正截面承载力计算
第四章 受弯构件正截面承载力计算

因此得出
b
1
1
fy
cu E s
第四章 受弯构件正截面承载力计算
由平衡条件: 1 fcbxb= fyAs
可得出 1fcbbh0fyAs,max ---(4-15)
可推出适筋受弯构件最大配筋率max与 b
的表达式
maxAbs,m 0 hax b
1fc fy
---(4-16)
fy h0
360 465
0.2% h 0.2% 500 0.215%,可以。
h0
465
例题2
第四章 受弯构件正截面承载力计算
已知一单跨简支板,计算跨L0=2.34m,承受均 布荷载qk=3kN/m2(不包括板自重);混凝土 强度等级为C30;钢筋采用HPB235级钢筋。可
最小配筋率ρmin
第四章 受弯构件正截面承载力计算
4.2.2适筋受弯构件截面受力的几个阶段
第一阶段 —— 截面开裂前阶段。
第二阶段 —— 从截面开裂到纵向受拉钢筋屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
第四章 受弯构件正截面承载力计算
各阶段和各特征点的截面应力 — 应变分析:
第四章 受弯构件正截面承载力计算
由式(4-16)可知,当构件按最大配筋率配筋时,由式
M1fcb(xh02 x) (4-9a)
可以求出适筋受弯构件所能承受的最大弯矩为
M m a1 x fc b 0 2b h ( 1 0 .5 b )sb b 0 2h 1 fc
其中, sb ----截面最大的抵抗矩系数,可查表。
坏。
第四章 受弯构件正截面承载力计算
受弯构件的配筋形式
P
P
7.2 正截面受弯承载力计算

7.2 正截面受弯承载力计算第7.2.1条矩形截面或翼缘位于受拉边的倒T形截面受弯构件,其正截面受弯承载力应符合下列规定(图7.2.1):M≤α1fcbx(h-x/2)+f'yA's(h-α's)-(σ'p0-f'py)A'p(h-α'p) (7.2.1-1)混凝土受压区高度应按下列公式确定:α1fcbx=fyAs-f'yA's+fpyAp+(σ'p0-f'py)A'p(7.2.1-2)混凝土受压区高度尚应符合下列条件:x≤ζb h(7.2.1-3)x≥2α'(7.2.1-4)图7.2.1:矩形截面受弯构件正截面受弯承载力计算式中M--弯矩设计值;α1--系数,按本规范第7.1.3条的规定计算;fc--混凝土轴心抗压强度设计值,按本规范表4.1.4采用;A s 、A's--受拉区、受压区纵向普通钢筋的截面面积;A p 、A'p--受拉区、受压区纵向预应力钢筋的截面面积;σ'p0--受压区纵向预应力钢筋合力点处混凝土法向应力等于零时的预应力钢筋应力;b--矩形截面的宽度或倒T形截面的腹板宽度;h--截面有效高度;α's 、α'p--受压区纵向普通钢筋合力点、预应力钢筋合力点至截面受压边缘的距离;α'--受压区全部纵向钢筋合力点至截面受压边缘的距离,当受压区未配置纵向预应力钢筋或变压区纵向预应力钢筋应力(α'p0-f'py)为拉应力时,公式(7.2.1-4)中的α'用α's代替。
第7.2.2条翼缘位于受压区的T形、I形截面受弯构件(图7.2.2),其正截面受弯承载力应分别符合下列规定:1当满足下列条件时f y As+fpyAp≤α1fcb'fh'f+f'yA's-(σ'p0-f'py)A'p(7.2.2-1)应按宽度为b'f的矩形截面计算;2当不满足公式(7.2.2-1)的条件时M≤α1fcbx(h-x/2)+α1fc(b'f-b)h'f(h-h'f/2)+f'yA's(h-α'sp0-f'py)A'p(h-α'p(7.2.2-2)混凝土受压区高度应按下列公式确定:α1fc[bx+(b'f-b)h'f]=fyAs-f'yA's+fpyAp+(α'p0-f'py)A'p(7.2.2-3)式中h'f--T形、I形截面受压区翼缘高度;b'f--T形、I形截面受压区的翼缘计算宽度,按本规范第7.2.3条的规定确定。
混凝土受弯构件正截面承载力计算

r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y
令
x
h0
则
r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。
正截面承载力计算

最小配筋率的确定原则:配筋率 为的钢筋混凝土受弯构件,按Ⅲa 阶段计算的正截面受弯承载力应等于同截面素混凝土梁所能承受的弯矩M cr (M cr 为按Ⅰa 阶段计算的开裂弯矩)。
