第4讲 反比例函数
反比例函数的图象和性质公开课课件

【2017·张家界】在同一平面直角坐标系中,函数 y=mx+m(m≠0)与y= (m≠0)的图象可能是( )
D
【2017·广州】a≠0,函数y= 与y=-ax2+a在 同一直角坐标系中的大致图象可能是( )
D
【2017·凉山州】已知抛物线y=x2+2x-m-2与x 轴没有交点,则函数y= 的大致图象是( )
1
2
3
4
5
6
-1
-3
-2
-4
-5
-6
1
2
3
4
-1
-2
-3
-4
0
-6
-5
5
6
x
y
-1
-6
x
x
-2
-3
-3
-1.5
-2
-4
-5
-1.2
-6
-1
…
…
1
6
2
3
3
2
4
1.5
5
1.2
…
1
6
…
列表
描点
连线
注意:列表 时自变量取 值要均匀和 对称
用光滑曲线连结时要 自左向右顺次连结
-1
x
x
-2
-3
-4
-5
-6
…
1
-6
2
-3
3
-2
4
-1.5
5
-1.2
…
-1
6
…
6
3
1.5
2
1.2
1
…
1
2
3
4
5
6
-1
-3
-2
-4
2022年中考数学一轮复习 第四讲 函数专题之反比例函数

教学目标知识梳理第四讲 一轮复习—函数专题之反比例函数1、掌握反比例函数的定义,会用待定系数法求解析式,理解其图像的性质;2、理解反比例函数与方程及不等式的关系,学会利用图像解决相关问题。
知识点一、反比例函数的定义 反比例函数:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。
其他形式xy =k 、 1-=kx y 。
知识点二、反比例函数的图像1、图像形状:反比例函数的图像属于双曲线。
【注意】双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论 知识点三、|k |的几何意义1、过反比例函数()0ky k x=≠,图像上一点()P x y ,,做两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S x y xy k =⋅==。
2、与反比例函数上的点有关的三角形的面积【误区警示】应用比例系数k 的几何意义时的易错点 (1)忽略图像所在的象限而导致k 的符号出错 (2)混淆矩形或三角形与|k |的倍数关系 3、与反比例函数上的点有关的梯形的面积S △OCD =S 梯形ABCD知识点四、反比例函数解析式的确定 由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
知识点五、反比例函数的应用1、 反比例函数在实际问题中的应用反比例函数在实际问题中,通常自变量的取值范围因实际背景而受到限制,这时对应的函数图像会是双曲线的一支或一段.在实际问题中,要注意标明自变量的取值范围. 2、 反比例函数图像与一次函数图像的交点问题典型例题一次函数y=k 1x+b (k 1≠0)的图像与反比例函数y =k 2x(k 2≠0)的图像的交点个数有三种情况:0个、1个、2个.因为两个函数表达式联立组成的二元方程组可化为一个一元二次方程,所以两个函数图像的交点个数由这个一元二次方程的实数解的个数来决定.【提分笔记】在同一平面直角坐标系中,正比例函数与反比例函数若有交点,则这两个交点关于原点对称例1.已知双曲线1k y x-=经过点(-2,3),那么k 的值等于_______.例2.点A (x 1,y 1),B (x 2,y 2)是反比例函数y =-3x图像上的两点.若x 1>x 2>0,则y 1________y 2(选填“>”、“=”或“<”).例3.若点()12020,A y -、()22021,B y 都在双曲线32ay x +=上,且12y y >,则a 的取值范围是( )A .0a < B .0a > C .32a >- D .32a <-例4.已知反比例函数3k y x+=的图像位于第二、四象限,则k 的取值范围为( ) A .3k >- B .3k ≥-C .3k <-D .3k ≤-例5.已知反比例函数y =﹣8x,下列结论:①图像必经过(﹣2,4);②图像在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个A .3B .2C .1D .0例6.若正比例函数y =-4x 与反比例函数y =kx的图像相交于A ,B 两点,其中点A 的横坐标为2,则k 的值为( )A .-16B .-8C .16D .8例7.如图,已知A为反比例函数kyx=(x<0)的图像上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为2,则k的值为()A.2B.-2C.4D.-4例8.如图,在平面直角坐标系中,点A在第一象限,BA⊥y轴于点B,反比例函数y=kx(x>0)的图像与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为( )A.13B.1C.2D.3例9.