2021年山东省济宁市中考数学模拟试卷(有答案)
2023年山东省济宁市汶上县中考一模数学试题(含答案解析)

2023年山东省济宁市汶上县中考一模数学试题学校:___________姓名:___________班级:___________考号:___________A.圆柱B.圆锥4.下列运算正确的是()A.a6÷a2=a3B.a4•a2=a6中,点D、E分别是AB、5.如图,ABCA.1B.26.已知m、n是一元二次方程225+-=x xA.0B.-10A B是将7.如图,在直角坐标系中,线段11A .45B .359.如图,等边ABC 、等边DEF 在AB 上,DF 在AC 上,DEF 沿设ABC 、DEF 重合部分的面积为....2二、填空题15.如图,在矩形ABCD 中,9AB =,12AD =,点E 在边CD 上,且4CE =,点P 是直线BC 上的一个动点.若APE V 是直角三角形,则CP 的长为____________.三、解答题请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,一共抽取了名学生;(2)补全条形统计图;(3)陈杰和刘慧两位同学参加了上述活动,请用列表或画树状图的方法,同一项活动的概率.18.如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)(参考数据:3 1.732≈,sin 480.743︒≈,cos 480.669︒≈(1)求证:CE 是O 的切线;(2)若45DE =,2AC BC =,求线段21.(1)【问题呈现】如图1,ABC 和ADE V 是等边三角形,连接(2)【类比探究】①如图2,ABC 和ADE V 是等腰直角三角形,BDCE的值.②如图3,ABC 和ADE V 是直角三角形,(1)求此抛物线的表达式及点A 的坐标;(2)连接DE 并延长交抛物线于点P ,当DE x ⊥轴,且AE =(3)如图2,连接BD ,将BCD △沿x 轴翻折得到BFG ,当点的坐标.参考答案:∵12CD =,∴6AO =∵PA 与O 相切于点A ,∴OA PA ⊥,∴226OP OA PA =+=由圆周角定理可得:ADB ∠∵PA PB 、分别与O 相切于点∴APO BPO ∠=∠,OAP ∠∴AOP BOP ∠=∠,∴ADB AOP ∠=∠,∴sin sin ADB AOP ∠=∠=故选:A .【点睛】本题考查了切线的性质、圆周角定理、正弦的定义和勾股定理的应用,灵活运用所学知识求解是解决本题的关键.9.C移动的距离为0∴当DEF当E在B的右边时,如下图所示,设移动过程中AE,垂足为M,根据题意得AD=x,AB=3,∴DB=AB-AD=3-x,∵60∠=,NBD︒∠=,60NDB︒∴是等边三角形,∴CD ∥BE ,∵四边形ABCO 为平行四边形,∴CB OA ∥,即CB DE ∥,OC =AB ∴四边形CDEB 为平行四边形,∵CD ⊥OA ,∴90AED CEP∠+∠= ,∵矩形ABCD,∴90C D∠∠== ,∵90 DAE BAE BAE BAP∠+∠=∠+∠=同理得到ADE ABP,∴1259AD DEAB PB BP===,同理得:ABP PCE ~ ,∴9124AB BP x PC CE x ===-,∴126x x ==,(3)画树状图如下:共有16种等可能的结果,其中陈杰和刘慧参加同一项活动的结果有∴小杰和小慧参加同一项活动的概率为41 164=.【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,能够从不同的统计图中获取有用信息是解题的关键.18.4.9m【分析】先求出BC的长度,再分别在Rt△ADCDC,即可求解.【详解】根据题意有AC=30m,AB=10m,∠C=90°则BC=AC-AB=30-10=20,在Rt△ADC中,tan30tan30DC AC A=⨯∠=⨯=o∵BCD △与BFG 关于x 轴对称,∴DG AB ⊥,DM GM =,设()0OM b b =>,则AM =。
山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类(含答案)

山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共1小题)1.(2021•济宁)数字6100000用科学记数法表示是 .二.因式分解的应用(共1小题)2.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9= .三.二次根式有意义的条件(共1小题)3.(2022•济宁)若二次根式有意义,则x的取值范围是 .四.函数关系式(共1小题)4.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 .五.一次函数的性质(共2小题)5.(2023•济宁)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 .6.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值 (写出一个即可),使x>2时,y1>y2.六.反比例函数的性质(共1小题)7.(2022•济宁)如图,A是双曲线y=(x>0)上的一点,点C是OA的中点,过点C 作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是 .七.二次函数图象与系数的关系(共1小题)8.(2021•济宁)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是 .(只填序号)八.平行线的性质(共1小题)9.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 .九.全等三角形的判定(共1小题)10.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.一十.全等三角形的判定与性质(共1小题)11.(2023•济宁)如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE=30°,,则BD= .一十一.多边形内角与外角(共1小题)12.(2023•济宁)一个多边形的内角和是540°,则这个多边形是 边形.一十二.扇形面积的计算(共1小题)13.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是 .一十三.解直角三角形(共1小题)14.(2022•济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是 .一十四.解直角三角形的应用-仰角俯角问题(共1小题)15.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是 .山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共1小题)1.(2021•济宁)数字6100000用科学记数法表示是 6.1×106 .【答案】6.1×106.【解答】解:用科学记数法表示6100000,应记作6.1×106,故答案是:6.1×106.二.因式分解的应用(共1小题)2.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9= 8 .【答案】8.【解答】解:∵m2﹣m﹣1=0,∴m2﹣m=1,∴2m3﹣3m2﹣m+9=(2m3﹣2m2)﹣m2﹣m+9=2m(m2﹣m)﹣m2﹣m+9=2m﹣m2﹣m+9=﹣m2+m+9=﹣(m2﹣m)+9=﹣1+9=8,故答案为:8.三.二次根式有意义的条件(共1小题)3.(2022•济宁)若二次根式有意义,则x的取值范围是 x≥3 .【答案】见试题解答内容【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.四.函数关系式(共1小题)4.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 y =+2 .【答案】y=+2.【解答】解:根据题意得:y=(0+1+x+3+6)÷5=+2.故答案为:y=+2.五.一次函数的性质(共2小题)5.(2023•济宁)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 y=x+2(答案不唯一) .【答案】y=x+2(答案不唯一).【解答】解:设一次函数的解析式为y=kx+b(k≠0).∵一次函数y=kx+b的图象经过点(1,3),∴3=k+b,又∵函数值y随自变量x的增大而增大,∴k>0,∴k=1,b=2符合题意,∴符合上述条件的函数解析式可以为y=x+2.故答案为:y=x+2(答案不唯一).6.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值 0(答案不唯一) (写出一个即可),使x>2时,y1>y2.【答案】0(答案不唯一).【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).六.反比例函数的性质(共1小题)7.(2022•济宁)如图,A是双曲线y=(x>0)上的一点,点C是OA的中点,过点C 作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是 4 .【答案】4.【解答】解:∵点C是OA的中点,∴S△ACD=S△OCD,S△ACB=S△OCB,∴S△ACD+S△ACB=S△OCD+S△OCB,∴S△ABD=S△OBD,∵点B在双曲线y=(x>0)上,BD⊥y轴,∴S△OBD==4,∴S△ABD=4,故答案为:4.七.二次函数图象与系数的关系(共1小题)8.(2021•济宁)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是 ①②④ .(只填序号)【答案】见试题解答内容【解答】解:由图象可得,a<0,b>0,c>0,则abc<0,故①正确;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵函数图象与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x=1,∴函数图象与x轴的另一个交点在点(0,0)和点(﹣1,0)之间,故④正确;∴当x=﹣1时,y=a﹣b+c<0,∴y=a+2a+c<0,∴3a+c<0,故③错误;故答案为:①②④.八.平行线的性质(共1小题)9.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 53°28' .【答案】53°28'.【解答】解:如图:∵l1∥l2,l2∥l3,∴l1∥l3,∴∠1=∠3=126°32',∴∠2=180°﹣∠3=180°﹣126°32'=53°28';故答案为:53°28'.九.全等三角形的判定(共1小题)10.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 AD=AB (答案不唯一) ,使△ABC≌△ADC.【答案】见试题解答内容【解答】解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).一十.全等三角形的判定与性质(共1小题)11.(2023•济宁)如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE =30°,,则BD= 3﹣ .【答案】3﹣.【解答】解:过点A作AH⊥BC于H,∵△ABC是等边三角形,∴AB=AC=BC=6,∠BAC=60°,∴AH⊥BC,∴,∴∠BAD+∠DAH=30°,∴∠DAE=30°,∴∠BAD+∠EAC=30°,∴∠DAH=∠EAC,∴tan∠DAH=tan∠EAC=,∵BH=AB=3,∵AH=AB sin60°=6×=3,∴,∴DH=,∴BD=BH﹣DH=3﹣,故答案为:3﹣.一十一.多边形内角与外角(共1小题)12.(2023•济宁)一个多边形的内角和是540°,则这个多边形是 五 边形.【答案】五.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=540°,解得:n=5,即此多边形为五边形,故答案为:五.一十二.扇形面积的计算(共1小题)13.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是 ﹣ .【答案】见试题解答内容【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.一十三.解直角三角形(共1小题)14.(2022•济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是 2a .【答案】2a.【解答】解:连接AB,作直径CE.连接DE,设AD交BC于点T.∵∠ACB=90°,∴AB是直径,∵EC是直径,∴∠CDE=90°,∵∠CBD=∠E,∴tan E=tan∠CBD=,∴=,∴DE=3a,∴EC=AB===a,∴AC=BC=AB=a,∵∠CAT=∠CBD,∴tan∠CAT=tan∠CBD=,∴CT=a,BT=a,∴AT===a,∵AB是直径,∴∠ADB=90°,∵tan∠DBT==,∴DT=BT=a,∴AD=AT+DT=2a,解法二:过点C作CE⊥AD于点E,则CE=DE=a,AE=a,∴AD=AE+CE=2a.故答案为:2a.一十四.解直角三角形的应用-仰角俯角问题(共1小题)15.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是 (15+1)m .【答案】(15+1)m.【解答】解:如图:延长CD交EF于点G,由题意得:DB=AC=FG=1m,CG⊥EF,DC=AB=30m,∠EDG=60°,∠ECG=30°,∵∠EDG是△EDC的一个外角,∴∠DEC=∠EDG﹣∠ECG=30°,∴∠DEC=∠ECD=30°,∴ED=CD=30m,在Rt△EGD中,EG=ED•sin60°=30×=15(m),∴EF=EG+FG=(15+1)m,∴该建筑物的高是(15+1)m,故答案为:(15+1)m.。
