圆的相似综合题
中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。
备战中考数学圆的综合综合题含详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.2.如图,四边形ABCD 是⊙O 的内接四边形,AB=CD .(1)如图(1),求证:AD ∥BC ;(2)如图(2),点F 是AC 的中点,弦DG ∥AB,交BC 于点E,交AC 于点M,求证:AE=2DF ;(3)在(2)的条件下,若DG 平分∠3∠3,求⊙O 的半径。
【答案】(1)证明见解析;(2)证明见解析;(3)129【解析】试题分析:(1)连接AC.由弦相等得到弧相等,进一步得到圆周角相等,即可得出结论.(2)延长AD到N,使DN=AD,连接NC.得到四边形ABED是平行四边形,从而有AD=BE,DN=BE.由圆内接四边形的性质得到∠NDC=∠B.即可证明ΔABE≌ΔCND,得到AE=CN,再由三角形中位线的性质即可得出结论.(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,得到AB=DE.再证明ΔCDE是等边三角形,ΔBGE是等边三角形,通过解三角形ABE,得到AB,HB,AH,HE的长,由EC=DE=AB,得到HC的长.在Rt△AHC中,由勾股定理求出AC的长.作直径AP,连接CP,通过解△APC即可得出结论.试题解析:解:(1)连接AC.∵AB=CD,∴弧AB=弧CD,∴∠DAC=∠ACB,∴AD∥BC.(2)延长AD到N,使DN=AD,连接NC.∵AD∥BC,DG∥AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE.∵ABCD是圆内接四边形,∴∠NDC=∠B.∵AB=CD,∴ΔABE≌ΔCND,∴AE=CN.∵DN=AD,AF=FC,∴DF=1CN,∴AE=2DF.2(3)连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC,四边形ABED是平行四边形,∴AB=DE.∵DF∥CN,∴∠ADF=∠ANC,∴∠AEB=∠ADF,∴tan∠AEB= tan∠ADF=3DG平分∠ADC,∴∠ADG=∠CDG.∵AD∥BC,∴∠ADG=∠CED,∠NDC=∠DCE.∵∠ABC=∠NDC,∴∠ABC=∠DCE.∵AB∥DG,∴∠ABC=∠DEC,∴∠DEC=∠ECD=∠EDC,∴ΔCDE是等边三角形,∴AB=DE=CE.∵∠GBC=∠GDC=60°,∠G=∠DCB=60°,∴ΔBGE是等边三角形,BE= GE=53.∵tan∠AEB= tan∠ADF=43,设HE=x,则AH=43x.∵∠ABE=∠DEC=60°,∴∠BAH=30°,∴BH=4x,AB=8x,∴4x+x=53,解得:x=3,∴AB=83,HB=43,AH=12,EC=DE=AB=83,∴HC=HE+EC=383+=93.在Rt△AHC中,AC=222212(93)AH HC+=+=343.作直径AP,连接CP,∴∠ACP=90°,∠P=∠ABC=60°,∴sin∠P=AC AP,∴3432129sin603ACAP===︒,∴⊙O的半径是129.3.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D 在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.试题解析:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.4.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt△ABP中,AB=3,由勾股定理可得:3,∴S⊙P=3π5.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=45,求⊙O的半径.【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.【解析】分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45AE AB ,∵AE=4,∴AB=5,则圆O 的半径为2.5.点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.6.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)633π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×3=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.7.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH ∽△OBC 可知:BC HB OC BC = ∵AB=8,∴BC 2=HB•OC=4HB , ∴HB=24BC , ∴OH=OB-HB=4-24BC ∵CB=CH ,∴OH+HC=4−24BC +BC , 当∠BOC=90°,此时BC=42 ∵∠BOC <90°, ∴0<BC <42,令BC=x 则CH=x ,BH=24x ()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.8.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围; ②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.9.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.10.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O 的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.【答案】(1)见解析 (2) EC=172AE=132【解析】试题分析:(1)如图1中,连接OC、OE.利用等角的余角相等,证明∠PCD=∠PDC即可;(2)如图2中.作EH⊥BC于H,EF⊥CA于F.首先证明Rt△AEF≌Rt△BEH,推出AF=BH,设AF=BH=x,再证明四边形CFEH是正方形,推出CF=CH,可得5+x=12﹣x,推出x=72,延长即可解决问题;试题解析:(1)证明:如图1中,连接OC、OE.∵AB直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴AE=BE,∴OE⊥AB,∴∠DOE=90°.∵PC是切线,∴OC⊥PC,∴∠PCO=90°.∵OC=OE,∴∠OCE=∠OEC.∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,∴∠PCD=∠PDC,∴PC=PD.(2)如图2中.作EH⊥BC于H,EF⊥CA于F.∵CE平分∠ACB,EH⊥BC于H,EF⊥CA于F,∴EH=EF,∠EFA=∠EHB=90°.∵AE=BE,∴AE=BE,∴Rt△AEF≌Rt△BEH,∴AF=BH,设AF=BH=x.∵∠F=∠FCH=∠CHE=90°,∴四边形CFEH是矩形.∵EH=EF,∴四边形CFEH是正方形,∴CF=CH,∴5+x=12﹣x,∴x =72,∴CF =FE =172,∴EC CF =2,AE 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。