如图,矩形OCBA的两条边OC、OA分别在x、y的正半轴上,另两条边AB、BC分别与函数k yx =(0x>)的图像交于E,F两点,且E是AB的中点,连接OE,OF,若OEF的面积为3,则k的值为()A.2B.3C.4D.5例10.如图,点A 在双曲线 3y x = 上,点 B 在双曲线 5y x=上,C 、D 在 x 轴上,若四边形 ABCD 为矩形,则它的面积为( )A .1B .2C .3D .4例11.如图,在△AOB 中,OC 平分∠AOB ,43OA OB =,反比例函数(0)ky k x =<图像经过点A 、C 两点,点B 在x 轴上,若△AOB 的面积为7,则k 的值为( )A .4-B .3-C .215-D .73-例12.点A (a ,b )是一次函数y=x ﹣2与反比例函数y =4x的交点,则a 2b ﹣ab 2=________. 例13.如图,点A 是双曲线6y x=-在第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰ABC ,且120ACB ∠=︒,点C 在第一象限,随着点A 的运动点C 的位置也不断变化,但点C 始终在双曲线ky x=上运动,则k 的值为________.例14.如图,点A 在反比例函数11(0)y x x =>的图像上,点B 在反比例函数2(x 0)ky x=<的图像上,AB ⊥y 轴,若△AOB 的面积为2,则k 的值为____.例15.如图,已知A (12,y 1),B (2,y 2)为反比例函数y =1x 图像上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是_____.例16.(2020·江苏南通市·九年级零模)已知点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段OB 的长是方程x 2﹣2x ﹣8=0的解,tan ∠BAO =12. (1)求点A 的坐标;(2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S △DOE =16.若反比例函数y =kx的图像经过点C ,求k 的值; (3)在(2)条件下,点M 是DO 中点,点N ,P ,Q 在直线BD 或y 轴上,是否存在点P ,使四边形MNPQ 是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.真题链接例17.(2020·江苏苏州市·九年级零模)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数y =mx的图像经过点E ,与AB 交于点F . (1)若点B 坐标为(﹣6,0),求图像经过A 、E 两点的一次函数的表达式是_____; (2)若AF ﹣AE =2,则反比例函数的表达式是_____.1.若A (x 1,y 1),B (x 2,y 2)都在函数y =2019x的图像上,且x 1<0<x 2,则 ( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . y 1=-y 2 2.若反比例函数xy 2-=的图像上有两个不同的点关于y 轴对称点都在一次函数y =-x +m 的图像上,则m 的取值范围是( )A .22>mB .22-<m ①C .22-22<或>m mD .2222-<<m 3.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =kx 的图像上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是 ( )A .-5B .-4C .-3D .-24.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx在第一象限内的图像经过点D ,交BC 于点E ,若AB =4,CE =2BE ,tan ∠AOD =34,则k 的值为 ( )A .3B . 2 C . 6D . 125.如图,已知点A 是反比例函数y =−2x (x <0)的图像上的一个动点,连接OA ,若将线段OA绕点O 顺时针旋转90°得到线段OB ,则点B 所在图像的函数表达式为 . 6.函数1y x =与24y x=的图像如图所示,下列关于函数12y y y =+的结论:①函数的图像关于原点中心对称;①当2x <时,y 随x 的增大而减小;①当0x >时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .【2021江苏中考真题】7.