2021年山东省济宁市中考数学总复习:二次函数(附答案解析)

第 1 页 共211 页 2021年山东省济宁市中考数学总复习:二次函数一.选择题(共50小题)1.已知二次函数y =x 2+bx ﹣1与一次函数y =﹣2x 交点关于原点对称,当t ≤x ≤t +1时二次函数y =x 2+bx ﹣1最小值是2,则t 的值是( )A .1B .1或3C .﹣2D .3或﹣22.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③9a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=1有四个根,则这四个根的和为﹣8.其中正确的结论有( )个A .2B .3C .4D .53.已知二次函数y =ax 2+x +a (a ﹣2)的图象经过原点,则a 的值为( )A .0或2B .0C .2D .无法确定4.抛物线y =x 2﹣4x +2不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知函数y 1=x 2与函数y 2=−12x +3的图象大致如图所示,若y 1<y 2,则自变量x 的取值范围是( )A .−32<x <2B .x >2或x <−32C .x <﹣2或x >32D .﹣2<x <32 6.如图在平面直角坐标系中,一次函数y =mx +n 与x 轴的轴交于点A ,与二次函数交于点B 、点C ,点A 、B 、C 三点的横坐标分别是a 、b 、c ,则下面四个等式中不一定成立的是( )。
山东省济宁市兖州区2021-2022学年中考二模数学试题含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .432.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°3.下列计算正确的是( )A .2m+3n=5mnB .m 2•m 3=m 6C .m 8÷m 6=m 2D .(﹣m )3=m 34.下列运算结果是无理数的是( )A .32×2B .32⨯C .722÷D .22135-5. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )A .567×103B .56.7×104C .5.67×105D .0.567×1066.如图,A 、B 两点在双曲线y=4x上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )A .3B .4C .5D .67.下列计算正确的是( )A .2224()39b b c c = B .0.00002=2×105C.2933xxx-=--D.3242·323x yy x x=8.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )A.B.C.D.9.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc >1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③10.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()A.70.1810⨯B.51.810⨯C.61.810⨯D.51810⨯二、填空题(本大题共6个小题,每小题3分,共18分)11.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.12.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.13.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.14.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.15.若关于x的方程111m xx x----=0有增根,则m的值是______.16.如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°.三、解答题(共8题,共72分)17.(8分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?18.(8分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.(1)试判断∠AED与∠C的数量关系,并说明理由;(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为.19.(8分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?20.(8分)如图1,抛物线y 1=ax 1﹣12x+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,34),抛物线y 1的顶点为G ,GM ⊥x 轴于点M .将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的抛物线y 1.(1)求抛物线y 1的解析式;(1)如图1,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由;(3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 1于点Q ,点Q 关于直线l 的对称点为R ,若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的解析式.21.(8分)小明准备用一块矩形材料剪出如图所示的四边形ABCD (阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD 的长度.(结果保留根号).22.(10分)在Rt ABC ∆中,90ACB ∠=,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=①如图1,DCB ∠=②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明)23.(12分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)24.如图,在△ABC 中,∠ACB =90°,∠ABC =10°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE =EB ;(2)如图2,当点E 在△ABC 内部时,猜想ED 和EB 数量关系,并加以证明;(1)如图1,当点E 在△ABC 外部时,EH ⊥AB 于点H ,过点E 作GE ∥AB ,交线段AC 的延长线于点G ,AG =5CG ,BH =1.求CG 的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.2、C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.3、C【解析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解:A、2m与3n不是同类项,不能合并,故错误;B、m2•m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C.【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4、B【解析】根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B,故B是无理数;C6,故C不是无理数;D==12,故D不是无理数故选B.【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.5、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】567000=5.67×105,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、D欲求S 1+S 1,只要求出过A 、B 两点向x 轴、y 轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x 的系数k ,由此即可求出S 1+S 1.【详解】∵点A 、B 是双曲线y=4x上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段, 则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S 1+S 1=4+4-1×1=2.故选D .7、D【解析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【详解】解:A 、原式=2249b c;故本选项错误; B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误; D 、原式=223x ;故本选项正确; 故选:D .【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.8、C【解析】根据中心对称图形的概念进行分析.【详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、是中心对称图形,故此选项正确;D 、不是中心对称图形,故此选项错误;故选:C .【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【解析】试题分析:由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x 轴交点负半轴明显大于﹣1,∴y=a ﹣b+c <1,故本选项正确;③由抛物线的开口向下知a <1,∵对称轴为1>x=﹣>1,∴2a+b <1,故本选项正确;④对称轴为x=﹣>1, ∴a 、b 异号,即b >1,∴abc <1,故本选项错误;∴正确结论的序号为②③.故选B .点评:二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >1;否则a <1;(2)b 由对称轴和a 的符号确定:由对称轴公式x=﹣b2a 判断符号;(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >1;否则c <1;(4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值.10、C【解析】分析:一个绝对值大于10的数可以表示为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,整数位数减去1即可.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1800000这个数用科学记数法可以表示为61.810⨯,故选C .点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、()2 1.8250x x ++=【解析】【分析】河北四库来水量为x 亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.【详解】河北四库来水量为x 亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,由题意得:x+(2x+1.82)=50,故答案为x+(2x+1.82)=50.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.12、AC=BD .