圆中的相似专题(更新版)

圆中的相似专题一、射影定理 班级 姓名 如图,Rt ΔABC 中,CD 是斜边AB 上的高,求证:DB DA CD BA BD BC AB AD AC •=•=•=222,,应用:1、如上图:在Rt △ ABC 中,∠ABC=900,BD ⊥AC 于D ,若 AB=6,BD=2 ,则AC=________, BC=__________。
2、如图,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB ,垂足为E ,且PC 2=PE •PO(1)求证:PC 是⊙O 的切线.(2)若OE :EA=1:2,PA=6,求⊙O 的半径.3、如图,△ABC 是⊙O 的内接三角形,AB 为直径,过点B 的切线与AC 的延长线交于点D ,E 是BD 中点,连接CE .(1)求证:CE 是⊙O 的切线;(2)若AC=4,BC=2,求BD 的长.二、圆中的基本相似模型例:如图,PC切⊙O于点C,直线PB交⊙O于点A、B,连接AC、BC(1)求证:∠PCA=∠B(弦切角定理)(2)求证:PC2=PA•PB.练习:如图,O为线段PB上一点,以O为圆心,OB长为半径的⊙O交PB于点A,点C在⊙O上,连接PC,满足∠PCA=∠B.(1)求证:PC是⊙O的切线;(2)若AB=3P A,求的值.与圆有关的相似三角形1、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA,PB,AB,已知∠PBA=∠C.⑴求证:PB是⊙O的切线;⑵连接OP,若OP∥BC,且OP=8,⊙O的半径为22,求BC的长.2、如图,AB为⊙O的直径,CD切⊙O于点D ,AC⊥CD于点C,交⊙O于点E,连接AD 、BD 、ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.3、如图,四边形ABCD内接于圆O,AB是直径,点C是的中点,延长AD交BC的延长线于点E.(1)求证:CE=CD;(2)若AB=3,BC=,求AD的长.4、如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若CB=2,CE=4,①求圆的半径;②求DE、DF的长.5、如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.6、如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,AC=,BC=2,点F在AB上,连接CF并延长,交⊙O于点D,连接BD,作BE⊥CD,垂足为E.(1)求证:△DBE∽△ABC;(2)若AF=2,求ED的长.。
与圆有关的综合问题

与圆有关的综合问题题型一:与圆有关的轨迹问题[典例] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥P Q ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的4种方法[针对训练]1.(2019·厦门双十中学月考)点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′),由题意得,⎩⎪⎨⎪⎧ x ′+4=2x ,y ′-2=2y ,则⎩⎪⎨⎪⎧x ′=2x -4,y ′=2y +2,故(2x -4)2+(2y +2)2=4,化简得,(x -2)2+(y +1)2=1,故选A.2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ). 由题设知CM ―→·MP ―→=0, 故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.题型二:与圆有关的最值或范围问题[例1] (2019·兰州高三诊断)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( ) A .[-2,6] B .[-3,5] C .[2,6]D .[3,5][解析] 法一:当MA ,MB 是圆C 的切线时,∠AMB 取得最大值.若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=(5-1)2+(t -4)2≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.法二:由于点M (5,t )是直线x =5上的点,圆心的纵坐标为4,所以实数t 的取值范围一定关于t =4对称,故排除选项A 、B.当t =2时,|CM |=25,若MA ,MB 为圆C 的切线,则sin ∠CMA =sin ∠CMB =1025=22,所以∠CMA =∠CMB =45°,即MA ⊥MB ,所以t =2时符合题意,故排除选项D.选C. [答案] C[例2] 已知实数x ,y 满足方程x 2+y 2-4x +1=0.求: (1)yx 的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)yx 的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.(2)y -x 可看成是直线y =x +b 在y 轴上的截距.当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6. (3)x 2+y 2表示圆上的一点与原点距离的平方.由平面几何知识知,x 2+y 2在原点和圆心的连线与圆的两个交点处分别取得最小值,最大值. 因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43, 最小值是(2-3)2=7-4 3.[方法技巧]与圆有关最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:[针对训练]1.(2019·新余一中月考)直线x +y +t =0与圆x 2+y 2=2相交于M ,N 两点,已知O 是坐标原点,若|OM ―→+ON ―→|≤|MN ―→|,则实数t 的取值范围是________. 解析:由|OM ―→+ON ―→|≤|MN ―→|=|ON ―→-OM ―→|, 两边平方,得OM ―→·ON ―→≤0, 所以圆心到直线的距离d =|t |2≤22×2=1, 解得-2≤t ≤2,故实数t 的取值范围是[-2, 2 ]. 答案:[-2, 2 ]2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点A (2,1)连线的斜率.当直线PA 与圆相切时,k 取得最大值与最小值.设过(2,1)的直线方程为y -1=k (x -2),即kx -y +1-2k =0. 由|2k |k 2+1=1,解得k =±33.答案:33,-333.(2019·大庆诊断考试)过动点P 作圆:(x -3)2+(y -4)2=1的切线P Q ,其中Q 为切点,若|P Q |=|PO |(O 为坐标原点),则|P Q |的最小值是________.