼烧,直至恒量。
1.3 结果表示烧失量的质量百分数XLoss按下式计算:m1-m2XLoss= —————× 100m1式中:Xloss———烧失量的质量百分数,%m1———试样的质量,gm2———灼烧后试料的质量,g2 系统化学分析方法2.1 二氧化硅的测定2.1.1氟硅酸钾容量法2.1.1.1 方法提要在有过量的氟、钾离子存在的强酸性溶液中,使硅形成氟硅酸钾(K2SiF6)沉淀,经过滤、洗涤及中和残余酸后,加沸水使氟硅酸钾沉淀水解。
生成等物质的量的氢氟酸,然后以酚酞为批示剂,用氢氧化钠为标准滴溶液滴定至微红色。
2.1.1.2 溶液、试剂氢氧化钠(固体) (0.15mol/l)盐酸(浓)、(1+1)、(1+5)硝酸(浓)氯化钾(固体)、(50g/l)氯化钾-乙醇(50g/l)氟化钾(150g/l)酚酞(10g/l)2.1.1.3 分析步骤称取约0.5g试样,精确至0.0001g,置于银坩埚中,加入6~7g氢氧化钠,在650~700℃的高温下熔融30min。
取出冷却,将坩埚放入已盛有100ml近沸腾水的烧杯中,盖上表面皿,于电炉上适当加热。
待熔块完全浸出后,取出坩埚,在搅拌下一次加入25~30ml盐酸,再加入1ml硝酸。
用热盐酸(1+5)洗净坩埚和盖,将溶液加热至沸。
冷却,然后移入250ml容量瓶中,用水稀释至标线,摇匀。
此溶液供测定二氧化硅、三氧化二铁、三氧化二铝、二氧化钛、氧化钙、氧化镁用。
从试样溶液中吸取25.00ml溶液,放入300ml塑料杯中,加入10~15ml硝酸,搅拌,冷却至30℃以下,加入氯化钾,仔细搅拌至饱和并有少量氯化钾析出,再加2g氯化钾及10ml氟化钾溶液(150g/l),仔细搅拌(如氯化钾析出量不多,应再补充加入),放置15~20min,用中速滤纸过滤,用氯化钾溶液(50g/l)洗涤塑料杯及沉淀3次,将滤纸及沉淀取下置于原塑料杯中,沿杯壁加入10ml、30℃以下的氯化钾—乙醇(50g/l)及1ml酚酞批示剂溶液(10g/l),用0.15mol/l氢氧化钠中和未洗净的酸,仔细搅拌滤纸并随之擦洗杯壁,直至酚酞变红(不记读数),然后加入200ml用氢氧化钠中和至酚酞变红的沸水,用0.15mol/l氢氧化钠标准滴定溶液滴定至微红色。
石灰石的化学分析方法

石灰石的化学分析方法⒈1试样的制备试样必须具有代表性和均匀性。
由大样缩分后的试样不得少于100g,试样通过0.08mm 方孔筛时的筛余不应超过15%。
再以四分法或缩分器减至约25g,然后研磨至全部通过孔径为0.008mm方孔筛。
充分混匀后,装入试样瓶中,供分析用。
其余作为原样保存备用。
⒈2烧失量的测定⒈⒉1方法提要试样中所含水分、碳酸盐极其他易挥发性物质,经高温灼烧即分解逸出,灼烧所失去的质量即为烧失量。
⒈⒉2分析步骤称取约1g试样(m),精确至0.0001g,置于已灼烧恒量的瓷坩锅中,将盖斜置于坩锅上,放入马弗炉内,从低温开始逐渐升温,在950~1000℃下灼烧1h,取出坩锅置于干燥器中,冷却至室温,称量。
反复灼烧,直至恒量。
⒈⒉3结果表示烧失量的质量百分数X LOI 按式(1.1)计算:m-m1X LOI =————×100 ......................(1.1)m式中: X LOI—烧失量的质量百分数,%;m—灼烧后试料的质量,g;1m—试料的质量,g。
⒈⒉4允许差同一实验室的允许差为:0.25%;不同实验室的允许差为:0.40%。
⒈3二氧化硅的测定(基准法)⒈⒊1方法提要试样以无水碳酸钠烧结,盐酸溶解,加固体氯化铵于沸水浴中加热蒸发,使硅酸凝聚,灼烧称量。
用氢氟酸处理后,失去的质量即为二氧化硅含量。