【解析】试题分析:添加的条件应为:AC=BD ,把AC=BD 作为已知条件,根据三角形的中位线定理可得,HG 平行且等于AC 的一半,EF 平行且等于AC 的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF 平行且相等,所以EFGH 为平行四边形,又EH 等于BD 的一半且AC=BD ,所以得到所证四边形的邻边EH 与HG 相等,所以四边形EFGH 为菱形.试题解析:添加的条件应为:AC=BD .证明:∵E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点,∴在△ADC 中,HG 为△ADC 的中位线,所以HG ∥AC 且HG=12AC ;同理EF ∥AC 且EF=12AC ,同理可得EH=12BD , 则HG ∥EF 且HG=EF ,∴四边形EFGH 为平行四边形,又AC=BD ,所以EF=EH ,∴四边形EFGH 为菱形.考点:1.菱形的性质;2.三角形中位线定理.13、1【解析】先根据勾股定理求得AC 的长,从而得到C 点坐标,然后根据平移的性质,将C 点纵轴代入直线解析式求解即可得到答案.【详解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC=22-=1,BC AB∴点C的坐标为(﹣1,1).当y=﹣2x﹣6=1时,x=﹣5,∵﹣1﹣(﹣5)=1,∴点C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.故答案为1.【点睛】本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.14、1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′=22+=1cm.86故答案为1.考点:平面展开-最短路径问题.15、2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.16、58【解析】根据HL证明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,求出∠BCF=∠BAE=13°,即可求出答案.【详解】解:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt △CBF 和Rt △ABE 中,CF CE BC AB =⎧⎨=⎩ ∴Rt △CBF ≌Rt △ABE (HL ),∴∠FCB=∠EAB ,∵AB=BC ,∠ABC=90°,∴∠CAB=∠ACB=45°.∵∠BAE=∠CAB ﹣∠CAE=45°﹣32°=13°,∴∠BCF=∠BAE=13°,∴∠ACF=∠BCF+∠ACB=45°+13°=58°故答案为58【点睛】本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,全等三角形的性质是全等三角形的对应边相等,对应角相等.三、解答题(共8题,共72分)17、(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利润是30m+20(50﹣m)=1000+10m,当m取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.18、(1)∠AED=∠C,理由见解析;(2)6【解析】(1)根据切线的性质和圆周角定理解答即可;(2)根据勾股定理和三角函数进行解答即可.【详解】(1)∠AED=∠C,证明如下:连接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切线,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)连接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt △DAB 中,AD=3,∠ADB=90°,∴cos ∠DAB=2AD AB =解得:∵E 是半圆AB 的中点,∴AE=BE ,∵∠AEB=90°,∴∠BAE=45°,在Rt △AEB 中,,∠ADB=90°,∴cos ∠EAB=2AE AB =解得:.【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.19、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.20、(1)y 1=-14x 1+12 x-14;(1)存在,T (1,34+),(1,34),(1,﹣778);(3)y=﹣12x+34或y=﹣1124x -. 【解析】(1)应用待定系数法求解析式;(1)设出点T 坐标,表示△TAC 三边,进行分类讨论;(3)设出点P 坐标,表示Q 、R 坐标及PQ 、QR ,根据以P ,Q ,R 为顶点的三角形与△AMG 全等,分类讨论对应边相等的可能性即可.【详解】解:(1)由已知,c=34, 将B (1,0)代入,得:a ﹣1324+=0, 解得a=﹣14, 抛物线解析式为y 1=14x 1-12 x+34, ∵抛物线y 1平移后得到y 1,且顶点为B (1,0),∴y 1=﹣14(x ﹣1)1, 即y 1=-14x 1+12 x-14; (1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,34),过点T作TE⊥y轴于E,则TC1=TE1+CE1=11+(34)1=t1﹣32t+2516,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=153 16,当TC=AC时,t1﹣32t+2516=15316,解得:t13137+,t13137-当TA=AC时,t1+16=15316,无解;当TA=TC时,t1﹣32t+2516=t1+16,解得t3=﹣778;当点T坐标分别为(13137+),(13137-,(1,﹣778)时,△TAC为等腰三角形;(3)如图1:设P (m ,2113424m m --+),则Q (m ,2111424m m -+-), ∵Q 、R 关于x=1对称 ∴R (1﹣m ,2111424m m -+-), ①当点P 在直线l 左侧时,PQ=1﹣m ,QR=1﹣1m ,∵△PQR 与△AMG 全等,∴当PQ=GM 且QR=AM 时,m=0,∴P (0,34),即点P 、C 重合, ∴R (1,﹣14), 由此求直线PR 解析式为y=﹣12x+34, 当PQ=AM 且QR=GM 时,无解;②当点P 在直线l 右侧时,同理:PQ=m ﹣1,QR=1m ﹣1,则P (1,﹣54),R (0,﹣14), PQ 解析式为:y=﹣1124x -; ∴PR 解析式为:y=﹣12x+34或y=﹣1124x -. 【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键.21、CD 的长度为17cm .【解析】在直角三角形中用三角函数求出FD ,BE 的长,而FC =AE =AB +BE ,而CD =FC -FD ,从而得到答案.【详解】解:由题意,在Rt △BEC 中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=BE EC,∴BE=ECtan30°cm );∴CF=AE=34+BE=()cm ,在Rt △AFD 中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm ,则CD=FC ﹣﹣17,答:CD 的长度为17cm .【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC 与FD 的长度,即可求出答案.22、(1)①60;②CP BF =.理由见解析;(2)2tan BF BP DE α-=⋅,理由见解析.【解析】(1)①根据直角三角形斜边中线的性质,结合30A ∠=,只要证明CDB ∆是等边三角形即可;②根据全等三角形的判定推出DCP DBF ∆≅∆,根据全等的性质得出CP BF =,(2)如图2,求出DC DB AD ==,DE AC ,求出2FDB CDP PDB α∠=∠=+∠,DP DF =,根据全等三角形的判定得出DCP DBF ∆≅∆,求出CP BF =,推出BF BP BC -=,解直角三角形求出tan CE DE α=即可.【详解】解:(1)①∵30A ∠=,90ACB ∠=,∴60B ∠=,∵AD DB =,∴CD AD DB ==,∴CDB ∆是等边三角形,∴60DCB ∠=.故答案为60.②如图1,结论:CP BF =.理由如下:∵90ACB ∠=,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=-∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =.(2)结论:2tan BF BP DE α-=⋅.理由:∵90ACB ∠=,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=+∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =,而CP BC BP =+,∴BF BP BC -=,在Rt CDE ∆中,90DEC ∠=, ∴tan DE DCE CE∠=, ∴tan CE DE α=,∴22tan BC CE DE α==,即2tan BF BP DE α-=.【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出DCP DBF ∆≅∆是解此题的关键,综合性比较强,证明过程类似.23、(1)5.6(2)货物MNQP 应挪走,理由见解析.【解析】(1)如图,作AD ⊥BC 于点DRt △ABD 中,AD=ABsin45°=4222⨯在Rt △ACD 中,∵∠ACD=30°∴ 5.6≈即新传送带AC的长度约为5.6米.(2)结论:货物MNQP应挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=≈∴CB=CD—BD= 2.1∵PC=PB—CB ≈4—2.1=1.9<2∴货物MNQP应挪走.24、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.。
2021年中考数学模拟试卷含答案解析 (15)

2021年中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3.二次函数y=2(x﹣1)2﹣3的顶点坐标为()A.(1,3)B.(﹣1,﹣3)C.(﹣1,3)D.(1,﹣3)4.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等5.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时6.若a是﹣1的整数部分,b是5+的小数部分,则a(﹣b)的值为()A.6B.4C.9D.37.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x﹣(30﹣x)≤120B.10x≥120C.10x>120D.10x﹣3(30﹣x)≥1208.根据流程图中的程序,当输入x的值为﹣2时,输出y的值为()A.4B.6C.8D.109.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,其中,第①幅图中黑、白色瓷砖共5块;第②幅图中黑、白色瓷砖共12块:第③幅图中黑、白色瓷砖共21块.则第6幅图案中黑、白色瓷砖共()块.A.45B.49C.60D.6410.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3.直径为5的⊙O分别与AC、BC相切于点F、E,与AB交于点M、N,过点O作OP⊥MN于P,则OP的长为()A.1B.C.D.11.“大金鹰”雕塑,雄居在重庆南山671米高的鹞鹰岩上,家住南山的小星同学利用周末去测量大金鹰的大致高度.大金鹰是雄踞在一人造石台上,石台侧面BC长15米,坡度i=1:0.75,小星站在距离C点16米的D点,测得大金鹰顶部A的仰角为64°,则大金鹰AB的高度约为()米.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,结果保留一位小数)A.37.3B.37.2C.39.3D.39.212.关于x的分式方程+=﹣2的解为正数,且关于x的不等式组有解,则满足上述要求的所有整数a的和为()A.﹣16B.﹣12C.﹣10D.﹣6二.填空题(共6小题,满分24分,每小题4分)13.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为元.14.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)15.