解析:由题可知圆(x -3)2+(y -4)2=1的圆心N (3,4).设点P 的坐标为(m ,n ),则|PN |2=|P Q |2+|N Q |2=|P Q |2+1,又|P Q |=|PO |,所以|PN |2=|PO |2+1,即(m -3)2+(n -4)2=m 2+n 2+1,化简得3m +4n =12,即点P 在直线3x +4y =12上,则|P Q |的最小值为点O 到直线3x +4y =12的距离,点O 到直线3x +4y =12的距离d =125,故|P Q |的最小值是125.答案:125[课时跟踪检测]1.(2019·莆田模拟)已知圆O :x 2+y 2=1,若A ,B 是圆O 上的不同两点,以AB 为边作等边△ABC ,则|OC |的最大值是( ) A.2+62B. 3 C .2D.3+1解析:选C 如图所示,连接OA ,OB 和OC . ∵OA =OB ,AC =BC ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°, 在△OAC 中,由正弦定理得OA sin 30°=OCsin ∠OAC ,∴OC =2sin ∠OAC ≤2,故|OC |的最大值为2,故选C.2.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b 2的最小值为( ) A .2 B .4 C .8D .9解析:选D 圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以(-2a -0)2+(0-b )2=2-1,得4a 2+b 2=1,所以1a 2+1b 2=⎝⎛⎭⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b 2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.3.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( ) A .3 B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45.因为P 在圆C 上,所以P ⎝⎛⎭⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎨⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.4.(2019·拉萨联考)已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,则点P 到直线l :x -2y -5=0的距离的最小值是( ) A .4 B. 5 C.5+1 D.5-1解析:选D 圆C :x 2+y 2-4x -2y +4=0化为(x -2)2+(y -1)2=1,圆心C (2,1),半径为1,圆心到直线l 的距离为|2-2-5|12+22=5,则圆上一动点P 到直线l 的距离的最小值是5-1.故选D. 5.(2019·赣州模拟)已知动点A (x A ,y A )在直线l :y =6-x 上,动点B 在圆C :x 2+y 2-2x -2y -2=0上,若∠CAB =30°,则x A 的最大值为( ) A .2 B .4 C .5D .6解析:选C 由题意可知,当AB 是圆的切线时,∠ACB 最大,此时|CA |=4.点A 的坐标满足(x -1)2+(y -1)2=16,与y =6-x 联立,解得x =5或x =1,∴点A 的横坐标的最大值为5.故选C.6.(2018·北京高考)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( ) A .1 B .2 C .3D .4解析:选C 由题知点P (cos θ,sin θ)是单位圆x 2+y 2=1上的动点,所以点P 到直线x -my -2=0的距离可转化为单位圆上的点到直线的距离.又直线x -my -2=0恒过点(2,0),所以当m 变化时,圆心(0,0)到直线x -my -2=0的距离d =21+m 2的最大值为2,所以点P 到直线x -my -2=0的距离的最大值为3,即d 的最大值为3.7.(2019·安徽皖西联考)已知P 是椭圆x 216+y 27=1上的一点,Q ,R 分别是圆(x -3)2+y 2=14和(x +3)2+y 2=14上的点,则|P Q |+|PR |的最小值是________.解析:设两圆圆心分别为M ,N ,则M ,N 为椭圆的两个焦点, 因此|P Q |+|PR |≥|PM |-12+|PN |-12=2a -1=2×4-1=7,即|P Q |+|PR |的最小值是7. 答案:78.(2019·安阳一模)在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ),由题意得x 2+(y +3)2=2x 2+y 2, 整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组⎩⎨⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3,解得0≤a ≤3, 综上可得,实数a 的取值范围是[0,3]. 答案:[0,3]9.(2019·唐山调研)已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|Q M |的最小值. 解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2. 化简可得(x -5)2+y 2=16,故此曲线方程为(x -5)2+y 2=16. (2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题知直线l 2与圆C 相切,连接C Q ,CM , 则|Q M |=|C Q |2-|CM |2=|C Q |2-16,当C Q ⊥l 1时,|C Q |取得最小值,|Q M |取得最小值,此时|C Q |=|5+3|2=42,故|Q M |的最小值为32-16=4.10.(2019·广州一测)已知定点M (1,0)和N (2,0),动点P 满足|PN |=2|PM |. (1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k . 当k 1k 2=3时,求k 的取值范围. 解:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以(x -2)2+y 2=2(x -1)2+y 2. 整理得,x 2+y 2=2.所以动点P 的轨迹C 的方程为x 2+y 2=2.(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .由⎩⎪⎨⎪⎧x 2+y 2=2,y =kx +b消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2.① 由根与系数的关系,得x 1+x 2=-2bk 1+k 2,x 1x 2=b 2-21+k 2.②由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+bx 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2, 即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0.③ 将②代入③,整理得b 2=3-k 2.④由④得b 2=3-k 2≥0,解得-3≤k ≤ 3.⑤ 由①和④,解得k <-33或k >33.⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0,所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1.⑦ 由⑤⑥⑦,得k 的取值范围为[-3,-1)∪⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1∪(1, 3 ].。
