最大气泡压力法测定溶液表面张力

合集下载

最大泡压法测定溶液表面张力实验报告

最大泡压法测定溶液表面张力实验报告

最大泡压法测定溶液表面张力实验报告最大泡压法测定溶液表面张力实验报告一.实验目的1.明确表面张力、表面自由能和吉布斯吸附量的物理意义。

2.掌握最大泡压法测定溶液表面张力的原理和技术。

3.掌握计算表面吸附量和吸附质分子截面积的方法。

二.实验原理1.表面张力和表面吸附图1 液体表面与内部分子受力情况图液体表面层的分子一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,由于前者的作用要比后者大,因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力,如图1所示,这种吸引力使表面上的分子自发向内挤促成液体的最小面积,因此,液体表面缩小是一个自发过程。

在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。

也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。

欲使液体产生新的表面ΔS,就需对其做表面功,其大小应与ΔS成正比,系数为即为表面张力γ:W’ = γ x S (1)在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,分子间的作用力发生变化,表面张力也发生变化,其变化的大小决定于溶质的性质和加入量的多少。

水溶液表面张力与其组成的关系大致有以下三种情况:(1)随溶质浓度增加表面张力略有升高;(2)随溶质浓度增加表面张力降低,并在开始时降得快些;(3)溶质浓度低时表面张力就急剧下降,于某一浓度后表面张力几乎不再改变。

以上三种情况溶质在表面层的浓度与体相中的浓度都不相同,这种现象称为溶液表面吸附。

根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低。

在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯(Gibbs)吸附方程:= -(2)式中,Г为溶质在表层的吸附量,单位mol·m2,γ为表面张力,c溶质的浓度。

最大泡压法测定溶液的表面张力

最大泡压法测定溶液的表面张力

(2)测定不同浓度乙醇溶液的表面张力 配制浓度分别为0.02,0.05,0.10,0.15,0.20, 0.25,0.30,0.35,0.50mol.L-1 正丁醇溶液各50ml。 按(1) 数据记录和处理
(1) 记录实验温度,大气压,以及蒸馏水和不 同浓度乙醇溶液的的△h。 (2) 按式(7-66)计算毛细管常数K。不同温度 下纯水的表面张力见附录14。
最大泡压法测表面张力
(3)求乙醇的分子截面积 饱和吸附量
kc 1 kc
(7-68)
c 作 ~c图,由直线斜率求
1 c 1 k
求乙醇分子截面积
1 = L
(7-69)
8
最大泡压法测表面张力
3. 实验步骤
(1) 测定毛细管常数K. 将蒸馏水装于带支管的毛细管,使毛细管的端 面与液面相切,打开滴液漏斗的活塞,使水缓慢滴 下而降低系统的压力,气泡均匀逸出,读取U形压 力计两臂最大高度差。
2
最大泡压法测表面张力
2. 实验原理
体相分子:
(1)溶液的界面吸附 纯液体和其蒸气组成的体系 自由移动不消耗功
表面分子: 液体有自动收缩表面 而呈球形的趋势。
2 G (J m ) γ A T , P ,nB
g
l
比表面自由能(表面张力)
3
最大泡压法测表面张力
溶液: 体系可调节溶质在表面相的浓度来降低 表面自由能。
(3) 按式(7-66)计算不同浓度乙醇溶液的表 面张力。
10
最大泡压法测表面张力
(4)作 ~c/c 曲线,在曲线上分别取c / c 为0.03, 0.05,0.10,0.15,0.20,0.30,0.40的点作 d 切线,求切线斜率 。 dc / c

最大泡压法测定溶液的表面张力(泡压法、滴重法、毛细管升高法)

最大泡压法测定溶液的表面张力(泡压法、滴重法、毛细管升高法)

最⼤泡压法测定溶液的表⾯张⼒(泡压法、滴重法、⽑细管升⾼法)表⾯张⼒的测定——最⼤⽓泡压⼒法、滴重法、⽑细管升⾼法⼀、实验原理:1.最⼤⽓泡压⼒法测定表⾯张⼒(装置如下图所⽰):其中,B是管端为⽑细管的玻璃管,与液⾯相切。