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球只.16.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为.17.上周日,小飞与小林参加了“青春劲跑”长跑比赛.点A,点B及终点C顺次在一条直线上比赛时,小飞从A点起跑,同时小林则从与A点相距200米的B点起跑,小飞全程都保持匀速跑,小林按某一速度匀速跑一段时间后,感觉状态良好,于是将跑速提高了40米/分,并按新的速度匀速前进直至终点C.如图为比赛开始后,两人的跑步时间x (单位:分)与两人距离终点的距离y(单位:米)之间的函数图象.则在本次比赛中,小林从出发到完成比赛,共用时分.18.某个“清凉小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮料的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出,但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元,则这个“清凉小屋”自动售货机一个工作日的销售收入是元.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+2y)2﹣(x﹣y)(x﹣4y)(2)(﹣x+2)÷20.(10分)如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.21.(10分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生.请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个96人的样本,你认为以下抽样方法中比较合理的有.(只要填写序号即可)①随机抽取两个班级的96名学生;②在全年级学生中随机抽取96名学生;③在全年级12个班中分别各随机抽取8名学生;④从全年级学生中随机抽取96名男生.整理数据(2)将抽取的96名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为、;②估计全年级A、B类学生大约一共有名.成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)16D类(0~39)8分析数据(3)学校为了解其它学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请提出一个合理解释来支持你的观点.22.(10分)亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款亲子装在进价的基础上提高(a+10)%销售,每套乙款亲子装在第一批售价的基础上降低a%销售,结果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a%,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a的值.23.(10分)在平面直角坐标系中,若点P的坐标为(x,y),则定义:d(x,y)=|x|+|y|为点P到坐标原点O的“折线距离”.(1)若已知P(﹣2,3),则点P到坐标原点O的“折线距离”d(﹣2,3)=;(2)若点P(x,y)满足2x+y=0,且点P到坐标原点O的“折线距离”d(x,y)=6,求出P的坐标;(3)若点P到坐标原点O的“折线距离”d(x,y)=3,试在坐标系内画出所有满足条件的点P构成的图形,并求出该图形的所围成封闭区域的面积.24.(10分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,我们把形如a+bi(a,b为实数,i是虚数单位)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i﹣(﹣1)=3+i.根据以上信息,解答下列问题:(1)下列等式或命题中,错误的是A.i4=1B.复数(1+i)2的实部为0C.(1+i)×(3﹣4i)=﹣1﹣iD.i+i2+i3+i4+…+i2019=﹣1(2)计算:①(1+2i)(2﹣i)+(2﹣i)2;②(1+2)3(1﹣2i)3.25.(10分)在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3,AD=6,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.26.(8分)综合与探究:如图1,Rt△AOB的直角顶点O在坐标原点,点A在y轴正半轴上,点B在x轴正半轴上,OA=4,OB=2.将线段AB绕点B顺时针旋转90°得到线段BC,过点C作CD⊥x 轴于点D,抛物线y=ax2+3x+c经过点C,与y轴交于点E(0,2),直线AC与x轴交于点H.(1)求点C的坐标及抛物线的表达式;(2)如图2,已知点G是线段AH上的一个动点,过点G作AH的垂线交抛物线于点F (点F在第一象限).设点G的横坐标为m.①点G的纵坐标用含m的代数式表示为;②如图3,当直线FG经过点B时,求点F的坐标,判断四边形ABCF的形状并证明结论;③在②的前提下,连接FH,点N是坐标平面内的点,若以F,H,N为顶点的三角形与△FHC全等,请直接写出点N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.在下列六个数中:0,,,0.101001,﹣10%,5213,分数的个数是()A.2个B.3个C.4个D.5个【分析】根据分数的定义解答即可.【解答】解:在下列六个数中:0,,,0.101001,﹣10%,5213中,分数有,0.101001,﹣10%共3个.故选:B.2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.【分析】俯视图是从上面看,注意所有的看到的棱都应表现在主视图中.【解答】解:如图所示:它的俯视图是:.故选:C.3.二次函数y=2(x﹣1)2﹣3的顶点坐标为()A.(1,3)B.(﹣1,﹣3)C.(﹣1,3)D.(1,﹣3)【分析】二次函数的顶点式方程:y=a(x﹣h)2+k,其顶点坐标是P(h,k).【解答】解:∵二次函数的顶点式方程是:y=2(x﹣1)2﹣3,∴该函数的顶点坐标是:(1,﹣3);故选:D.4.下面命题正确的是()A.矩形对角线互相垂直B.方程x2=14x的解为x=14C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6﹣2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【解答】解:A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选:D.5.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时【分析】过点C作CD⊥AB,交AB的延长线于点D.设CD=x海里.解Rt△CAD,得出AD=x海里.解Rt△CBD得出BD=x海里.根据AD﹣BD=AB列出方程x﹣x =20(﹣1),求出x=20,那么BC=CD=20海里,再利用时间=路程÷速度求解.【解答】解:如图,过点C作CD⊥AB,交AB的延长线于点D.由题意,得∠CAD=30°,设CD=x海里.在Rt△CAD中,∵∠CAD=30°,∴AC=2CD=2x海里,AD=CD=x海里.在Rt△CBD中,∵∠CBD=45°,∴BD=CD=x海里.∵AD﹣BD=AB,∴x﹣x=20(﹣1),解得x=20,∴BC=CD=20海里,∵救援艇的速度为30海里/小时,∴救援艇到达C处所用的时间为=(小时).故选:C.6.若a是﹣1的整数部分,b是5+的小数部分,则a(﹣b)的值为()A.6B.4C.9D.3【分析】先估算和的大小,然后求出a、b的值,代入所求式子计算即可.【解答】解:∵2<﹣1<3,∴a=2,又∵7<5+<8,∴5+的整数部分为7∴b=5+﹣7=﹣2;∴a(﹣b)=2×(﹣+2)=4.故选:B.7.一次数学竞赛共有30道题,规定答对一道得10分,答错一道或者不答扣3分,在这次竞赛中,小亮想至少得120分,设他答对了x道题,则根据题意可列出不等式为()A.10x﹣(30﹣x)≤120B.10x≥120C.10x>120D.10x﹣3(30﹣x)≥120【分析】将答对题数所得的分数减去答错或不答所扣的分数,在由题意知小亮答题所得的分数大于等于120分,列出不等式即可.【解答】解:设他答对了x道题,根据题意可得:10x﹣3(30﹣x)≥120.故选:D.8.根据流程图中的程序,当输入x的值为﹣2时,输出y的值为()A.4B.6C.8D.10【分析】根据所给的函数关系式所对应的自变量的取值范围,将x的值代入对应的函数即可求得y的值.【解答】解:∵x=﹣2,不满足x≥1∴对应y=﹣x+5,故输出的值y=﹣x+5=﹣×(﹣2)+5=1+5=6.故选:B.9.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,其中,第①幅图中黑、白色瓷砖共5块;第②幅图中黑、白色瓷砖共12块:第③幅图中黑、白色瓷砖共21块.则第6幅图案中黑、白色瓷砖共()块.A.45B.49C.60D.64【分析】设第n幅图案中黑、白色瓷砖共a n块(n为正整数),观察图形,根据各图案中黑、白色瓷砖数量的变化可得出变化规律“a n=n2+4n(n为正整数)”,再代入n=6即可求出结论.【解答】解:设第n幅图案中黑、白色瓷砖共a n块(n为正整数).观察图形,可知:a1=12+1×4=5,a2=22+2×4=12,a3=32+3×4=21,…,∴a n=n2+4n(n为正整数),∴a6=62+4×6=60.故选:C.10.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3.直径为5的⊙O分别与AC、BC相切于点F、E,与AB交于点M、N,过点O作OP⊥MN于P,则OP的长为()A.1B.C.D.【分析】连结OE,OF,则四边形OFCE为正方形,可证明△AFG∽△ACB,可求出OG 长,证明△OGP∽△ABC可求出OP的长.【解答】解:连结OE,OF,∵⊙O分别与AC、BC相切于点F、E,∴OE⊥BC,OF⊥AC,∵OE=OF,∴四边形OFCE为正方形,设FG=x,∵FG∥BC,∴△AFG∽△ACB,∴,∴,解得x=,∴OG=,∵∠OGP=∠AGF=∠ABC,∴△OGP∽△ABC,∴,∴,∴.故选:B.11.“大金鹰”雕塑,雄居在重庆南山671米高的鹞鹰岩上,家住南山的小星同学利用周末去测量大金鹰的大致高度.大金鹰是雄踞在一人造石台上,石台侧面BC长15米,坡度i=1:0.75,小星站在距离C点16米的D点,测得大金鹰顶部A的仰角为64°,则大金鹰AB的高度约为()米.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,结果保留一位小数)A.37.3B.37.2C.39.3D.39.2【分析】延长AB交DC的延长线于H,根据坡度的概念分别求出CH、BH,根据正切的定义求出AH,结合图形计算得到答案.【解答】解:延长AB交DC的延长线于H,则AH⊥DC,设CH=3x米,∵石台侧面BC的坡度i=1:0.75,∴BH=4x米,在Rt△BCH中,BC2=CH2+BH2,即152=(3x)2+(4x)2,解得,x=3,则CH=3x=9,BH=4x=12,∴DH=DC+CH=25,在Rt△ADH中,tan∠ADH=,∴AH=DH•tan∠ADH≈25×2.05=51.25,∴AB=AH﹣BH=39.25≈39.3,故选:C.12.关于x的分式方程+=﹣2的解为正数,且关于x的不等式组有解,则满足上述要求的所有整数a的和为()A.﹣16B.﹣12C.﹣10D.﹣6【分析】根据分式方程的解为正数即可得出a<2且a≠1,根据不等式组有解,即可得出a>﹣5,找出﹣5<a<2且a≠1中所有的整数,将其相加即可得出结论.【解答】解:解分式方程得x=,因为分式方程的解为正数,所以>0且≠4,解得:a<2且a≠1,解不等式,得:x≤a+5,∵不等式组有解,∴a+5>0,解得:a>﹣5,综上,﹣5<a<2,且a≠1,则满足上述要求的所有整数a的和为﹣4+(﹣3)+(﹣2)+(﹣1)+0=﹣10,故选:C.二.填空题(共6小题,满分24分,每小题4分)13.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为7.2×1010元.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:720亿=72000000000=7.2×1010.故答案为:7.2×1010.14.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【分析】根据菱形的性质得到AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.15.