(2021•江苏淮安中考)如图(1),①ABC 和①A ′B ′C ′是两个边长不相等的等边三角形,点B ′、C ′、B 、C 都在直线l 上,①ABC 固定不动,将①A ′B ′C ′在直线l 上自左向右平移.开始时,点C ′与点B 重合,当点B ′移动到与点C 重合时停止.设①A ′B ′C ′移动的距离为x ,两个三角形重叠部分的面积为y ,y 与x 之间的函数关系如图(2)所示,则①ABC 的边长是 .8.(2021•江苏南通中考)平面直角坐标系xOy 中,直线y =2x 与双曲线y =xk(k >2)相交于A ,B 两点,其中点A 在第一象限,设M (m ,2)为双曲线y =xk(k >2)上一点,直线AM ,BM 分别交y 轴于点C ,D 两点,则OC -OD 的值为( ).A .2B .4C .6D .89.(2021•江苏扬州中考)如图,点P 是函数y =xk 1(k 1>0,x >0)的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数y =xk 2(k 2>0,x >0)的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中k 1>k 2.下列结论:①CD ①AB ;①S ①OCD =221k k -;①S ①DCP =12212)(k k k -,其中正确的是( )A .①①B .①①C .①①D .①10.(2021•江苏宿迁中考)如图,点A 、B 在反比例函数()ky 0x x=>的图像上,延长AB 交x 轴于C 点,若①AOC 的面积是12,且点B 是AC 的中点,则k =__________.11.(2021•江苏宿迁中考)已知双曲线ky (0)k x=<过点(3,1y )、(1,2y )、(-2,3y ),则下列结论正确的是( )A . 312y y y >>B . 321y y y >>C . 213y y y >>D . 231y y y >>12.(2021•江苏无锡中考)一次函数y =x +n 的图像与x 轴交于点B ,与反比例函数y =xm(m >0)的图像交于点A (1,m ),且①AOB 的面积为1,则m 的值是( )A .1B .2C .3D .413.(2021•江苏泰州中考)如图,点A (﹣2,y 1)、B (﹣6,y 2)在反比例函数y =kx(k <0)的图像上,AC ①x 轴,BD ①y 轴,垂足分别为C 、D ,AC 与BD 相交于点E .(1)根据图像直接写出y 1、y 2的大小关系,并通过计算加以验证;(2)结合以上信息,从①四边形OCED 的面积为2,①BE =2AE 这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是 (只填序号).1114.(2021•江苏徐州中考)如图,点 A 、D 分别在函数xy x y 63=-=、的图像上,点 B 、C 在 x 轴上.若四边形 ABCD 为正方形,点 D 在第一象限,则 D 的坐标是 .15.(2021•江苏常州中考)【阅读】通过构造恰当的图形,可以对线段长度....、图形面积大小......等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用. 【理解】(1)如图1,AC ⊥BC ,CD ⊥AB ,垂足分别为C 、D ,E 是AB 的中点,连接CE.已知AD =a ,BD =b(0<a <b). ①分别求线段CE 、CD 的长(用含a 、b 的代数式表示);②比较大小:CE ______ CD(填“<”、“=”或“>”),并用含a 、b 的代数式表示该大小关系. 【应用】(2)如图2,在平面直角坐标系xOy 中,点M 、N 在反比例函数y =1x (x >0)的图像上,横坐标分别为m 、n.设p =m +n ,q =1m +1n ,记l =14pq .①当m =1,n =2时,l = ______ ;当m =3,n =3时,l = ______ ;②通过归纳猜想,可得l 的最小值是______ .请利用图...2.构造恰当的图形,并说明你的猜想成立.12巩固练习1.下列函数中,y 是x 的反比例函数的是( ) A .x (y –1)=1B .15y x =- 1C 3y x=. 21D y x=. 2.已知反比例函数y =8k x-的图像位于第一、三象限,则k 的取值范围是( ) A .k >8 B .k ≥8 C .k ≤8 D .k <83.若点A (–5,y 1),B (–3,y 2),C (2,y 3)在反比例函数3y x=的图像上,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 3<y 2 B .y 2<y 1<y 3 C .y 3<y 2<y 1 D .y 1<y 2<y 34.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图像相交于A (-3,-2),B (2,3)两点,则不等式y 1>y 2的解集是( )13A .