几何综合题(与圆相关)

图3N MF EBC ABAC EFM N P图2图1A图3D A图2图1几何综合题:与圆相关1.已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一圆心角为45°半径长等于CA 的扇形CEF 绕点C 旋转,直线CE 、CF 分别与直线AB 交于M 、N 。
(1)如图1,当AM =BN 时,将△ACM 沿CM 折叠,点A 落在EF 的中点P 处,再将△BCN 沿CN 折叠,点B 也恰好落在点P 处,此时,PM =AM ,PN =BN ,△PMN 的形状是 ,线段AM 、BN 、MN 之间的数量关系是 。
(2)如图2,当扇形CEF 绕点C 在∠ACB 内部旋转时,线段AM 、MN 、BN 之间的数量关系是 ,试证明你的结论。
(3)当扇形CEF 绕点C 旋转到图3的位置时,线段MN 、AM 、BN 之间的数量关系是 ,试证明你的结论。
2.李明同学在学习正多边形和圆时,发现了以下一些有趣的结论:若P 是正多边形外接圆上一点,将P 与正多边形相邻三个顶点连结,这三条线段之间有一些特殊的数量关系。
(1)如图1,若P 是正△ABC 外接圆的弧BC 上一点,连PA 、PB 、PC ,则PB +PC 与PA 之间的数量关系是 ;(2)如图2,若P 是正方形ABCD 的外接圆的弧BC 上一点,连PA 、PB 、PD ,则PB +PD 与PA 之间的数量关系是 ,试证明你的结论;(3)如图3,若点P 是正六边形ABCDEF 外接圆的弧BC 上一点,连PA 、PB 、PF ,则PB +PF 与PA 之间的数量关系是 。
3.小明学习了垂径定理后,作了下面的探究,请你根据题目要求帮小明完成探图3C 图2图1图3图1究。
(1)更换定理的题设和结论,可以得到许多真命题,如图1在⊙O 中,C 是弧AB 的中点,直线CD ⊥AB 于点E ,则AE =BE ,请你证明此结论;(2)从圆上任一点出发的两条弦所组成折线,称为该圆的一条折弦,如图2中PA 、PB 组成⊙O 的一条折弦,C 为劣弧AB 的中点,直线CD ⊥PA 于点E ,则AE =PE +PB ,证明此结论;(3)如图3,PA 、PB 组成⊙O 的一条折弦,若C 是优弧AB 的中点,直线CD ⊥PA 于点E ,则AE 、PE 与PB 之间存在怎样的数量关系?写出并证明你的结论。
初中圆的综合试题及答案

初中圆的综合试题及答案一、选择题(每题3分,共30分)1. 圆的周长公式是()A. C = 2πrB. C = πdC. C = 2πr + 2dD. C = πr2. 圆的面积公式是()A. S = πr^2B. S = 2πrC. S = πd^2D. S = πr^2 + πd3. 圆的直径是半径的()A. 2倍B. 4倍C. 1/2倍D. 1/4倍4. 圆的半径增加一倍,面积增加()A. 2倍B. 4倍C. 8倍D. 16倍5. 一个圆的半径是5cm,那么它的直径是()A. 10cmC. 2.5cmD. 15cm6. 圆的周长和直径的比值是()A. 2πB. πC. 1D. 27. 圆的直径和半径的比值是()A. 2B. πC. 1D. 48. 圆的面积和半径的比值是()A. πrB. 2πrC. πr^2D. 4πr^29. 圆的周长和面积的比值是()A. 2πrB. πr^2C. 1/πrD. 2/πr10. 如果一个圆的周长是31.4cm,那么它的半径是()A. 5cmB. 10cmD. 20cm二、填空题(每题3分,共30分)1. 一个圆的半径是7cm,那么它的周长是_______cm。
2. 圆的面积公式是S = ________。
3. 圆的直径是半径的______倍。
4. 圆的周长公式是C = ________。
5. 一个圆的直径是14cm,那么它的半径是_______cm。
6. 圆的面积和半径的平方成正比,比例系数是______。
7. 圆的周长和半径的比值是______。
8. 圆的直径和半径的比值是______。
9. 圆的周长和面积的比值是______。
10. 如果一个圆的面积是78.5平方厘米,那么它的半径是_______cm。
三、解答题(每题10分,共40分)1. 已知一个圆的半径是8cm,求它的周长和面积。
2. 一个圆的直径是12cm,求它的周长和面积。
3. 一个圆的周长是62.8cm,求它的半径和面积。
中考数学专题复习圆与相似的综合题及答案
中考数学专题复习圆与相似的综合题及答案一、相似1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE 沿直线 BC 翻折到△ CDF,连结 AF交 BE、DE、DC分别于点 G、H、I.1)求证: AF⊥ BE;2)求证: AD=3DI.答案】(1)证明:∵在△ ABC中, AB=AC,∠ BAC=90°, D 是 BC的中点,∴AD=BD=CD,∠ACB=45,°∵在△ ADC中, AD=DC,DE⊥AC,∴AE=CE,∵△ CDE沿直线 BC翻折到△CDF,∴△ CDE≌ △CDF,∴CF=CE,∠ DCF=∠ACB=45 ,° ∴CF=AE,∠ACF=∠DCF+∠ACB=90 ,°在△ ABE与△ACF中,∴△ ABE≌ △ ACF(SAS),∴∠ ABE=∠FAC,∵∠ BAG+∠ CAF=90 ,°∴∠ BAG+∠ ABE=90 ,°∴∠ AGB=90 ,°∴AF⊥BE2)证明:作 IC的中点 M,连接 EM,由( 1)∠DEC=∠ECF=∠ CFD=90°∴四边形 DECF是正方形,∴EC∥DF,EC=DF,∴∠ EAH=∠HFD,AE=DF,在△ AEH与△FDH中∴△ AEH≌△FDH(AAS),∴EH=DH,∵∠ BAG+∠ CAF=90 ,°∴∠ BAG+∠ ABE=90 ,°∴∠ AGB=90 ,°∴AF⊥BE,∵M 是 IC的中点, E 是 AC的中点,∴EM∥AI,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】( 1)根据翻折的性质和 SAS 证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=9°0 ,可证得结论。
(2)作 IC 的中点 M ,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS 证明△AEH 与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。
圆与相似综合题的有关定理
圆和相似综合题有关定理1、圆幂定理(在证明比例式、求线段长度时将发挥重要作用。
)2、托勒密定理:圆内接四边形两组对边乘积之和,等于两条对角线的乘积。