⽑细管中⼤⽓压为P0。

试管A中⽓压为P,当打开活塞E时,C中的⽔流出,体系压⼒P逐渐减⼩,逐渐把⽑细管液⾯压⾄管⼝,形成⽓泡。

当⽓泡在⽑细管⼝逐渐长⼤时,其曲率半径逐渐变⼩,⽓泡达最⼤时便会破裂。

此时⽓泡的曲率半径最⼩,即等于⽑细管半径r,⽓泡承受的压⼒差也最⼤△P=P0-P=2γ/r 此压⼒差可由压⼒计D读出,故γ=r△P/2若⽤同⼀⽀⽑细管测两种不同液体,其表⾯张⼒分别为γ1、γ2,压⼒计测得压⼒差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中⼀种液体的γ已知,例如⽔,则另⼀种液体的表⾯张⼒可由上式求得。

2.⽑细管⾝升⾼法(装置如下图所⽰):⽑细管法测定表⾯张⼒仪器⽑细管表⾯张⼒⽰意图当⼀根洁净的,⽆油脂的⽑细管浸进液体,液体在⽑细管内升⾼到h⾼度。

在平衡时,⽑细管中液柱重量与表⾯张⼒关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表⾯张⼒;g为重⼒加速度;d为液体密度;r为⽑细管半径。

上式忽略了液体弯⽉⾯。

如果弯⽉⾯很⼩,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯⽉⾯为⼀椭圆球。

(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所⽰):从图中可看出,当达到平衡时,从外半径为r的⽑细管滴下的液体重量应等于⽑细管周边乘以表⾯张⼒,即:mg=2πσr (5)式中m为液滴质量;r为⽑细管外半径;σ为表⾯张⼒;g为重⼒加速度。

溶液表面张力的测定——最大气泡压力法

溶液表面张力的测定——最大气泡压力法

实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。

2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。

3. 学会镜面法作切线的方法。

二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。

为了求以上参数, 关键是测σ。

表面张力及界面张力, 矢量。

源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。

σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。

1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。

浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。

σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。

表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。

<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。

,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。

最大泡压法测定溶液表面张力实验报告

最大泡压法测定溶液表面张力实验报告

最大泡压法测定溶液表面张力实验报告
实验项目:中级化学实验(物理化学)编号:2014_jcsy2_009
1.实验名称:最大泡压法测定溶液的表面张力
二.实验目的:
1.了解表面自由能、表面张力的意义与吸附的关系。
2.掌握最大气泡法测定表面张力的原理和技术。
3.通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横截面积。
实验技能
要领
权重
编号
1
表面张力测定仪的使用
测量前,先要将表面张力管和测量毛细管充分洗净,再将毛细管垂直置于双管式表面张力管粗管中,检查毛细管中是否有液体,如果有,应用洁净的洗耳球从顶端将其吹掉。用滴管从另一支管中沿管壁缓慢加入待测液,尤其当待测液接近毛细管端面时应逐滴加入,同时密切注意观察测量毛细管,如果发现毛细管中突然有液柱上升,表明此时待测液液面恰好与测量毛细管尖端接触,应立即停止加液,从毛细管顶端鼓入气泡,使溶液充分搅拌,将表面张力管与减压系统和压力测量系统相连。打开减压器下端的考克,使水慢慢流出,系统压力逐渐减小,同时观察到测量毛细管中液柱逐渐下降,最终生成气泡。随着系统压力的进一步下降,气泡逐渐长大,直至破裂。而在破裂前一瞬间,系统压力降到最低,记录此时斜管压力计上的读数。气泡破裂时,系统压力会突然回升。
三.实验仪器:表面张力测定仪、阿贝折光仪、滴管、烧杯
四.实验技能:称重法、洗涤
五.注意事项
1.在装去离子水时应使毛细管上端塞子塞进时刚好与液面垂直相切。
2.控制反应中的流速使气泡从毛细管平稳脱出(每分钟约10个气泡)。
3.确保每次测前都必须用少量待测液洗涤测定管,以免影响测定浓度。
六.实验技能列表
序号

(情绪管理)最大气泡压力法测定溶液的表面张力最全版

(情绪管理)最大气泡压力法测定溶液的表面张力最全版

(情绪管理)最大气泡压力法测定溶液的表面张力最大气泡压力法测定溶液的表面张力壹、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。