-3<x <2B .x <-3或x >2C .-3<x <0或x >2D .0<x <25.一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图像可以是( )A .B .C .D .6.如图,已知反比例函数ky x=与一次函数y =x +b 的图像在第一象限相交于点A (1,-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图像的另一个交点B 的坐标,并根据图像写出使反比例函数的值大于一次函数的值的x 的取值范围.8.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图像与反比例函数my x=的图像的两个交点. (1)求反比例函数和一次函数的解析式; (2)求方程0x xk b m+-<的解集(请直接写出答案).9.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?14思维导图1516。
第4讲 函数的复习(讲义)原卷版

第4讲 函数的复习模块一:正反比例函数知识精讲1、正比例函数:y =kx (k ≠0);图像是一条直线,与坐标轴仅有一个交点;k >0时,随着x 的逐渐增大,函数值y 的值越来越大;k <0时,随着x 的逐渐增大,函数值y 的值越来 越小.2、反比例函数:k y x=(k ≠0),图像是双曲线,与坐标轴无交点;k >0时,在每一象限内, 随着x 的逐渐增大,函数值y 的值越来越小;k <0时,在每一象限内,随着x 的逐渐增 大,函数值y 的值越来越大.例题解析例1.下列函数(其中x 是自变量)中,是正比例函数的是( )A .y=2xB .y=(xC .D .y=1x例2.如果()2(3)9y k x k =-+-是正比例函数,那么k =______. 例3(1)正方形的周长c 与正方形的对角线长a _______正比例(填“成”或“不成”);(2)已知正比例函数的自变量x 减少2时,对应函数的值增加3,则这个函数的解析式为________________.例4(1)如果y =kx +2k +x 是正比例函数,求k 的值;(2)如果253(1)mm y m x -+=-是反比例函数,求m 的值.例5(1)正比例函数2231()mm y m m x -+=-经过第___________象限,y 随x 增大而_________; (2)反比例函数2231()mm y m m x -+=-经过第___________象限,在同一象限内,y 随x 增大而_________.例6.已知正比例函数y =k 1x ,函数值y 随着x 的增大而减小,反比例函数y =2k x (k 2<0),它们在同一直角坐标系中的图象大致是().例7.已知12y y y =-,1y 与x 成正比例,2y 与()2x -成反比例,当2x =-时,7y =-;3x =时,13y =.求:y 关于x 的函数解析式例8.已知正比例函数的图像上一点P 的横坐标是2,作PD ⊥x 轴(O 是坐标原点,D 是垂足),∆OPD 的面积是6,求这个正比例函数的解析式.例9.已知如图,点A ,B 是反比例函数y =3x图像上的点,分别经过A ,B 两点向x 轴、y 轴做垂线段,若121s s s =+=阴影,则_________(12s s ,指的是空白矩形的面积).例10.已知A (0,4)、B (6,4)、C (6,0)三点,经过原点的一条直线把矩形OABC 的面积分成1:2两部分,求这条直线的函数解析式.例11.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,0),在直线y =上取一点P ,使得∆OAP 是等腰三角形,求所有满足条件的点P 的坐标.例12.已知如图,矩形OABC 的顶点B (m ,2)在正比例函数12y x =的图像上,点A 在x 轴上,点C 在y 轴上,反比例函数的图像过BC 边上点M ,与AB 边交于点N ,且BM =3CM ,求此反比例函数的解析式及点N 的坐标.例13.正比例函数1y k x =的图像与反比例函数2k y x=的图像相交于点A 、B (如图),点A 在第一象限,且点A 的横坐标为1,作AD x ⊥轴,垂足为D 点,1AOD S ∆=.(1)求点A 的坐标;(2)求这两个函数的解析式;(3)如果OAC ∆是以OA 为腰的等腰三角形,且点C 在x 轴上,求点C 的坐标.例14.如图所示,已知正方形ABCD 的边长是3厘米,动点P 从点B 出发,沿BCDA 方向运动至点A 停止.点P 的运动的路程为x 厘米,∆ABP 的面积为y 平方厘米.(1)当点P在BC上运动时,求y关于x的解析式及定义域;(2)当点P在CD上运动时,求y关于x的解析式及其定义域;(3)当x取何值时,∆ABP的面积为1.5平方厘米?