已知:四边形ABCD 内接于圆,如图,求证:AB·CD + BC·AD = AC·BD证明:在∠BAD 内作∠BAE=∠CAD ,交BD 于E 。
因∠ABE=∠ACD ,所以△ABE ∽△ACD ,从而AB BE ACCD =得 AB·CD = AC·BE ①; … 易证△ADE ∽△ACB ,从而BC AC DE AD = 得BC·AD = AC·DE ②; ①+② 得AB·CD + BC·AD = AC (BE+DE )= AC·BD定理 图形已知 结论 证法 相交*弦定理⊙O 中,AB 、CD 为弦,交于点P 。
PA·PB =PC·PD 连结AC 、BD , 证:△APC ∽△DPB 切 、割线定理 ⊙O 中,PT 切⊙O 于点T ,割线PB 交⊙O 于点A 。
PT 2=PA·PB连结TA 、TB , 证:△PTB ∽△PAT }割线定理PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C 两点。
PA·PB =PC·PD ~ 过P 作PT 切⊙O 于T ,用两次切割线定理 C E3、弦切角定理:顶点在圆上,一边和圆相交,另一边和圆相切的角称为弦切角。
弦切角等于弦与切线所夹弧所对的圆周角。
}弦切角定理的证明:已知:AP切⊙O于P,PQ是弦,则∠APQ是弦切角,∠APQ夹的弧是弧PQ,弧PQ所对的圆周角记为∠PCQ证明:∠APQ=∠PCQ (弦切角的位置分以下三种情况)】1°圆心O在∠APQ外部过P作直径BP,联结BC则BP⊥AP,∠APB=90°,且∠BCP是直径BP所对的圆周角,∠BCP=90°#则有∠APB=∠BCP,即∠APQ+∠BPQ=∠BCQ+∠PCQ由于∠BPQ,∠BCQ都是弧BQ所对的圆周角,所以∠BPQ=∠BCQ所以∠APQ=∠PCQ2°圆心O在∠APQ的一边,PQ上此时PQ是直径,则PQ⊥AP,∠APQ=90°而且∠PCQ是直径PQ所对的圆周角,∠PCQ=90°所以∠APQ=∠PCQ3°圆心O在∠APQ内部过P作直径BP,联结BC则BP⊥AP,∠APB=90°,且∠BCP是直径BP所对的圆周角,∠BCP=90°则有∠APB=∠BCP由于∠BPQ,∠BCQ都是弧BQ所对的圆周角,所以∠BPQ=∠BCQ所以∠APB+∠BPQ=∠BCP+∠BCQ即∠APQ=∠PCQ。
全国各地中考数学分类:圆的综合综合题汇编及答案
全国各地中考数学分类:圆的综合综合题汇编及答案一、圆的综合1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD 是直径,∴∠DBC=90°,∵CD=4,B 为弧CD 中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB ,∵∠DBE=∠DBA ,∴△DBE ∽△ABD , ∴,∴BE•AB=BD•BD=. 考点:1.切线的判定;2.相似三角形的判定与性质.2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O 的半径为3.①若AB AC =53,求BC 的长; ②当AB AC为何值时,AB•AC 的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②32【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BGBF BA=,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知BC=26k,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=12BC=6k求得DM=22CD CM-=3k,可知OM=OD-DM=3-3k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC ﹣CF=BC ﹣AC 、BG=BC+CG=BC+AC ,BE=CE=AC ,∴(BC ﹣AC )(BC+AC )=AB•AC ,即BC 2﹣AC 2=AB•AC ;(3)设AB=5k 、AC=3k ,∵BC 2﹣AC 2=AB•AC ,∴k ,连接ED 交BC 于点M ,∵四边形BDCE 是菱形,∴DE 垂直平分BC ,则点E 、O 、M 、D 共线,在Rt △DMC 中,DC=AC=3k ,MC=12k , ∴=,∴OM=OD﹣DM=3k ,在Rt △COM 中,由OM 2+MC 2=OC 2得(3)2+k )2=32,解得:k=0(舍), ∴;②设OM=d ,则MD=3﹣d ,MC 2=OC 2﹣OM 2=9﹣d 2,∴BC 2=(2MC )2=36﹣4d 2,AC 2=DC 2=DM 2+CM 2=(3﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272,∴,∴AB=4,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.3.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.4.如图,在ABC ∆中,90,BAC ∠=︒2,AB AC ==AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC =2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC 2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.5.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED ≌△BFD (ASA ),∴AE =BF ;(2)连接EF ,BG .∵△AED ≌△BFD ,∴DE =DF .∵∠EDF =90°,∴△EDF 是等腰直角三角形,∴∠DEF =45°.∵∠G =∠A =45°,∴∠G =∠DEF ,∴GB ∥EF ,∴∠FEB =∠GBA .∵∠GBA =∠GDA ,∴∠FEB =∠GDA ;(3)∵AE =BF ,AE =2,∴BF =2.在Rt △EBF 中,∠EBF =90°,∴根据勾股定理得:EF 2=EB 2+BF 2.∵EB =4,BF =2,∴EF =2242+=25. ∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DE EF . ∵EF =25,∴DE =25×22=10. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EB ED ,即GE •ED =AE •EB ,∴10•GE =8,即GE =410,则GD =GE +ED =910. ∴119101109222S GD DF GD DE =⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.6.如图,已知AB 为⊙O 直径,D 是»BC的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F .(1)求证:直线DE 与⊙O 相切;(2)已知DG ⊥AB 且DE =4,⊙O 的半径为5,求tan ∠F 的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴»»DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.7.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