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为,则袋中共有小球10只.【分析】直接利用概率公式计算.【解答】解:设袋中共有小球只,根据题意得=,解得x=10,所以袋中共有小球10只.故答案为10.16.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为.【分析】连接AF,由矩形的性质得AD∥BC,AD=BC,由平行线的性质得∠AEF=∠GFE,由折叠的性质得∠AFE=∠GFE,AF=FG,推出∠AEF=∠AFE,则AF=AE,AE =FG,得出四边形AFGE是平行四边形,则AF∥EG,得出∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB==,即可得出结果.【解答】解:连接AF,如图所示:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折叠的性质可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四边形AFGE是平行四边形,∴AF∥EG,∴∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB===,∴cos∠EGF=,故答案为:.17.上周日,小飞与小林参加了“青春劲跑”长跑比赛.点A,点B及终点C顺次在一条直线上比赛时,小飞从A点起跑,同时小林则从与A点相距200米的B点起跑,小飞全程都保持匀速跑,小林按某一速度匀速跑一段时间后,感觉状态良好,于是将跑速提高了40米/分,并按新的速度匀速前进直至终点C.如图为比赛开始后,两人的跑步时间x (单位:分)与两人距离终点的距离y(单位:米)之间的函数图象.则在本次比赛中,小林从出发到完成比赛,共用时分.【分析】小飞全程匀速,速度为10200÷34=300米/分,经过2分小飞追上小林,因此速度差为200÷2=100米/分,小林的速度为300﹣100=200米/分,小林15分钟行15×200=3000米,15分钟以后的速度为200+40=240米/分,以后行至C地所用时间为(10000﹣3000)÷240=分,因此行完全程的时间为15+=分.【解答】解:小飞的速度:10200÷34=300米/分,速度差为:200÷2=100米/分,小林的原速度为300﹣100=200米/分,小林后速度为:200+40=240米/分,小林前15分钟行驶的路程200×15=3000米,小林行完剩下路程需要时间(10000﹣3000)÷240=分,因此小林从出发到完成比赛,共用时15+=分,故答案为:.18.某个“清凉小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮料的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出,但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元,则这个“清凉小屋”自动售货机一个工作日的销售收入是760元.【分析】设C饮料数量工作日时有x瓶,根据题意,得A、B两种饮料数量工作日时4x 瓶、2x瓶,A、B、C三种饮料周六数量分别为:6x(瓶),3.2x(瓶),1.5x(瓶),设变化了y元,得10.1x+y=403,其中x为整数,即可求得y的值,进而求得工作日销售额.【解答】解:设C饮料数量工作日时有x瓶,根据题意,得A、B两种饮料数量工作日时4x瓶、2x瓶,A、B、C三种饮料周六数量分别为:4x(1+50%)=6x(瓶),2x(1+60%)=3.2x(瓶),x(1+50%)=1.5x(瓶),∴工作日钱数:2×4x+3×2x+5x=19x(元),周六钱数:2×6x+3×3.2x+5×1.5x=29.1x(元),当不发生任何故障时,多出29.1x﹣19x=10.1x(元),其中x为整数,由于发生了故障,周六的销售额发生了变化,设变化了y元,则10.1x+y=403,其中x为整数,y=1、2、3、﹣1、﹣2、﹣3,得y=﹣1时,x=40,所以工作日销售额为:19×40=760(元).故答案为760.三.解答题(共8小题,满分78分)19.(10分)计算:(1)(x+2y)2﹣(x﹣y)(x﹣4y)(2)(﹣x+2)÷【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+4xy+4y2﹣(x2﹣4xy﹣xy+4y2)=x2+4xy+4y2﹣x2+4xy+xy﹣4y2=9xy;(2)原式=÷=•=﹣.20.(10分)如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC 于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.【分析】(1)根据角平分线的性质得到∠ABE=∠CBE=30°,根据等腰三角形的性质得到∠ACD=∠ADC=75°,根据三角形的外角性质计算,得到答案;(2)根据含30度角的直角三角形的性质,等腰直角三角形的性质计算,即可证明.【解答】(1)解:∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BE是∠ABC的角平分线,∴∠ABE=∠CBE=30°,∵∠A=30°,AC=AD,∴∠ACD=∠ADC=75°,∴∠DMB=∠ADC﹣∠ABE=45°;(2)证明:∵∠ACB=90°,∠A=30°,∴AB=2BC,∵CH⊥BE,∠CBE=30°,∴BC=2CH,∴AB=4CH,在Rt△CHM中,∠CMH=45°,∴CH=MH,∴AB=4MH.21.(10分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生.请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个96人的样本,你认为以下抽样方法中比较合理的有②、③.(只要填写序号即可)①随机抽取两个班级的96名学生;②在全年级学生中随机抽取96名学生;③在全年级12个班中分别各随机抽取8名学生;④从全年级学生中随机抽取96名男生.整理数据(2)将抽取的96名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为60°、30°;②估计全年级A、B类学生大约一共有432名.成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)16D类(0~39)8分析数据(3)学校为了解其它学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请提出一个合理解释来支持你的观点.【分析】(1)根据抽样调查的代表性和可靠性求解可得;(2)①用360°分别乘以C、D类人数所占比例即可得;②用总人数乘以A、B的频率和可得;(3)根据极差、方差和A、B的频率的意义给出合理解释即可(答案不唯一).【解答】解:(1)抽样方法中比较合理的有②、③,故答案为:②、③;(2)①C类部分的圆心角度数为360°×=60°,D类部分的圆心角度数为360°×=30°;②估计全年级A、B类学生大约一共有12×48×(0.5+0.25)=432名.故答案为:60°,30°,432;(3)第一中学教学效果好,极差、方差小于第二中学,说明第一中学学生两极分化,学生之间的差距较第二中学好.第二中学教学效果好,A、B类的频率和大于第一中学,说明第二中学学生及格率较第一中学学生好.(答案不唯一).22.(10分)亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款亲子装在进价的基础上提高(a+10)%销售,每套乙款亲子装在第一批售价的基础上降低a%销售,结果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a%,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a的值.【分析】(1)设购进甲、乙两款亲子装分别为x、y套,根据甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意先分别求出促销活动中甲、乙两款亲子装单件利润和销售总量(用a表示),然后由促销活动共获利5200元,可以列出相应的方程,从而可以求得a的值.【解答】解:(1)设购进甲、乙两款亲子装分别为x、y套.依题意得,解得:,答:购进甲款亲子装60套,乙款亲子装40套.(2)依题意可知:第二批甲亲子装每件利润为:200(a+10)%=(2a+20)(元),第二批乙款亲子装售价为:240•(1﹣a%)=240﹣1.2a(元),乙亲子装每件利润为:(240﹣1.2a﹣160)=(80﹣1.2a)元第二批甲款亲子装的销售量为:60•(1﹣a%)=(60﹣0.6a)(件)第二批乙款亲子装的销售量为:40×(1+25%)=50(件)依题意得:(2a+20)(60﹣0.6a)+50(80﹣1.2a)=5200解得:a1=0(不合题意舍去),a2=40,∴a的值为40.答:a的值为40.23.(10分)在平面直角坐标系中,若点P的坐标为(x,y),则定义:d(x,y)=|x|+|y|为点P到坐标原点O的“折线距离”.(1)若已知P(﹣2,3),则点P到坐标原点O的“折线距离”d(﹣2,3)=5;(2)若点P(x,y)满足2x+y=0,且点P到坐标原点O的“折线距离”d(x,y)=6,求出P的坐标;(3)若点P到坐标原点O的“折线距离”d(x,y)=3,试在坐标系内画出所有满足条件的点P构成的图形,并求出该图形的所围成封闭区域的面积.【分析】(1)根据新定义和绝对值的意义计算;(2)利用题意得到|x|+|y|=6和y=﹣2x,然后解方程组求出x和y即可得到P点坐标;(3)利用题意得到所有满足条件的点P构成的图形为正方形ABCD,然后计算它的面积即可.【解答】解:(1)点P到坐标原点O的“折线距离”d(﹣2,3)=|﹣2|+|3|=2+3=5;故答案为5;(2)根据题意得|x|+|y|=6,而2x+y=0,即y=﹣2x,∴|x|+|﹣2x|=6,∴3|x|=6,解得x=2或﹣2,当x=2时,y=﹣2x=﹣4;当x=﹣2时,y=﹣2x=4,∴P点坐标为(2,﹣4),(﹣2,4);(3)如图,所有满足条件的点P构成的图形为正方形ABCD,该图形的所围成封闭区域的面积=×6×6=18.24.(10分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,我们把形如a+bi(a,b为实数,i是虚数单位)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2+)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i﹣(﹣1)=3+i.根据以上信息,解答下列问题:(1)下列等式或命题中,错误的是CA.i4=1B.复数(1+i)2的实部为0C.(1+i)×(3﹣4i)=﹣1﹣iD.i+i2+i3+i4+…+i2019=﹣1(2)计算:①(1+2i)(2﹣i)+(2﹣i)2;②(1+2)3(1﹣2i)3.【分析】(1)利用题中的新定义判断即可;(2)①原式利用多项式乘以多项式法则,完全平方公式化简,再利用题中的新定义计算即可求出值;②原式利用完全平方公式,以及多项式乘以多项式法则计算,再利用新定义化简即可求出值.【解答】解:(1)A.i4=i2•i2=(﹣1)×(﹣1)=1,不符合题意;B.复数(1+i)2=1+2i﹣1=2i,实数部分为0,不符合题意;C.(1+i)×(3﹣4i)=3﹣4i+3i+4=7﹣i,符合题意;D.i+i2+i3+i4+…+i2019=i﹣1﹣i+1+…+i﹣1﹣i=﹣1,不符合题意,故选C;(2)①原式=2﹣i+4i+2+4﹣4i﹣1=7﹣i;②原式=27(﹣3﹣4i)(1﹣2i)=27(﹣3+6i﹣4i﹣8)=27(﹣11+2i)=﹣297+54i.25.(10分)在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3,AD=6,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.【分析】(1)过点E作EG⊥AC于点G,由平行四边形的性质BC=AD=6,由等腰直角三角形的性质可得GE=FC=3,由勾股定理可求AG的长,即可求AF的长;(2)通过证明△DAC∽△BGE,可得=,AC=2BG,即可得结论.【解答】解:(1)如图,过点E作EG⊥AC于点G,∵四边形ABCD是平行四边形∴BC=AD=6,∵BC的垂直平分线交AC于F,∴BF=CF,且∠BFC=90°,BC=6∴BF=CF=6,EF=BE=EC=3,∵EF=CE,EG⊥AC∴GE=FC=3在Rt△AEG中,AG==6,。
山东省济宁院附中2021-2022学年中考数学四模试卷含解析