对于受弯构件, 按下式计算:(2)基本公式及其适用条件 1)基本公式式中:M —弯矩设计值;f c —混凝土轴心抗压强度设计值; f y —钢筋抗拉强度设计值; x —混凝土受压区高度。
2)适用条件l 为防止发生超筋破坏,需满足ξ≤ξb 或x ≤ξb h 0; l 防止发生少筋破坏,应满足ρ≥ρmin 或 A s ≥A s ,min=ρmin bh 。
在式(3.2.3)中,取x =ξb h 0,即得到单筋矩形截面所能min t y max(0.45f /f ,0.2% )ρ= (3.2.1) sy c 1A f bx f =α(3.2.2)()20c 1x h bx f M -≤α(3.2.3) ()20y s x h f A M -≤(3.2.4)或承受的最大弯矩的表达式: (3)计算方法 1)截面设计己知:弯矩设计值M ,混凝土强度等级,钢筋级别,构件截面尺寸b 、h求:所需受拉钢筋截面面积A s 计算步骤:①确定截面有效高度h 0h 0=h -a s式中h —梁的截面高度;a s —受拉钢筋合力点到截面受拉边缘的距离。
承载力计算时,室内正常环境下的梁、板,a s 可近似按表3.2.4取用。
表 3.2.4 室内正常环境下的梁、板a s 的近似值(㎜)②计算混凝土受压区高度x ,并判断是否属超筋梁若x ≤ξb h 0,则不属超筋梁。
否则为超筋梁,应加大截面尺寸,或构件种类纵向受力 钢筋层数混凝土强度等级 ≤C20 ≥C25 梁一层 40 35 二层65 60 板一层2520提高混凝土强度等级,或改用双筋截面。
③计算钢筋截面面积A s ,并判断是否属少筋梁若A s ≥ρmin bh ,则不属少筋梁。
否则为少筋梁,应A s=ρmin bh 。
7.3 正截面受压承载力计算

7.3 正截面受压承载力计算第7.3.1条钢筋混凝土轴心受压构件,当配置的箍筋符合本规范第10.3节的规定时,其正截面受压承载力应符合下列规定(图7.3.1):N≤0.9φ(fc A+f'yA's) (7.3.1)式中N--轴向压力设计值;φ--钢筋混凝土构件的稳定系数,按表7.3.1采用;fc--混凝土轴心抗压强度设计值,按本规范表4.1.4采用;A--构件截面面积;A's--全部纵向钢筋的截面面积。
当纵向钢筋配筋率大于3%时,公式(7.3.1)中的A应改用(A-A's)代替。
钢筋混凝土轴心受压构件的稳定系数表7.3.1图7.3.1:配置箍筋的钢筋混凝土轴心受压构件第7.3.2条钢筋混凝土轴心受压构件,当配置的螺旋式或焊接环式间接钢筋符合本规范第10.3节的规定时,其正截面受压承载力应符合下列规定(图7.3.2):N≤0.9(fc Acor+f'yA's+2αfyA'ss0) (7.3.2-1)A ss0=πdcorAss1/s (7.3.2-2)式中fy--间接钢筋的抗拉强度设计值;Acor--构件的核心截面面积:间接钢筋内表面范围内的混凝土面积;Ass0--螺旋式或焊接环式间接钢筋的换算截面面积;dcor--构件的核心截面直径:间接钢筋内表面之间的距离;Ass1--螺旋式或焊接环式单根间接钢筋的截面面积;s--间接钢筋沿构件轴线方向的间距;α--间接钢筋对混凝土的约束的折减系数:当混凝土强度等级不超过C50时,取1.0,当混凝土强度等级为C80时,取0.85,其间接线性内插法确定。
注:1按公式(7.3.2-1)算得的构件受压承载力设计值不应大于按本规范公式(7.3.1)算得的构件受压承载力设计值的1.5倍;2当遇到下列任意一种情况时,不应计入间接钢筋的影响,而应按本规范第7.3.1条的规定进行计算:1)当l/d>12时;2)当按公式(7.3.2-1)算得的受压承载力小于按本规范公式(7.3.1)算得的受压承载力时;3)当间接钢筋的换算截面面积Ass0小于纵向钢筋的全部截面面积的25%时。
钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算摘要:一、引言二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念2.影响因素3.计算公式及步骤三、简便计算方法1.经验公式2.修正系数法3.截面分类法四、计算实例1.实例一2.实例二3.实例三五、结论与建议正文:一、引言钢筋混凝土受弯构件在我国建筑行业中有着广泛的应用,其正截面承载力计算一直是工程技术人员关注的问题。
为了简化计算过程,本文将介绍一种简便的计算方法,以提高工程实践中的工作效率。
二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念正截面承载力:指受弯构件在正截面上能承受的最大弯矩引起的内力。