2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。

二、基本原理在壹个液体的内部,任何分子周围的吸引力是平衡的。

可是在液体表面表面层中,每个分子都受到垂直于且指向液体内部的不平衡力。

所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大壹平方米表面所需的最大功A或增大壹平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J·m-1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。

如欲使液体表面面积增加ΔS时,所消耗的可逆功A应该是:壹A=ΔG=σΔS(1)液体的表面张力和温度有关,温度愈高,表面张力愈小。

根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。

这种表面浓度和溶液内部浓度不同的现象叫做溶液的表面吸附。

在壹定的温度和压力下,溶液表面吸附溶质的量和溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示:Γ=-()T(2)式中:Γ为吸附量(mol·m-1);σ为表面张力(J·m-1);T为绝对温度(K);c为溶液浓度(mol.L -1);R为气体常数(8.314J.K—I·mol-1)。

()T表示在壹定温度下表面张力随溶液浓度而改变的变化率。

如果σ随浓度的增加而减小,也即()T<0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。

如果σ随浓度的增加而增加即()T>0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。

七、最大气泡法测定溶液的表面张力

七、最大气泡法测定溶液的表面张力

宁 波 工 程 学 院物理化学实验报告专业班级 化工114班 姓名 提子 序号 17 同组姓名 指导老师 胡爱珠 杨建平 实验日期 2013.5.21 实验名称 实验七 最大气泡压力法测定溶液的表面张力一、实验目的1、掌握最大气泡压力法测定表面张力的原理和技术。

2、通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表明自由能、表面张力和吸附量关系的理解。

二、实验原理1、在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵守吉布斯吸附等温式: 根据朗格缪尔公式:以c/Г对c 作图,得以直线,该直线的斜率为1/Г∞三、实验仪器、试剂1、仪器:最大泡压表面张力仪1套、洗耳球1个、移液管(50ml 和1ml)各1只、烧杯(500ml)2、试剂:正丁醇(分析纯)、蒸馏水 四、实验步骤1、仪器准备与检漏将表面张力仪容器和毛细管先用洗液洗净,再顺次用自来水和蒸馏水漂洗,烘干后按图接好。

检查是否漏气。

2、仪器常数的测定调节液面与毛细管端相切,并调节分液漏斗,使气泡由毛细管尖端成单泡逸出,且速度控制在每分钟形成气泡5-10个。

当气泡刚脱离管端的一瞬间,压力计中液位差达到最大值,此时记录下Δp 最大值;改变气泡逸出速率(控制在每分钟5-10个),再依此记录2次,取其平均值。

再由手册中查出实验温度时水的表面张力,求得仪器常数K 。

3、表面张力随溶液浓度变化的测定在上述体系中,按浓度从低到高的顺序依次测定预先配好的正丁醇溶液的Δp 最大值,每次置换溶液前都先用新溶液润洗2次,再按2方法测定。

五、数据记录与处理1、计算仪器常数K 和溶液表面张力γ,绘制γ-c 等温线。

室温:27.9℃ 大气压力:100.21Kpa 恒温槽温度:30℃ γ水:71.18×10-3 N/m K:1.1041×10-4c d RT dcГγ=-Kc1KcГГ∞=+c 1+Kc c 1 K K ГГГГ∞∞∞==+2RP γ∆=max 2RP γ∆=maxK p γ=∆浓度c(mol/dm3) 水0.02 0.04 0.06 0.08 0.1 0.12 0.16 0.2 0.24Δpm ax(Pa) 644.7 621.3 576.0 542.3 515.7 491.7 471.7 449.0 419.0 397.7 Δpmax1(Pa)646 622 577 542 515 493 470 451 418 398 Δpmax2(Pa)643 621 576 543 517 490 472 448 419 397 Δpmax3(Pa)645 621 575 542 515 492 473 448 420 398 γ×10-3(N/m) 71.18 68.60 63.60 59.88 56.94 54.29 52.08 49.58 46.26 43.91 由图表数据作γ-c等温线图:由图1可得Y = 0.07142-0.20629*X+0.39219*X2可以得到γ-c的关系式为Y = 0.07142-0.20629*C+0.39219*C2由此得到dγ/dc=0.78438c-0.20629将不同的c值代入上式,就可以得到在不同浓度c下的dγ/dc了。