⒈⒊2分析步骤称取约0.6g试样(m2 ),精确至0.0001g,置于铂坩锅中,将盖斜置于坩锅上,在950~1000℃下灼烧5min,取出铂坩锅冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g研细无水碳酸钠混匀。
再将坩锅置于950~1000℃下灼烧10min,取出冷却至室温。
将烧结物移入瓷蒸发皿中,加少量水润湿,盖上表面皿。
从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解完全,用热盐酸(1+1)清洗坩锅数次,洗液合并于蒸发皿中。
石灰石中氧化钙氧化镁含量的分析

石灰石中氧化钙氧化镁含量的分析石灰石是一种含有大量氧化钙(CaO)和氧化镁(MgO)的矿物,在建筑业、冶金行业、化学工业等领域有广泛应用。
准确分析石灰石中氧化钙和氧化镁的含量对于产品质量的控制和质量改进至关重要。
本文将介绍石灰石中氧化钙和氧化镁含量的分析方法,包括化学分析法、光谱分析法和仪器分析法。
一、化学分析法1.酸解法:将样品与稀酸(如盐酸)反应,使氧化钙和氧化镁转化为可溶性的氯化钙和氯化镁。
然后,用比色法或重量法测定氯化钙和氯化镁的含量,从而推算出氧化钙和氧化镁的含量。
2.碳酸化法:将样品与一定量的二氧化碳反应,生成碳酸钙和碳酸镁。
然后,用滴定法测定剩余的二氧化碳的含量,从而计算出氧化钙和氧化镁的含量。
3.碱度法:用稀盛碱溶液滴定石灰石样品,通过溶液酸碱度的变化来推算出氧化钙和氧化镁的含量。
以上三种化学分析法都是传统的分析方法,虽然操作简单,但准确度稍低,需要大量的化学试剂和时间。
为了提高分析结果的准确性和效率,人们逐渐采用光谱分析法和仪器分析法。
二、光谱分析法1.紫外-可见光谱法:石灰石中的氧化镁和氧化钙都能在一定波长范围内吸收光线。
通过测量样品对光线的吸光度,可以推算出氧化钙和氧化镁的含量。
这种方法无需溶解样品,操作简单,且测定速度快。
但是,此方法需要专业仪器,对操作人员的要求较高。
2.傅里叶变换红外光谱法(FTIR):用FTIR仪器测定石灰石中氧化钙和氧化镁的光谱特性,再根据氧化钙和氧化镁的标准光谱图,计算样品中的含量。
这种方法具有准确度高、操作简单、检测速度快等优点。
三、仪器分析法1.X-射线荧光光谱法(XRF):XRF仪器能够测定石灰石中各种元素的含量。
通过测量样品吸收和发射的X射线能谱,可以得到氧化钙和氧化镁的含量。
这种方法适用于测量多种样品和大批量样品,具有高准确度和高安全性。
2.原子吸收光谱法(AAS):AAS仪器通过测量石灰石中氧化钙和氧化镁原子在不同波长下的吸收程度,从而推算出其含量。
01石灰石化学分析作业指导书

CaO≥48%,MgO≤3%,合格率≥90%,水分≤1%,入磨粒度≤10mm,合格率≥80%。
二.检验设备:
1.分析天平2.高温炉3.坩埚4、烘箱5.滴定管、容量瓶、移液管
三.检验频次:
开采点(矿山):每半年一次全分析;入磨皮带:每月二次全分析;水分≤1%
四.取样方法与样品制备:
YX/ZD-13《样品采取、制备与保管作业指导书》
4.三氧化二铁的测定
吸取50ml试液于300ml烧杯中,加水至100ml用氨水(1+1)调溶液PH=1.8-2.0(精密试纸检验)将溶液加热至70℃,加10滴10%的磺基水杨酸钠指示剂,用0.015mol/LEDTA标液滴定至亮黄色(溶液终点温度应在60℃左右)。
式中:T 为每毫升EDTA标液相当于氧化铁的质量,mg/ml
式中: 于氧化铁的质量,mg/mL
V—滴定时耗用EDTA标液体积(g)M—试样质量(g)
6.氧化钙的测定