影响因素:材料强度、截面尺寸、钢筋配置等。
2.影响因素(1)材料强度:包括混凝土抗压强度fc和钢筋抗拉强度fs。
(2)截面尺寸:截面宽度b、截面高度h。
(3)钢筋配置:包括钢筋直径d、钢筋间距s和钢筋数量n。
3.计算公式及步骤根据我国现行的设计规范,正截面承载力计算公式如下:c = fc * b * h * γcs = fs * d * (h - d / 2) * γs其中,Nc为混凝土截面承载力,Ns为钢筋截面承载力,γc和γs分别为混凝土和钢筋的截面折减系数。
三、简便计算方法1.经验公式根据工程实践经验,可得以下经验公式:c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)2.修正系数法针对不同钢筋直径和截面尺寸,采用修正系数进行计算。
3.截面分类法根据截面尺寸和钢筋配置,将受弯构件分为若干类别,各类别计算公式如下:(1)类别一:h / d ≤ 25c = 0.75 * fc * b * hs = 0.75 * fs * d * (h - d / 2)(2)类别二:25 < h / d ≤ 50c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)(3)类别三:h / d > 50c = 1.0 * fc * b * hs = 1.0 * fs * d * (h - d / 2)四、计算实例1.实例一某受弯构件,混凝土抗压强度fc = 20MPa,截面宽度b = 200mm,截面高度h = 300mm,钢筋直径d = 16mm,钢筋间距s = 200mm,钢筋数量n = 4。
轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算d d 式中 N 轴向力设计值 (包括γ0和ϕ值在内);γd 钢筋混凝土结构的结构系数,见附录3表3; N u 截面极限轴向力;ϕ 钢筋混凝土构件的稳定系数,见表5-2;表5-2 钢筋混凝土轴心受压构件的稳定系数ϕA 构件截面面积(当配筋率%3/>=A A s c f 混凝土的轴心抗压强度设计值(计算现浇混凝土柱时,如截面长边或直径小于300mm 时,则式(5-1)中混凝土强度设计值应乘以系数0.8); y f ' 纵向钢筋的抗压强度设计值;s A ' 全部纵向钢筋的截面面积。
(三)普通箍筋柱正截面承载力计算方法 1.截面设计(1)根据构造要求确定构件截面的形状和尺寸,选定材料的强度等级; (2)确定稳定系数ϕ:利用表5-2 ;稳定系数ϕ值主要与柱的长细比l 0/b 有关,此处b 为矩形截面柱短边尺寸,0l 为柱子的计算长度(与柱两端的约束情况有关,可自表5-1查得,其中l 为构件支点间长度,s 为拱轴线的长度)。
表5-1 受压构件的计算长度l 0(3s()s y c dd u1A f A f N N ''+=≤ϕγγ(4)选择纵向钢筋钢筋混凝土柱内配置的纵向钢筋常用Ⅱ级或Ⅲ级,并应符合下列要求:1)纵向钢筋的根数不得少于4根,每边不得少于2根;直径不应小于12mm ,工程中常用钢筋直径为12~32mm ,宜选用根数较少的粗直径钢筋以形成劲性较好的骨架。
2)在轴向受压时沿截面周边均匀布置;在偏心受压时沿截面短边均匀布置。
3)现浇立柱纵向钢筋的净距不应小于50mm ,同时中距也不应大于350mm 。
在水平位置上浇筑的装配式柱,其净距与梁相同,当偏心受压柱的长边大于或等于600mm 时,应在长边中间设置直径为10~16mm ,间距不大于500mm 的纵向构造钢筋,同时相应地设置联系拉筋。
(5)并验算配筋率ρ:1)当截面尺寸由承载力条件控制时,偏心受压柱的受压钢筋或受拉钢筋的配筋率不应小于0.25%(Ⅰ级钢筋)或0.2%(Ⅱ级、Ⅲ级钢筋);轴心受压柱全部纵向受力钢筋的配筋的配筋率不应小于0.4%。
第三章-钢筋混凝土受弯构件正截面承载力计算

§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
min 为的钢筋混凝土 最小配筋率的确定原则:配筋率
受弯构件,按Ⅲa阶段计算的正截面受弯承载力应等于同
截面素混凝土梁所能承受的弯矩Mcr(Mcr为按Ⅰa阶段计 算的开裂弯矩)。
对于受弯构件, min 按下式计算:
min max(0.45f t /f y ,0.2% )
(2)基本公式及其适用条件
破坏特征:延性破坏
② 超筋破坏
破坏过程:(点击播放视频)
破坏特征:受压区混凝土在钢筋屈服前即达到极限
压应变被压碎而破坏。破坏时钢筋的应力还未达到屈服
强度,因而裂缝宽度均较小,且形不成一根开展宽度较 大的主裂缝,梁的挠度也较小。