2021-2022中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人.数据“5657万”用科学记数法表示为()A .4565710⨯B .656.5710⨯C .75.65710⨯D .85.65710⨯2.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( )A .0.21×108B .21×106C .2.1×107D .2.1×1063.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A .204×103B .20.4×104C .2.04×105D .2.04×1064.不等式组1040x x +>⎧⎨-≥⎩的解集是( ) A .﹣1≤x≤4 B .x <﹣1或x≥4 C .﹣1<x <4 D .﹣1<x≤45.近似数25.010⨯精确到( )A .十分位B .个位C .十位D .百位6.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个黄球的概率为( ) A .14 B .13C .512D .12 7.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .3138.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( )A.16B.13C.12D.239.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.71010.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c11.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×10912.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.按照一定规律排列依次为59111315,1,,,,410131619,…..按此规律,这列数中的第100个数是_____.14.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).15.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.16.设[x)表示大于x 的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x 的最小值是0;③[x)−x 的最大值是0;④存在实数x ,使[x)−x=0.5成立.17.如图,正方形ABCD 中,AB=3,以B 为圆心,13AB 长为半径画圆B ,点P 在圆B 上移动,连接AP ,并将AP 绕点A 逆时针旋转90°至Q ,连接BQ ,在点P 移动过程中,BQ 长度的最小值为_____.18.点A(-2,1)在第_______象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数.发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元. (1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?20.(6分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O 以每秒1个单位的速度沿x 轴向左平移,当2O 第一次与1O 外切时,求2O 平移的时间.21.(6分)如图,平面直角坐标系xOy 中,已知点A (0,3),点B (3,0),连接AB ,若对于平面内一点C ,当△ABC 是以AB 为腰的等腰三角形时,称点C 是线段AB 的“等长点”.(1)在点C 1(﹣2,3+22),点C 2(0,﹣2),点C 3(3+3,﹣3)中,线段AB 的“等长点”是点________; (2)若点D (m ,n )是线段AB 的“等长点”,且∠DAB=60°,求点D 的坐标;(3)若直线y=kx+33k 上至少存在一个线段AB 的“等长点”,求k 的取值范围.22.(8分)如图,在等边三角形ABC 中,点D ,E 分别在BC, AB 上,且∠ADE=60°.求证:△ADC~△DEB .23.(8分)先化简,再求值:22222+b a b a b a a ab b a b a -+÷--+-,其中,a 、b 满足2428a b a b -=-⎧⎨+=⎩. 24.(10分)先化简,再求值:,其中x=1.25.(10分)在平面直角坐标系中,O 为原点,点A (8,0)、点B (0,4),点C 、D 分别是边OA 、AB 的中点.将△ACD 绕点A 顺时针方向旋转,得△AC ′D ′,记旋转角为α.(I )如图①,连接BD ′,当BD ′∥OA 时,求点D ′的坐标;(II )如图②,当α=60°时,求点C ′的坐标;(III )当点B ,D ′,C ′共线时,求点C ′的坐标(直接写出结果即可).26.(12分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD ,BC=20cm ,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm .为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF 应为多长?(材质及其厚度等暂忽略不计).27.(12分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1. (2)先化简,再求值:(x ﹣1)÷(21x +﹣1),其中x 为方程x 2+3x+2=0的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C【解析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:5657万用科学记数法表示为75.65710⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.2、D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数. 3、C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C . 考点:科学记数法—表示较大的数.4、D【解析】试题分析:解不等式①可得:x >-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D .5、C【解析】根据近似数的精确度:近似数5.0×102精确到十位. 故选C .考点:近似数和有效数字6、A【解析】设黄球有x 个,根据摸出一个球是蓝球的概率是13,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.【详解】解:设袋子中黄球有x 个, 根据题意,得:41543x =++, 解得:x=3,即袋中黄球有3个, 所以随机摸出一个黄球的概率为315434=++, 故选A .【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.7、B【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B.8、B【解析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=16.故选A.考点:几何概率.9、D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10、A【解析】根据数轴上点的位置确定出a,b,c的范围,判断即可.【详解】由数轴上点的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故选A.【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.11、A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108故选:A【点睛】本题考查科学记数法—表示较大的数.12、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D. 考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、203 301【解析】根据按一定规律排列的一列数依次为579111315,,,,,4710131619…,可得第n个数为2331nn++,据此可得第100个数.【详解】由题意,数列可改写成579111315 ,,,,, 4710131619,…,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,∴第n个数为5(1)24(1)3nn+-⨯+-⨯=2331nn++,∴这列数中的第100个数为2100331001⨯+⨯+=203301;故答案为:203 301.【点睛】本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.14、15π【解析】根据圆的面积公式、扇形的面积公式计算即可.【详解】圆锥的母线长,圆锥底面圆的面积=9π圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,∴圆锥的侧面展开图的面积=12×6π×5=15π,【点睛】本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.15、3【解析】试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC 的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.16、④【解析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.17、﹣1【解析】通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.【详解】如图,当Q在对角线BD上时,BQ最小.连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=22+=,∴BQ=BD﹣QD=32﹣1,即3332BQ长度的最小值为(32﹣1).故答案为21.【点睛】本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.18、二【解析】根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.【解析】试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.试题解析:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣1005x-)x﹣1100=﹣15x2+70x﹣1100=﹣15(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.考点:二次函数的应用.20、(1)直线l的解析式为:y=-(2)2O平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.【详解】(1)由题意得OA4812=-+=,∴A 点坐标为()12,0-.∵在Rt ΔAOC 中,OAC 60∠=︒,OC OAtan OAC 12tan60123∠==⨯︒=,∴C 点的坐标为()0,123-.设直线l 的解析式为y kx b =+,由l 过A 、C 两点,得123012b k b⎧-=⎪⎨=-+⎪⎩, 解得1233b k ⎧=-⎪⎨=-⎪⎩,∴直线l 的解析式为:y 3x 123=--.(2)如图,设2O 平移t 秒后到3O 处与1O 第一次外切于点P ,3O 与x 轴相切于1D 点,连接13O O ,31O D .则1313O O O P PO 8513=+=+=,∵31O D x ⊥轴,∴31O D 5=,在131Rt ΔO O D 中,2225111331O D O O O D 13512=-=-=.∵11O D O O OD 41317=+=+=,∴1111D D O D O D 17125=-=-=,∴5t 51==(秒), ∴2O 平移的时间为5秒.【点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.21、(1)C1,C3;(2)D0)或D(3);(3【解析】(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.