实验三十一表面张力测定最大气泡压力法测定溶液的表面张力

实验三十一表面张力测定最大气泡压力法测定溶液的表面张力
m
m
在实验中,若使用同一支毛细管和压力计,则
gr
2
是一个常数,称为仪器常数,用K来表示。
K hm
所以
(7) 在本实验中,用已知表面张力的水作为标准, hm 由实验测得其 后,就可求出仪器常数的值。 hm 然后只要用这一仪器测得其它液体的 值,通 过(7)式计算,即可求得各种液体的表面张力。
1. 最大气泡压力法测定表面张力的原理和技
术。 2.不同浓度正丁醇溶液表面张力的测定、吸 附量的计算。
三、实验原理
在本实验中,溶液浓度的测量是利用浓度与折光率的对 应关系,表面张力的测定是应用最大气泡压力法。 最大气泡压力法测定表面张力的装置示意如图1。将欲 测表面张力的液体装于支管试管2中,使毛细管3的端面 与液面相切,液面即沿毛细管上升,打开滴折光仪
1台 恒温槽装置 1套 滴液漏斗(250mL) 1个 支管试管(2.5×20cm) 1个 毛细管(0.2—0.3mm) 1支 酒精压力计 1个 T形管 1个 烧杯(250mL) 1个 放大镜 1个 重蒸馏水 正丁醇(A.R.) 丙酮(A.R.)
3.待测样品表面张力的测定
(1)用待测溶液洗净支管试管和毛细管后, 加入适量的样品于支管试管中。 (2)按仪器常数测定时的操作步骤,分别测 定各种未知浓度正丁醇溶液的值。
六、数据处理
1.将实验数据记录于下表,并求得其表面张力。
2.以浓度为横坐标,表面张力为纵坐标作表
面张力-浓度图(横坐标浓度从零开始)。 3.在表面张力-浓度图上选取6~8点作切线求 出Z值。 Z 4.由 RT 计算不同浓度溶液的吸附量值,并作 吸附量-浓度图。
七、思考题
1.为什么不能将毛细管插进液体里面? 2.本实验为什么选用酒精压力计而不用水银
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12
T=286.15K P=85.02kPa
一、实验目的
1.掌握最大气泡法测定溶液表面张力的原理和方法
2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量
3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解
二、实验原理
处于溶液表面的分子,受到不平衡的分子间力的作
用而具有表面张力s.
气泡最大压力法测定表面张力装置见实物;实
验中通过滴水瓶滴水抽气使得体系压力下降,大气压与
体系压力差△p逐渐把毛细管中的液面压至管口,形成
气泡。

如果毛细管半径很小,则形成的气泡基本上是
球形的;当气泡开始形成时,表面几乎是平的,这时曲
率半径最大;随着气泡的形成,曲率半径逐渐变小,直到
形成半球形,这时曲率半径R和毛细管半径r相等,曲
率半径达最小值,根据拉普拉斯公式得:附加压力达最大
值ΔP max =σ/r min。

气泡进一步长大,R变大,附加压力
则变小,直到气泡逸出。

加入表面活性物质时溶液的表面张力会下降,溶质
在表面的浓度大于其在本体的浓度,此现象称为表面吸
附现象;
单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).
对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc
朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞
Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)
三、仪器与试剂
恒温槽装置;数字式微压差计;
抽气瓶l个;表面张力测定仪
烧杯(1000mL);T形管1个;
电导水;
正丁醇(A.R.)及其不同浓度的标准溶液;
四、实验步骤
1.仪器常数的测定
将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。

2.测定正丁醇溶液的表面张力
用同样的方法测定不同浓度的正丁醇溶液的最大压差,由稀到浓依次测定;每个浓度的溶液测量前,表面张力测定仪和毛细管一起用该溶液荡洗二至三次;每份溶液恒温至少3-5min之后,开始读数。