吸25.00ml试液于300ml烧杯中,加入20g/L的氟化钾溶液7ml,搅拌并放置2分钟以上,加水至150ml加入5ml三乙酸氨(1+2),加入少许CMP指示剂,搅拌下加200g/L的氢氧化钾溶液至出现绿色荧光后再过量5-8ml(PH12以上),以0.015mol/LEDTA标液滴定至绿色荧光消失并出现粉红色。
3.二氧化硅的测定
准确采取0.3g试样,置于已盛有2g氢氧化钾的霂坩埚中,再用1g氢氧化钾覆盖在上面,盖上坩埚盖,于500-600℃的高温炉中熔融20分钟后,放出冷,用水提取熔融物于300ml塑料烧杯中,坩埚及盖用少许硝酸(1+20)和水洗净(此时溶液体积在40ml左右)加入10ml15%的氟化钾溶液搅拌,然后一次性加入15ml浓硝酸,冷却后加入固体氯化钾至饱和,并静止15分钟,然后用快速滤纸过滤,塑料杯及沉淀用5%的氯化钾溶液洗涤2-3次,将沉淀连同滤纸一并置于原烧杯中,沿杯壁加入10ml15%的Kcl- 溶液及1ml1%的酚酞指示剂用0.15mol/L的氢氧化钠标液中和未洗净的酸,仔细搅动滤纸并随之擦洗杯壁直至溶液呈微红色,然后加入200ml中和过的沸水,以0.15mol.L氢氧化钠标液滴定至微红色。 试中: 为每毫升氢氧化钠相当于二氧化硅的质量,mg/mL;V为滴定时耗氢氧化钠标液的体积(ml);m为试样质量(g)。
X射线荧光光谱法测定石灰石

X射线荧光光谱法测定石灰石采用能量色散X射线荧光光谱法测定石灰石中CaO、MgO、SiO2含量。
将石灰石样品进行磨细处理,采用硼酸镶边衬底,在压片机上制成石灰石样片。
在X射线荧光光谱仪上按照选定的分析条件,以标准样品做工作曲线,根据工作曲线测定样品含量。
通过与国家标准化学法对照,分析结果基本一致。
标签:X射线荧光光谱法;石灰石;粉末压片;石灰石主要成分是碳酸钙(CaCO3),我国石灰石矿蕴藏量十分丰富,分布很广,质量各异。
石灰石经过高温煅烧制成石灰,石灰是生产电石的主要原材料之一,MgO、SiO2等含量对电石生产有一定的负面影响。
因此,快速分析石灰石中CaO、MgO、SiO2等含量很有必要。
目前,石灰石中CaO、MgO、SiO2等含量的分析主要采用化学分析方法,CaO、MgO含量的分析采用国家标准GB/T 3286.1-1998,SiO2含量的分析采用国家标准GB/T 3286.2-1998。
化学分析方法操作难度大,分析流程长,终点指示不明显,人为因素影响较大。
有关X射线荧光光谱法测定石灰石中的组分已有报道,已有文献中样品采用熔融制样【1】,但是较为繁琐。
本文采用X射线荧光光谱法测定石灰石中的CaO、MgO、SiO2,采用低能量X射线管和最新开发的C-Force 偏振光学系统,确保了对样品中元素的最佳激发。
使用Pd准直器,并用XRF软件中提供的经验系数法进行机体校正,其分析结果的精密度和准确度完全可以和化学分析结果聘美,而且操作简便、快捷。
仪器分析原理:X射线管通过产生入射X射线(一次X射线),来激发被测样品。
受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。
探测系统测量这些放射出来的二次X射线的能量及数量。
然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。
元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,根据莫斯莱定律,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下:λ=K(Z? s)?2式中K和S是常数。
提高石灰石质量检验的方法和措施