模块二:一次函数知识精讲1.函数的概念和图像及性质(1)定义:解析式形如 (0)y kx b k=+≠的函数叫做一次函数.(2)一次函数的图象满足:①形状是一条直线;②始终经过(0,b)和(bk-,0)两点;(3)定义:直线 (0)y kx b k=+≠与y轴的交点坐标是( 0 , )b,截距是b;(4)一次函数 (0)y kx b k=+≠,当0k>时,函数值y随自变量x的值增大而增大;当0k<时,函数值y随自变量x的值增大而减小.2.函数的应用(1)实际问题;(2)数形结合类.例题解析例1(1)已知一次函数y kx b =+,当x =-3时,y =1;当x =2时,y =-6,求这个一次函数的解析式;(2)已知一次函数y =f (x ),且f (-1)=-3,f (1)=1,求函数f (x )的解析式.例2(1)若一次函数y =k (1-x )+3的图像在y 轴上的截距是-5,求这个函数解析式;(2)若一次函数2(2)(4)y k x k =-+-的图像经过原点,求k 的值.例3(1)若直线y =kx +b 与直线y =-2x +4无交点,且直线y =kx +b 与x 轴的交点是 (3,0),求此函数解析式;(2)已知一次函数的图像经过点(1,-2)、(-2,1).求这个一次函数的解析式.例4(1)若把函数13y x =-的图像向下平移4个单位,再向右平移2个单位,求平移 后的函数解析式;(2)若一次函数的图像向下平移4个单位,再向右平移2个单位得到的函数解析式是13y x =-,求平移前的函数解析式.例5.已知直线y =kx +4经过点P (1,m ),且平行于直线y =-2x +1,它与x 轴相交于点A ,求∆OPA 的面积.例 6.已知一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求这个函数的解析式.例7.已知直线l 过点(-2,4),且与两坐标轴围成一个等腰三角形,(1)求这个一次函数的解析式;(2)所得三角形的周长及面积.例8.某中学初二年级准备购买10只米奇品牌的笔袋,每只笔袋配x (x ≥3)支水笔作为奖品.已知A 、B 两家超市都有这个牌子的笔袋和水笔出售,而且每只笔袋的标价都为20元,每只水笔的标价都为1元,现两家超市正在促销,A 超市所有商品均打九折销售,而B 超市买1只笔袋送3支水笔,若仅考虑购买笔袋和水笔的费用,请解答下列的问题:(1) 如果只在某一家超市购买所需笔袋和水笔,那么去哪家超市购买更合算?(2) 当x =12时,请设计最省钱的购买方案.例9.若直线y kx b =+过35y x =-与210y x =-+的交点A ,y kx b =+与y 轴于B ,210y x =-+交x 轴于C ,若=12ABC S ∆,求直线y =y kx b =+的解析式.模块三:综合例题解析例1.已知反比例函数(0)k y k x=≠和一次函数21y x =-,其中一次函数的图像经过点(k ,5).(1) 试求反比例函数的解析式;(2) 若点A 在第一象限,且同时在上述两个函数的图像上,求点A 的坐标.例2.如图,一次函数(0)y kx b k =+≠的图像与x 轴、y 轴分别交于点A 、B 两点,且与反比例函数(0)m y m x=≠的图像在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若OA =OB =OD =1.(1) 求点A 、B 、D 的坐标;(2) 求一次函数和反比例函数的解析式.例3.如图,一次函数(0)y kx b k=+≠的图像与与反比例函数8yx=-的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)∆AOB的面积.例4.已知点A(m,2m)(其中m>0)在双曲线8yx=上,直线y=kx+b过点A,并且与坐标轴正方向所围成的三角形的面积是18,求直线的解析式.例5.已知一次函数与反比例函数的图像交于点P(-3,2)、Q(2,-3).(1)求这两个函数的函数解析式;(2)在给定的直角坐标系中,画出这两个函数的大致图像;(3)当x为何值时,一次函数的值大于反比例函数的值?当x为何值时,一次函数的值小于反比例函数的值?例6.已知一次函数(2)23=-+-;y m x m(1)求证:无论m取何实数,函数的图像恒过一定点;(2)当x在12≤≤内变化时,y在45x≤≤内变化,求m的值.y随堂检测1.(1)y与x成正比例,且x=4时,y=-4,那么y与x之间的函数关系式为__________;(2)y +1与z 成正比例,比例系数为2,z 与x -1成正比例,当x =-1时,y =7,那么y与x 的函数关系式为____________ 2.已知y -3与x 成正比例,且x =2时,y =7.(1) 写出y 与x 的函数关系式;(2) 计算x =4时y 的值;(3) 计算y =4时x 的值.3.