中考数学 圆的综合 综合题及详细答案
中考数学圆的综合综合题及详细答案一、圆的综合1.如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=1OP,因此△OCP是直角三角形,且∠OCP=90°,2而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣23);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣23);劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,23);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,23);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.2.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E,OE=BE,∴DO=DE+OE=(A′E+BE)=AB=OA,∴A′C与半圆O相切;(2)当BA′与半圆O相切时,则OB⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB,∴∠O′AB=30°,∴∠ABO′=60°,∴α=30°,(3)∵点P,A不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点B,但是点P,B不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.3.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G 为切点,已知⊙O的半径为3▱ABCD的面积.【答案】3【解析】【分析】首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.【详解】设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴3;连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.4.如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.33【答案】(Ⅰ)60°;(Ⅱ)【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∠APB=30°,∴∠APO=12∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴AP=3OA=3,OP=2OA=2,∴OP=2OC,而S△OPA=12×1×3,∴S△AOC=12S△PAO=3,∴S△ACP=33,∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.5.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线;(2)若AE=4,tan∠ACD=3,求FC的长.【答案】(1)见解析【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案;(2)根据正切的性质求出EC的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°.∵OB=OC,∴∠B=∠OCB.又∵∠FCA=∠B,∴∠FCA=∠OCB,∴∠FCA+∠ACO=90°,即∠FCO=90°,∴FC⊥OC,∴FC是⊙O切线.(2)解:∵AB⊥CD,∴∠AEC=90°,∴EC=AE43 tan ACE33∠==,设OA=OC=r,则OE=OA-AE=r-4.在Rt△OEC中,OC2=OE2+CE2,即r2=(r-4)2+(43)2,解得r=8.∴OE=r-4=4=AE.∵CE⊥OA,∴CA=CO=8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.6.如图,正三角形ABC内接于⊙O,P是BC上的一点,且PB<PC,PA交BC于E,点F 是PC延长线上的点,CF=PB,AB=13,PA=4.(1)求证:△ABP≌△ACF;(2)求证:AC2=PA•AE;(3)求PB和PC的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC,再利用圆的内接四边形的性质得∠ACF=∠ABP,于是可根据“SAS”判断△ABP≌△ACF;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC,于是可判断△ACE∽△APC,然后利用相似比即可得到结论;(3)先利用AC2=PA•AE计算出AE=134,则PE=AP-AE=34,再证△APF为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP∽△CEP,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB和PC看作方程x2-4x+3=0的两实数解,再解此方程即可得到PB和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似与圆综合题目练习2.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.3.(2013•营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=1,AC=,求⊙O的半径长.4.(2013•西宁)如图,⊙O是△ABC的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在BC的延长线上,CE⊥AD 于点E.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为8,CE=2,求CD的长.6.(2013•宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.7.(2013•黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.9.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.11.(2013•巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.12.(2012•岳阳)如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.14.(2012•陕西)如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.15.