破坏特征:脆性破坏
③ 少筋破坏
破坏过程:(点击播放视频)
破坏特征:梁破坏时,裂缝往往集中出现一条,不
为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具
有不同破坏特征。
① 适筋破坏
破坏过程:(点击播放视频)
适筋梁应力变化阶段:
第I阶段——弹性工作阶段。荷载很小时,混凝土的 压应力及拉应力都很小,应力和应变几乎成直线关系。 截面达到将裂未裂的极限状态时,即第Ⅰ阶段末, 用Ⅰa表示。Ⅰa阶段的应力状态是抗裂验算的依据。 第Ⅱ阶段——带裂缝工作阶段。第Ⅱ阶段的应力状
1
1
混凝土应力应变曲线
是否超筋破坏的判断: 若 b ,构件破坏时受拉钢筋不能屈服,表明构件
超筋破坏;
若 b ,构件破坏时受拉钢筋已经达到屈服强度,
表明发生的破坏为适筋破坏或少筋破坏。
相对界限受压区高度值 b
b
钢筋 级别 HPB235 HRB335
≤C50
C55
—
C60
态是裂缝宽度和变形验算的依据。
钢筋应力达到屈服强度 fy 时,标志截面进入第Ⅱ阶 段末,以Ⅱa表示。
第 Ⅲ阶 段 —— 破 坏 阶段: 到 本阶段 末 (即 Ⅲa 阶
段),受压边缘混凝土压应变达到极限压应变,受压区
混凝土产生近乎水平的裂缝,混凝土被压碎,甚至崩脱, 截面宣告破坏,此时截面所承担的弯矩即为破坏弯矩 Mu。 Ⅲa阶段的应力状态作为构件承载力计算的依据。
第三章 钢筋混凝土受弯构件
第二讲
教学目标:
1、理解受弯构件的破坏特征;
2、熟练掌握单筋矩形截面受弯构件正截面承载力
计算公式及适用条件。
重 点
单筋矩形截面受弯构件正截面承载力计算公式。
难 点
受弯构件的破坏过程和破坏特征。
§3.2
正截面承载力计算
3.2.1 单筋矩形截面
1.单筋截面受弯构件沿正截面的破坏特征 根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分
2)适用条件
l为防止发生超筋破坏ห้องสมุดไป่ตู้需满足≤或x≤h0;
l防止发生少筋破坏,应满足ρ≥ρmin 或
As≥As,min=ρminbh。 在式(3.2.3)中,取x=ξbh0,即得到单筋矩形截面 所能承受的最大弯矩的表达式:
2 M u,max 1 f c bh0 b (1 0.5 b )
2)等效矩形应力图 简化原则:受压区混凝土的合力大小不变;受压区
混凝土的合力作用点不变。
等效矩形应力图形的混凝土受压区高 x 1xn ,等 效矩形应力图形的应力值为 1 fc 。
表 3.2.1 1、 1 值
混凝土强 度等级 ≤C50 0.8 1.0 C55 0.79 0.99 C60 0.78 0.98 C65 0.77 0.97 C70 0.76 0.96 C75 0.75 0.95 C80 0.74 0.94
—
C65
—
C70
—
C75
—
C80
—
0.614 0.550
0.541
0.531
0.522
0.512
0.503
0.493
HRB400 RRB400
0.518
0.508
0.499
0.490
0.481
0.472
0.463
注:表中空格表示高强度混凝土不宜配置低强度钢筋。
4)适筋梁与少筋梁的界限——截面最小配筋率
小 结:
1. 单筋矩形截面受弯构件沿正截面的破坏特征。 2. 单筋矩形截面受弯构件承载力计算的基本公式及 适用条件。
作业布置:
预 习:单筋矩形截面受弯构件承载力计算方法;
思考题: 3.7、3.9 。
结束! 谢谢大家!
但开展宽度大,而且沿梁高延伸较高。一旦出现裂缝,钢
筋的应力就会迅速增大并超过屈服强度而进入强化阶段, 甚至被拉断。
破坏性质:脆性破坏
结论:适筋梁的材料强度能得到充分发挥,安全经济,
是正截面承载力计算的依据,而少筋梁、超筋梁都应避免。 2.单筋矩形截面受弯构件正截面承载力计算 (1)计算原则 1)基本假定
(3.2.1)
1)基本公式
1 f c bx f y As
(3.2.2)
M 1 f c bxh0 x 2
(3.2.3) (3.2.4)
或
式中:
M As f y h0 x 2
M —弯矩设计值;
fc —混凝土轴心抗压强度设计值;
fy—钢筋抗拉强度设计值;
x—混凝土受压区高度。
①平截面假定。
②钢筋的应力 s 等于钢筋应变 s 与其弹性模量 Es 的乘积,但不得大于其强度设计值,即 fy
s s Es fv
③不考虑截面受拉区混凝土的抗拉强度。
④受压混凝土采用理想化的应力-应变关系,当混凝
cu =0.0033。 土强度等级为C50及以下时,混凝土极限压应变