已知正比例函数(0)y kx k =>的图像上有两点且11(,)A x y ,22(,)B x y ,且x 1>x 2,则y 1与y 2的大小关系是( )A .12y y <B .12y y >C .12y y =D .不能确定.4.下列四个函数中,是一次函数的是( )A .21y x =+B .y x =C .21y x =+D .1y =5.下列函数中,y 随x 的增大而减少的函数是( )A .y =-2xB .y =1xC .y =1x -D .y =2x6.已知正比例函数1y k x =中,y 随x 的值的增大而减小;反比例函数2k y x=中,在每一个象限内,y 随x 的值的增大而增大,那么这两个函数在同一坐标系内的大致图像可能是( )A .B .C .D .7.在一次函数y=ax-a 中,y 随x 的增大而减小,则其图像可能是( )A .B .C .D .8.一次函数y mx n =+的图像如图所示,那么下列说法正确的是( )A .当0x >时,2y >-B .当1x ≥时,0y ≤C .当1x <时,0y >D .当0x <时,20y -<<二、填空题9.平面直角坐标系中,点A 坐标为(2),将点A 沿x 轴向左平移m 个单位后恰好落在正比例函数y =﹣的图象上,则m 的值为_____.10.已知函数2y mx m m =++为正比例函数,则常数m 的值为______. 11.如果正比例函数的图像经过点(4,2)-,则它的解析式为___________.12.正比例函数()21y k x =+的图像经过第二、四象限,则k ______.13.直线y kx b =+与直线5y x =-平行,并且直线与y 轴交点到原点的距离是2,则这条直线的解析式为____.14.如图,已知正比例函数图像经过点A (2,3),B (m ,6).(1)求正比例函数的解析式及m 的值;(2)分别过点A 与点B 作y 轴的平行线,与反比例函数在第一象限内的分支分别交于点C 、D (点C .D 均在点A 、B 下方),若BD =5AC .求反比例函数的解析式.15.如图,一次函数y kx b =+的图像与反比例函数m y x=的图像相交于()2,2A 、()1,4B --两点.(1)求出两函数解析式;(2)根据图像回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?(3)连接AO 、BO ,试求AOB ∆的面积.16.如图,在梯形ΑBCD 中,ΑB =CD =5,ΑD =7,BC =13,E 为ΑD 上一定点,ΑE =4, 动点P 从D 出发沿着DC 向C 点移动,设点P 移动的距离为x ,∆ΑPE 的面积为y , 求y 与x 的函数解析式,并画出图象.17.在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点.过 点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.A B CDE PM N(1) 求直线AM 的解析式;(2) 试在直线AM 上找一点P ,使得ABP AOB S S ∆∆=,求出点P 的坐标.18.如图,在直角梯形COAB 中,CB ∥OA ,以O 为原点建立直角坐标系,A 、C 的坐标分别为A (10,0)、C (0,8),CB =4,D 为OA 中点,动点P 自A 点出发沿A →B →C →O 的线路移动,速度为1个单位/秒,移动时间为t 秒.(1)求AB 的长,并求当PD 将梯形COAB 的周长平分时t 的值,并指出此时点P 在哪条边上;(2)动点P 在从A 到B 的移动过程中,设△APD 的面积为S ,试写出S 与t 的函数关系式,并指出t 的取值范围;(3)几秒后线段PD 将梯形COAB 的面积分成1:3的两部分?求出此时t 的值?。
反比例函数

k 1 .反比例函数 y= (k 是常数, k≠0)的图象是 x 双曲线.因为 x≠0,k≠0,相应地 y 值也不能为 0, 所以反比例函数的图象无限接近 x 轴和 y 轴,但永不 与 x 轴、y 轴相交.
2.反比例函数的图象和性质 k 反比例函数 y= (k 是常数, k≠0)的图象总是关于 x 原点对称的,它的位置和性质受 k 的符号的影响.
(1)求该轿车可行驶的总路程 s 与平均耗油量 a 之 间的函数解析式(关系式). (2)当平均耗油量为 0.08 升/千米时, 该轿车可以行 驶多少千米? 【点拨】本题考查建立反比例函数模型解答实际 问题. k k 解:(1)把 a=0.1,s=700 代入 s= ,得 700= , a 0.1 70 k=70,s= . a
考点三 反比例函数值的大小比较 例 3(2014· 衡阳)若点 P1(-1,m),P2(-2,n)在 k 反比例函数 y= (k>0)的图象上,则 m________n(填 x “>”“<”或“=”).