【详解】(1)∵A(0,3),B0),∴,∵点C1(﹣2,,∴AC1,∴AC1=AB,∴C1是线段AB的“等长点”,∵点C2(0,﹣2),∴AC2=5,BC2,∴AC2≠AB,BC2≠AB,∴C2不是线段AB的“等长点”,∵点C3(,∴BC3∴BC3=AB,∴C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在Rt△AOB中,OA=3,3∴3,tan∠OAB=OBOA3∴∠OAB=30°,当点D在y轴左侧时,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵点D(m,n)是线段AB的“等长点”,∴AD=AB,∴D3,0),∴3n=0,当点D在y轴右侧时,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵点D(m,n)是线段AB的“等长点”,∴3∴3;∴D(233)(3)如图2,∵直线y=kx+33k=k(x+33),∴直线y=kx+33k恒过一点P(﹣33,0),∴在Rt△AOP中,OA=3,OP=33,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,当PF与⊙B相切时交y轴于F,∴PA切⊙B于A,∴点F就是直线y=kx+33k与⊙B的切点,∴F(0,﹣3),∴3k=﹣3,∴k=3当直线3k与⊙A相切时交y轴于G切点为E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴AE AGOP PG=,23332333333kk-+3342+或3342-(舍去)∵直线3k上至少存在一个线段AB的“等长点”,,【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.22、见解析【解析】根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证ADC DEB.【详解】证明:∆ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C= ∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴ADC DEB【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.23、3 5【解析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.【详解】原式=()2()•()a b a b a b aa b a b a b+----++,=a b aa b a b +-++,=ba b +,解方程组2428a ba b--⎧⎨+⎩==得23ab⎧⎨⎩==,所以原式=33=2+35.【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.24、【解析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值.【详解】解:原式=•﹣=﹣=﹣=,当x=1时,原式==.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.25、(I)(10,4)或(6,4)(II)C′(6,3)(III)①C′(8,4)②C′(245,﹣125)【解析】(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=12OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=23,∴OK=6,∴C′(6,23).(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,∴OF=FC′,设OF=FC′=x,在Rt△ABC′中,BC′=22AB AC-'=8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴KCOB'=FKOF=FCBF',∴4KC '=3FK =35, ∴KC′=125,KF=95, ∴OK=245, ∴C′(245,﹣125). 【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26、44cm【解析】解:如图,设BM 与AD 相交于点H ,CN 与AD 相交于点G ,由题意得,MH=8cm ,BH=40cm ,则BM=32cm ,∵四边形ABCD 是等腰梯形,AD=50cm ,BC=20cm ,∴()1AH AD BC 15cm 2=-=. ∵EF ∥CD ,∴△BEM ∽△BAH .∴EM BM AH BH =,即EM 321540=,解得:EM=1. ∴EF=EM +NF +BC=2EM +BC=44(cm ).答:横梁EF 应为44cm .根据等腰梯形的性质,可得AH=DG ,EM=NF ,先求出AH 、GD 的长度,再由△BEM ∽△BAH ,可得出EM ,继而得出EF 的长度.27、(1)6;(2)﹣(x+1),1.【解析】(1)原式=3+1﹣2×12+3=6(2)由题意可知:x 2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x ﹣1)÷11x x -+ =﹣(x+1)当x=﹣1时,x+1=0,分式无意义, 当x=﹣2时,原式=1。
2021年山东省中考数学真题分类汇编:方程与不等式(附答案解析)

2021年山东省中考数学真题分类汇编:方程与不等式一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5 2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4 3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2 5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n 的值等于()A.2019B.2020C.2021D.2022 6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k≥且k≠1C.k D.k≥7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12B.﹣=0.2C.﹣=12D.﹣=0.29.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2 11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣812.(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+B.+=C.+=D.=+13.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣B.k<C.k>﹣且k≠0D.k<且k≠0 14.(2021•济宁)不等式组的解集在数轴上表示正确的是()A.B.C.D.二.填空题(共7小题)15.(2021•烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.16.(2021•东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为.17.(2021•泰安)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.18.(2021•枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2﹣6x+n=0的两个根,则n 的值为.19.(2021•枣庄)已知x,y满足方程组,则x+y的值为.20.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.21.(2021•东营)不等式组的解集为.三.解答题(共6小题)22.(2021•东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.23.(2021•淄博)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.科学计算器按键顺序计算结果(已取近似值)解答过程中可直接使用表格中的数据哟!1.18 1.39 1.64(1)求该公司每个季度产值的平均增长率;(2)问该公司今年总产值能否超过1.6亿元?并说明理由.24.(2021•威海)六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用3000元购进的数量比第一次少了10件.(1)求第一次每件的进价为多少元?(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?25.(2021•菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?26.(2021•泰安)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?27.(2021•烟台)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?2021年山东省中考数学真题分类汇编:方程与不等式参考答案与试题解析一.选择题(共14小题)1.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5【考点】一元一次方程的解;不等式的性质.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.【分析】把a看做已知数求出方程的解得到x的值,由﹣3<a≤3代入计算即可.【解答】解:x+a=2,x=﹣a+2,∵﹣3<a≤3,∴﹣3≤﹣a<3,∴﹣1≤﹣a+2<5,∴﹣1≤x<5,故选:A.【点评】此题考查了解一元一次等式、一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4【考点】不等式的性质.【专题】整式;推理能力.【分析】根据不等式的性质逐个判断即可.【解答】解:∵a>b,∴当a>0时,a2>ab,当a<0时,a2<ab,故①结论错误;∵a>b,∴当|a|>|b|时,a2>b2,当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.(2021•威海)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求解不等式①和②,即可求出不等式组的解集,再在数轴上表示出不等式组的解集即可得出答案.【解答】解:解不等式①,得x>﹣3;解不等式②,得x≤﹣1.∴不等式组的解集为:﹣3<x≤﹣1.∴不等式组的解集在数轴上表示为:.故选:A.【点评】本题主要考查了在数轴上表示不等式的解集,熟练应用求不等式组的解集的方法及在数轴上表示的方法进行求解是解决本题的关键.4.(2021•聊城)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2【考点】一元二次方程的解.【专题】一元二次方程及应用;运算能力.【分析】直接把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,然后解关于k的一元二次方程即可.【解答】解:把x=﹣2代入方程x2+4kx+2k2=4得4﹣8k+2k2=4,整理得k2﹣4k=0,解得k1=0,k2=4,即k的值为0或4.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n 的值等于()A.2019B.2020C.2021D.2022【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【分析】根据一元二次方程根的定义得到m2+m=2021,则m2+2m+n=2021+m+n,再利用根与系数的关系得到m+n=﹣1,然后利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2+x﹣2021=0的实数根,∴m2+m﹣2021=0,∴m2+m=2021,∴m2+2m+n=m2+m+m+n=2021+m+n,∵m,n是一元二次方程x2+x﹣2021=0的两个实数根,∴m+n=﹣1,∴m2+2m+n=2021﹣1=2020.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.6.(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k且k≠1B.k≥且k≠1C.k D.k≥【考点】一元二次方程的定义;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】分k﹣1=0和k﹣1≠0两种情况,利用根的判别式求解可得.