提高石灰石质量检验的方法和措施石灰石是一种常见的建材原料,广泛应用于水泥、钢铁、建筑等行业。
为了确保石灰石的质量,需要进行质量检验。
以下是提高石灰石质量检验的方法和措施。
一、加强取样方法和控制1.合理选择取样点:取样点应避免容易受到外界干扰的地方,如靠近堆料区的边缘,避免混入其它杂质。
2.保证取样点的代表性:取样时应尽量保证取得的样品的代表性,从各个方向随机取样,防止因不均匀质量而引起的抽样误差。
3.避免样品受到外界影响:在取样过程中要注意保持样品的原貌,避免样品受潮、污染等外界因素的影响。
二、优化化学分析方法1.选择合适的化学试剂:优化化学分析方法的首要条件是选择适当的化学试剂。
应结合石灰石的成分特点选择试剂,例如,选用氯化银作为滴定剂进行氯含量测定,选用硝酸铋酸钾作为滴定剂进行氟含量测定。
2.精确称量定量:在化学分析中,精确的称量定量是确保结果准确性的关键。
尤其是微量元素的分析,称量时应注意避免过量或不足。
3.控制煮沸条件:煮沸是一些化学分析方法中常用的操作步骤。
煮沸时间和温度应掌握好,以确保完全反应和有效提取。
三、引入物理检测手段1.粒度分布检测:通过使用粒度分析仪器可以定量测定石灰石的粒度分布情况,包括平均颗粒大小、累积通过率等指标,有助于判断石灰石的颗粒大小是否符合要求。
2.X射线衍射(XRD)分析:XRD技术可以用于石灰石的晶体结构分析和相对含量的定量测定。
通过XRD分析可以判断石灰石中可能存在的杂质、晶体形态以及和其他物质的反应情况。
3.扫描电子显微镜(SEM)观察:利用SEM技术可以观察石灰石的表面形貌和颗粒结构,包括颗粒形状、表面纹理等。
通过SEM观察可以评估石灰石的物理形态。
四、建立全面完善的质量检验体系1.制定合理的检验标准:在制定石灰石质量检验标准时,需考虑其应用领域、产品要求等因素,确保检验结果与实际使用要求相符。
2.合理选择检测方法:根据具体情况,选择合适的检测方法,综合利用化学分析、物理检测等手段进行综合评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石灰石化学分析准确性的鉴定
目前,化验室分析人员通过做标准样来确定自己对各种样品化学分析的准确性,这种方法由于各种因素的影响,不能及时找出数据误差的原因而延误对水泥质量的控制与指导。
经过我们多年的研究与分析对比,化验室分析人员可用此文方法来确定自己化学分析的准确性。
该方法简单、快速,比较经济,能及时找出误差的原因并指导生产。
1 分析原理
CaCO3、MgCO3在800℃以上的温度时开始分解成CaO、MgO与CO2,反应式如下:
实际上,石灰石的烧失量(Loss)就是CaCO3、MgCO3分解后挥发出CO2的量,即:
其中:
M CaO、M MgO、M CO2——分别为CaO、MgO、CO2的摩尔质量;
CaO、MgO——石灰石样品中CaO、MgO的百分含量。
当CaO+MgO>45.00%时,其它碳酸盐及有机物等的分解不影响其烧失量的准确性。
2 分析方法
分析人员根据GB5762—86〈建材用石灰石化学分析法〉检测出本厂石灰石的化学全分析,如果Loss(实测)-Loss(理论)≤±0.15%,则分析人员化学分析的数据准确,如果Loss(实测)-Loss(理论)>±0.15%,则说明分析人员化学分析数据误差较大。
分析人员应及时找出误差的原因并加以纠正,直到准确为止。
3 分析结果
分析结果如下表所示。
石灰石化学分析(%)
从上表可以看出:
(1)本方法适用于CaO+MgO>45.00%以上的石灰石样品。
(2)本方法不受环境条件的影响,简单、快速、准确,比较经济。