(2012•河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是_________,CG和EH的数量关系是_________,的值是_________ .(2)类比延伸如图2,在原题的条件下,若=m(m>0),则的值是_________(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0) ,则的值是_________(用含a、b的代数式表示).ﻬ初中数学组卷一.解答题(共15小题)2.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC. (1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.考点: 切线的判定;勾股定理;相似三角形的判定与性质.解答:(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP∥BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°.∵∠P=∠BAC.∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.点评:本题考查的知识点有切线的判定与性质,三角形相似的判定与性质,得到两个三角形中的两组对应角相等,进而得到两个三角形相似,是解答(2)题的关键.3.(2013•营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=1,AC=,求⊙O的半径长.考点: 切线的性质;勾股定理;相似三角形的判定与性质.专题: 压轴题.分析:(1)连接OC.先由OA=OC,可得∠ACO=∠CAO,再由切线的性质得出OC⊥CD,根据垂直于同一直线的两直线平行得到AD∥CO,由平行线的性质得∠DAC=∠ACO,等量代换后可得∠DAC=∠CAO,即AC平分∠BAD;(2)解法一:如图2①,过点O作OE⊥AC于E.先在Rt△ADC中,由勾股定理求出AD=3,由垂径定理求出AE=,再根据两角对应相等的两三角形相似证明△AEO∽△ADC,由相似三角形对应边成比例得到,求出AO=,即⊙O的半径为;解法二:如图2②,连接BC.先在Rt△ADC中,由勾股定理求出AD=3,再根据两角对应相等的两三角形相似证明△ABC∽△ACD,由相似三角形对应边成比例得到,求出AB=,则⊙O的半径为.解答:(1)证明:连接OC.∵OA=OC,∴∠ACO=∠CAO.∵CD切⊙O于C,∴OC⊥CD,又∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∴∠DAC=∠CAO,即AC平分∠BAD;(2)解法一:如图2①,过点O作OE⊥AC于E.在Rt△ADC中,AD===3,∵OE⊥AC,∴AE=AC=.∵∠CAO=∠DAC,∠AEO=∠ADC=90°,∴△AEO∽△ADC,∴,即,∴AO=,即⊙O的半径为.解法二:如图2②,连接BC.在Rt△ADC中,AD===3.∵AB是⊙O直径,∴∠ACB=90°,∵∠CAB=∠DAC,∠ACB=∠ADC=90°,∴△ABC∽△ACD,∴,∴AB=,∴=,即⊙O的半径为.点评:本题考查了等腰三角形、平行线的性质,勾股定理,垂径定理,切线的性质,相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法及数形结合思想的应用.4.(2013•西宁)如图,⊙O是△ABC的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在BC的延长线上,CE⊥AD 于点E.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为8,CE=2,求CD的长.考点:切线的判定;解分式方程;相似三角形的判定与性质.分析:(1)首先连接OA,由BC为⊙O直径,CE⊥AD,∠CAD=∠B,易求得∠CAD+∠OAC=90°,即∠OAD=90°,则可证得AD是⊙O的切线;(2)易证得△CED∽△OAD,然后设CD=x,则OD=x+8,由相似三角形的对应边成比例,可得方程:,继而求得答案.解答:(1)证明:连接OA,∵BC为⊙O的直径,∴∠BAC=90°,∴∠B+∠ACB=90°,∵OA=OC,∴∠OAC=∠OCA,∵∠CAD=∠B,∴∠CAD+∠OAC=90°,即∠OAD=90°,∴OA⊥AD,∵点A在圆上,∴AD是⊙O的切线;(2)解:∵CE⊥AD,∴∠CED=∠OAD=90°,∴CE∥OA,∴△CED∽△OAD,∴,CE=2,设CD=x,则OD=x+8,即,解得x=,经检验x=是原分式方程的解,所以CD=.点评:此题考查了切线的判定、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.5.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.考点: 相似三角形的判定与性质;全等三角形的判定与性质.专题:压轴题.分析:(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值.解答:(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sin∠B==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:.点评:本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.6.(2013•宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.考点: 切线的判定;相似三角形的判定与性质.分析:(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可;(2)证△AEO∽△ACB,得出关于r的方程,求出r即可.解答:证明:(1)连接OE,∵OD=OE,∴∠ODE=∠OED,∵BD=BF,∴∠ODE=∠F,∴∠OED=∠F,∴OE∥BF,∴∠AEO=∠ACB=90°,∴AC与⊙O相切;(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,∴△AOE∽△ABC,∴,设⊙O的半径为r,则,解得:r=4,∴⊙O的面积π×42=16π.点评:本题考查了等腰三角形的性质,切线的判定,平行线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理和计算能力,用了方程思想.7.(2013•黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为3,AD=4,求AC的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OC A,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,根据圆周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性质即可解决问题.解答:(1)证明:连接OC∵OA=OC∴∠OAC=∠OCA∵AC平分∠DAB∴∠DAC=∠OAC∴∠DAC=∠OCA∴OC∥AD∵AD⊥CD∴OC⊥CD∴直线CD与⊙O相切于点C;(2)解:连接BC,则∠ACB=90°.