3. 重复测定电导水的数据。

注意事项:仪器系统不能漏气;测定用的毛细管一定要洗干净,否则气泡可能不能连续稳定的流过,而使压差计读数不稳定,如发生此种现象,毛细管应重洗;毛细管端口一定要刚好垂直切入液面,不能离开液面,但亦不可深插;在数字式微压差测量仪上,应读出气泡单个逸出是的最大压力差;正丁醇溶液要准确配置,使用过程防止挥发损失;从毛细管口脱出气泡每次应为一个,即间断脱出;表面张力和温度有
关,因此要等溶液恒温后再测量。

五、实验记录及数据处理 恒温槽温度298.25K
1. 查室温下水的表面张力 s( H 2O ) (25℃、σH2O =71.97dyn/cm = 71.97mN/m ) 计算仪器常数: k=σ/ΔP max =71.97e-3/5204=1.38297e-5m r=6.915e-6m
2. 利用计算机作s ~c 图,拟合曲线方程:
0.040
0.0450.0500.0550.0600.0650.070
0.075σ (N *m -1
)
C (mol*L -1
)
3.求导得到d s /dc 代入吉布斯方程可计算溶液表面吸附量Γ; y=a+b*ln(1+c*x)
a=0.07203 b=-0.01715 c=0.00315
d σ/dc= dy/dx=bc/(1+c*x)= -0.01715*0.01631/(1+0.01631*x) Γ=-(c/RT)*( d σ/dc)
4.再利用计算机作 c/Γ~c图,拟合直线方程,由直线斜率可得饱和吸附量Γ∞= 1/A.计算出横截面积 A:
Γ∞=6.9186 e-6 mol*m-2
A m=1/(L*Γ∞)=2.24e-19m2
六、思考题
1.本实验结果的准确与否关键决定于哪些因素?
仪器系统的气密性;测定用的毛细管是否干净,实验中气泡是否平稳流过;毛细管端口一定要刚好垂直切入液面,不能离开液面,但亦不可深插(1mm的水柱产生的压强约是10pa);从毛细管口脱出气泡每次应为一个,即间断脱出;表面张力和温度有关,要等溶液恒温后再测量。

2.毛细管内径均匀与否对结果有无影响?
P s dV=σdA s dA s=8πRdR dV=4πR2dR Ps=2σ/R 曲率半径愈小,受到的附加压力愈大,曲率半径等于毛细管口半径时,附加压力最大,再测定的时毛细作用中吸入的液体的量与内径均匀程度有关,所以有影响。

3.气泡如出的很快或连续3-4个一齐出,对结果各有什么影响?毛细管尖端为何要刚好接触液面?
气泡出的很快,压强变化过快,压差计将不能很好的响应压强的变化;气泡连续出会导致压差计读数不稳定。

离开液面将不会有气泡产生,
4.本实验s-c图形应该是一怎样的图形?将所得的结果与手册上查到结果进行比较试分析产生误差的原因。

s-c图形应该是一条曲线,物质不同曲线不同
从毛细管口脱出气泡每次应为一个,控制的不是很好,测出的数据有16pa的偏差。

七、实验讨论
1.如果液面是弯曲,其表面的作用力不是水平的,将有一个合力,当液面为凸时,合力指向液体内部,当液面为凹时,合力指向液体外部,这就是附加压力的来源。

由于附加压力而引起的液面与管外液面有高度差的现象称为毛细管现象。

2.毛细管清洁处理应特别的予以重视,热风吹干及电炉烘烤的办法应当避免,荡洗是好办法,但应尽量彻底。

毛细管内部可借助洗耳球,但必须细心,不应使液体进入洗耳球内。

在实验中,按浓度从小到大的顺序测定,降低不同浓度溶液之间的影响。

3. 测定液体表面张力除气泡的最大压力法外,常用的还有毛细管上升法、滴重法等。

4. Γ>0 正吸附,Γ<0 负吸附,Γ=0 无吸附作用,
5.数据处理用不同的软件,得到的结果有一定的差别,Excel2003、2007、及WPS的拟合结果会有一点差别,更精确的数据处理软件是Origin和Matlab
6.实验中观察毛细管的半径是比较大的,在洗毛细管时不用洗耳球,液体就可流下,但计算得到的半径是r=6.915e-6m相当的小。

相关文档
最新文档