【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴△=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k≥;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k≥,故选:D.【点评】本题主要考查根的判别式和一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.7.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得其解集,继而表示在数轴上即可.【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数,不等号方向要改变.8.(2021•淄博)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是()A.﹣=12B.﹣=0.2C.﹣=12D.﹣=0.2【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据时间=路程÷速度结合甲比乙提前12分钟走完全程,即可得出关于x的分式方程,此题得解.【解答】解:12分钟=h=0.2h,设乙的速度为xkm/h,则甲的速度为1.2xkm/h,根据题意,得:﹣=0.2,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【考点】实数与数轴;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断.【解答】解:由数轴得m>0,n<0,m+n<0,∴mn<0,∴△=(mn)2﹣4(m+n)>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(2021•菏泽)如果不等式组的解集为x>2,那么m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】解第一个不等式,求出解集,再根据不等式组的解集,利用“同大取大”的口诀可得答案.【解答】解:解不等式x+5<4x﹣1,得:x>2,∵不等式组的解集为x>2,∴m≤2,故选:A.【点评】本题主要考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的步骤和依据及不等式组解集的确定.11.(2021•临沂)方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣8【考点】解一元二次方程﹣因式分解法.【专题】一元二次方程及应用;运算能力.【分析】利用因式分解法求解即可。
2021年中考一模考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济宁市2021届数学中考模拟试卷一、单选题1.﹣的相反数是()A. ﹣B.C. ﹣D.【答案】D【考点】相反数及有理数的相反数【解析】【解答】根据只有符号不同的两个数互为相反数可得,﹣的相反数是,故答案为:D. 【分析】相反数是指只有符号不同的两个数。
根据定义即可求解。
2.如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A. B.C. D.【答案】D【考点】简单组合体的三视图【解析】【解答】从上面看该几何体,第一行有3个小正方形,第2行右侧有2个小正方形.故答案为:D.【分析】从左面看,左边一列有2个小正方形,靠右一列有一个小正方形应选A。
3.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A. 186×108吨B. 18.6×109吨 C. 1.86×1010吨 D. 0.186×1011吨【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】186亿吨=1.86×1010吨.故答案为:C.【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可得出答案。
注意:1亿=108.4.下列运算正确的是()A. (a+b)2=a2+b2B. (﹣1+x)(﹣x﹣1)=1﹣x2C. a4•a2=a8 D. (﹣2x)3=﹣6x 3【答案】B【考点】同底数幂的乘法,幂的乘方与积的乘方,平方差公式及应用【解析】【解答】解:A.(a+b)2=a2+2ab+b2,故不符合题意;B.(﹣1+x)(﹣x﹣1)=1﹣x2,故符合题意;C.a4•a2=a4+2=a6,故不符合题意;D.(﹣2x)3=(﹣2)3x3=﹣8x3,故不符合题意.故答案为:B.【分析】(1)根据完全平方公式可得:;(2)根据平方差公式可得:;(3)由同底数幂的乘法法则;可求解;同底数幂相乘,底数不变,指数相加;(4)根据积的乘方法则:积的乘方,把积中每一个因式分别乘方,再把所得的幂相乘。
5.一次数学检测中,有5名学生的成绩分别是86,89,78,93,90.则这5名学生成绩的平均分和中位数分别是()A. 87.2,89B. 89,89 C. 87.2,78 D. 90,93【答案】A【考点】平均数及其计算,中位数【解析】【解答】这5名学生的成绩重新排列为:78、86、89、90、93,则平均数为:(78+86+89+90+93) ÷5=87.2,中位数为89,故答案为:A.【分析】根据算术平均数的方法即可求解。
即平均数=.中位数;将这组数据从小到大排列,最中间的数是89,所以中位数是89.6.如图,下列说法中不正确的是()A. ∠1和∠3是同旁内角B. ∠2和∠3是内错角C. ∠2和∠4是同位角D. ∠3和∠5是对顶角【答案】C【考点】同位角、内错角、同旁内角【解析】【解答】A. ∠1和∠3是同旁内角,正确,不合题意;B. ∠2和∠3是内错角,正确,不合题意;C. ∠2和∠4是同位角,错误,符合题意;D. ∠3和∠5是对顶角,正确,不合题意;故答案为:C.【分析】同位角:在截线的同侧,在被截的两条直线的同旁;内错角:在截线的两侧,在被截的两条直线的内部;同旁内角:在截线的同侧,在被截的两条直线的内部。
根据定义即可判断。
7.有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A. 1个B. 2个C. 3个 D. 4个【答案】B【考点】平方根,一元二次方程根的判别式及应用,线段垂直平分线的性质,圆周角定理,命题与定理【解析】【解答】解:若x2=x,则x=1或x=0,所以①错误;若a2=b2,则a=±b,所以②错误;线段垂直平分线上的点到线段两端的距离相等,所以③正确;相等的弧所对的圆周角相等,所以④正确.四个命题的逆命题都是真命题.故答案为:B.【分析】(1)根据一元二次方程的根的判别式大于0,方程有两个不相等的实数根可知,方程漏掉了一个根;(2)根据平方根的意义可得a=±b;(3)线段的垂直平分线的性质:线段垂直平分线上的点到线段两端的距离相等;线段的垂直平分线的判定:到线段两端点距离相等的点在这个角的平分线上;(4)根据圆周角定理和圆周角和弧之间的关系可知:相等的弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等。
8.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③△ABD是等腰三角④点D到直线AB的距离等于CD的长度.A. 1B. 2C. 3D. 4【答案】D【考点】三角形的外角性质,角平分线的性质,作图—基本作图【解析】【解答】根据基本作图,所以①正确,因为∠C=90°,∠B=30°,则∠BAC=60°,而AD平分∠BAC,则∠DAB=30°,所以∠ADC=∠DAB+∠B=60°,所以②正确;因为∠DAB=∠B=30°,所以△ABD是等腰三角形,所有③正确;因为AD平分∠BAC,所以点D到AB与AC的距离相等,而DC⊥AC,则点D到直线AB的距离等于CD的长度,所以④正确.故答案为:D.【分析】(1)由已知角的平分线的作法知,AD是∠BAC的平分线;(2)根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=∠DAB+∠B,由(1)可得∠DAB=30°,所以∠ADC=∠DAB+∠B=60°;(3)由(2)知,∠DAB=30°=∠B,根据等腰三角形的判定可得△ABD是等腰三角形;(4)根据角平分线上的点到角两边的距离相等可得,点D到直线AB的距离等于CD的长度。
9.若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是()A. B.C.D.【答案】B【考点】三角形的内切圆与内心【解析】【解答】设直角三角形的两条直角边是,则有:又∵∴将代入得:又∵内切圆的面积是∴它们的比是故答案为:B.【分析】设直角三角形的两条直角边是 a , b ,根据直角三角形的面积公式及,得出三角形的面积,根据圆的面积公式得出圆的面积,从而得出答案。
10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为()A. B.C.D.【答案】C【考点】探索数与式的规律,探索图形规律【解析】【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴== = = .故答案为:C.【分析】由图形知:第一幅图中有3个点,则a1=3=1×3,第二幅图中增加了8个点,则a2=8=2×4,第三幅图中增加了15个点,则a3=15=3×5,第四幅图中怎加了24个点,则a4=24=4×6,以此类推,a n=n(n+2);所以,,,,…,代入所求代数式即可求解。
二、填空题11.因式分解2x2﹣4x+2=________.【答案】2(x﹣1)2【考点】提公因式法因式分解,因式分解﹣运用公式法【解析】【解答】2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2故答案为:2(x﹣1)2【分析】根据题意先提公因式2,再用完全平方公式分解即可。
即原式=2.12.如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是________cm.【答案】【考点】全等三角形的判定与性质,正方形的性质,几何图形的面积计算-割补法【解析】【解答】试题分析:证Rt△AED≌Rt△AFB,推出S△AED=S△AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是24cm2,求出AE、EC的长,根据勾股定理求出AC即可.∵四边形AFCE是正方形,∴AF=AE,∠E=∠AFC=∠AFB=90°,∵AB=AD∴Rt△AED≌Rt△AFB(HL),∴S△AED=S△AFB,∵四边形ABCD的面积是24cm2,∴正方形AFCE的面积是24cm2,∴AE=EC= = (cm)根据勾股定理得:AC=【分析】由已知条件易证得Rt△AED≌Rt△AFB,则这两个三角形的面积也相等,所以由割补法可得四边形ABCD的面积=正方形AFCE的面积;根据正方形的面积可得,解得AE=,在直角三角形ACE中,由勾股定理可得AC=.13.小明用图中所示的扇形纸片作一个圆锥侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个圆锥的高是________.【答案】4cm【考点】圆锥的计算【解析】【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=6π,解得r=3,所以圆锥的高= =4(cm).故答案为4cm.【分析】设圆锥的底面圆的半径为r,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=6π,解得r=3,然后利用勾股定理计算圆锥的高.14.已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为________.【答案】(±,)【考点】关于坐标轴对称的点的坐标特征,二次函数y=a(x-h)^2+k的性质【解析】【解答】∵M、N关于y轴对称,∴纵坐标相同,横坐标互为相反数,∴点M坐标为(a,b),点N坐标为(-a,b),∴b=,ab=;b=-a+3,a+b=3,则抛物线y=-abx2+(a+b)x=x2+3x顶点的横坐标是x===3;纵坐标是=,顶点坐标为(3,).故答案为:(3,).【分析】因为关于y轴对称的点的坐标变化特征是:横坐标变为原来的相反数,纵坐标不变,所以点N坐标为(-a,b),所以由已知条件可得,则ab=;b=-a+3,则a+b=3,所以抛物线y=-abx2+(a+b)x=−+3x=,顶点坐标为(3,).15.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=________.【答案】406【考点】探索数与式的规律【解析】【解答】13−−√=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.故答案为:406.【分析】根据计算已知的根式的规律,从而得到普遍的结论。