∵∠DAC=∠OAC,∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB,∵⊙O的半径为3,AD=4,∴AB=6,∴AC=2.点评:此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用切线的想这已知条件证明三角形相似即可解决问题.点评:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,(1)求出三角形全等的条件∠1=∠E是解题的关键,(2)(i)根据两次三角形相似求出AP=BF是解题的关键,(ii)判断出路径为三角形的中位线是解题的关键.9.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.考点: 切线的性质;勾股定理;相似三角形的判定与性质.分析:(1)连接OA,交EC于F,根据切线性质得出∠OAB=90°,根据勾股定理求出即可;(2)根据AE=AC推出弧AE=弧AC,根据垂径定理求出OA⊥EC,根据平行线判定推出即可;(3)证△OFC∽△OAB,求出FC,根据垂径定理得出EC=2FC,代入求出即可.解答:(1)解:连接AO,交EC于F,∵AB切⊙O于A,∴OA⊥AB,∴∠OAB=90°,在Rt△OAB中,由勾股定理得:OA===6,答:⊙O的半径是6.(2)直线EC与AB的位置关系是EC∥AB.证明:∵AE=AC,∴弧AE=弧AC,∵OA过O,∴OA⊥EC,∵OA⊥AB,∴EC∥AB.(3)解:∵EC∥AB,∴△OFC∽△OAB,∴=,∴=,∴FC=,∵OA⊥EC,OA过O,∴EC=2FC=.点评:本题考查了勾股定理,相似三角形的性质和判定,切线性质,垂径定理,圆周角定理的应用,主要考查学生综合运用性质进行推理的能力.10.(2013•百色)如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F.(1)求证:△ABF∽△ECF;(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长.考点:相似三角形的判定与性质;等腰梯形的性质.分析:(1)由“两直线平行,内错角相等”推知∠B=∠ECF,∠BAF=∠E.则由“两角法”证得结论;(2)利用(1)中的相似三角形的对应边成比例得到=,即=.所以CE=(cm).解答:(1)证明:∵DC∥AB,∴∠B=∠ECF,∠BAF=∠E,∴△ABF∽△ECF.(2)解:∵在等腰梯形ABCD中,AD=BC,AD=5cm,AB=8cm,CF=2cm,∴BF=3cm.∵由(1)知,△ABF∽△ECF,∴=,即=.∴CE=(cm).点评:本题考查了相似三角形的判定与性质,等腰梯形的性质.等腰梯形的两腰相等.11.(2013•巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.考点: 相似三角形的判定与性质;勾股定理;平行四边形的性质.专题: 压轴题.分析:(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.解答:(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵▱ABCD,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.点评:本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错.12.(2012•岳阳)如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.考点: 扇形面积的计算;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.专题: 几何综合题.分析:(1)由=,利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,利用两对对应角相等的两三角形相似可得出△ACF与△ABC相似,根据相似得比例可得证;(2)连接OA,OC,利用同弧所对的圆心角等于圆周角的2倍,由∠B为60°,求出∠AOC为120°,过O 作OE垂直于AC,垂足为点E,由OA=OC,利用三线合一得到OE为角平分线,可得出∠AOE为60°,在Rt△AOE中,由OA及cos60°的值,利用锐角三角函数定义求出OE的长,在Rt△AOE中,利用勾股定理求出AE的长,进而求出AC的长,由扇形AOC的面积﹣△AOC的面积表示出阴影部分的面积,利用扇形的面积公式及三角形的面积公式即可求出阴影部分的面积.解答:(1)证明:∵=,∴∠ACD=∠ABC,又∠BAC=∠CAF,∴△ACF∽△ABC,∴=,即AC2=AB•AF;(2)解:连接OA,OC,过O作OE⊥AC,垂足为点E,如图所示:∵∠ABC=60°,∴∠AOC=120°,又∵OA=OC,∴∠AOE=∠COE=×120°=60°,在Rt△AOE中,OA=2cm,∴OE=OAcos60°=1cm,∴AE==cm,∴AC=2AE=2cm,则S阴影=S扇形OAC﹣S△AOC=﹣×2×1=(﹣)cm2.点评:此题考查了扇形面积的求法,涉及的知识有:相似三角形的判定与性质,弧、圆心角及弦之间的关系,等腰三角形的性质,勾股定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.14.(2012•陕西)如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.考点: 位似变换;等边三角形的性质;勾股定理;正方形的性质.专题:几何综合题;压轴题.分析:(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.解答:解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(没有分母有理化也对,x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S=[32+(m﹣n)2]=+(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,由(2)知,m最大=3﹣3.∴S最大=[9+(m最大﹣n最小)2]=[9+(3﹣3﹣6+3)2]=99﹣54….(S最大≈5.47也正确)综上所述,S最大=99﹣54,S最小=.点评:本题以位似变换为基础,综合考查了正三角形、正方形、勾股定理、直角三角形边角性质等重要知识点,有一定的难度.本题(1)(2)(3)问之间互相关联,逐级推进,注意发现并利用好其中的联系.第(3)问的要点是求出面积和S的表达式,然后针对此表达式进行讨论,在求S最大值的过程中,利用了第(1)(2)问的结论.15.(2012•河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是AB=3EH ,CG和EH的数量关系是CG=2EH,的值是.(2)类比延伸如图2,在原题的条件下,若=m(m>0),则的值是(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0),则的值是ab(用含a、b的代数式表示).。