【点拨】方法一:∵k>0,∴在每个象限内y 随x的增大而减小.又∵0>-1>-2,∴m<n.方 法二:∵k>0,∴取k=2,把x=-1,x=-2分别 2 代入y= ,得m=-2,n=-1,∴m<n. x
k 2. (2014· 株洲)已知反比例函数 y= 的图象经过点 x (2,3),那么下列四个点中,也在这个函数图象上的是 ( B ) A.(-6,1) C.(2,-3) B.(1,6) D.(3,-2)
k 解析:∵y= 的图象经过点(2,3),∴k=2×3=6. x 又∵1×6=6=k, ∴点(1,6)也在这个函数的图象上. 故 选 B.
A.②③
B.③④
C.①②
D.①④
反比例函数复习讲义

反比例函数复习讲义知识点一:反比例函数的概念ﻫ 一般地,如果两个变量x 、y 之间的关系可以表示成k y x=(k为常数,)的形式,那么称y 是x 的反比例函数.注:(1)反比例函数k y x =中的k x 是一个分式,自变量x ≠0, k y x=也可写成1y kx -=或xy k =,其中k≠0;ﻫ (2)在反比例函数1y kx -=(k≠0)中,x 的指数是-1。
如,5y x=也写成:15y x -=;ﻫ (3)在反比例函数k y x=(k ≠0)中要注意分母x的指数为1,如21y x=就不是反比例函数。
ﻫ知识点二:反比例函数的图象反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.ﻫ 注: (1)观察反比例函数(0)ky k x=≠的图象可得:x和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.ﻫ (3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a ,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;正比例函数反比例函数解析式图 像直线 有两个分支组成的曲线(双曲线)位 置k>0,一、三象限; k<0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k>0,y 随x 的增大而增大 k<0,y 随x 的增大而减小k>0,在每个象限,y 随x的增大而减小ﻫk<0,在每个象限,y随x的增大而增大4.反比例函数y =kx 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k≠0)上任意一点引x轴、y 轴垂线,所得矩形面积为│k│.ﻫ知识点四:反比例函数解析式的确定ﻫ 反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x =≠中即可求出k 的值,从而确定反比例函数的解析式.ﻫ知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。
反比例函数的图象PPT课件

4.
55
86
18
24
96
65
6
78
作业 请完成《典中点》的“应用提升练”和“思 维拓展练”习题,具体内容见习题课件。
50-30=20 20+6=26
答:小青蛙比大青蛙少吃了__2_6__只虫子。
算一算,说一说。
54
61
36
70
2.用小棒摆一摆,算一算。
98
35
摆一摆略。
归纳总结:
计算两位数加、减整十数,先把两位数拆分成整十数和 一位数,再把整十数相加、减,最后和一位数相加。
(讲解源于《典中点》)
一共吃了多少只虫子?
第21章 二次函数与反比例函数
21.5 反比例函数
第2课时 反比例函数的 图象
学习目标
1 课时讲解 2 课时流程
反比例函数的图象 反比例函数图象的对称性 反比例函数的系数k的几何意义
逐点 导讲练
课堂 小结
作业 提升
课时导入
复习提问 引出问题
问题1:什么叫做反比例函数?下列函数中哪些是反比例函数?
的点及横坐标为正数的点,各得到图象的一个分 支,这两个分支合起来就是函数 y 4 的图象.
x 如图.
感悟新知
归纳
知1-讲
列表时,自变量的值可以以0为中心,在0的 两边选择绝对值相等而符号相反的值,既可简化 运算又便于描点;在列表、描点时要尽量多取一 些数据,多描一些点,方便连线.
感悟新知
1.反比例函数 y=2x的图象在( B ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
感悟新知
知3-练
1.如图,直线 l⊥x 轴于点 P,且与反比例函数 y1=kx1(x >0)及 y2=kx2(x>0)的图象分别交于 A,B 两点,连 接 OA,OB,已知△ OAB 的 面积为 4,则 k1-k2=___8_____.
反比例函数教案6篇
反比例函数教案6篇教学目标使学生对反比例函数和反比例函数的图象意义加深理解。
教学重难点重点:反比例函数的图象。
难点:利用反比例函数的图象解题。
教学过程一、情境创设解析式y=kx(k为常数,k≠0)图象形状双曲线(以原点为对称中心)k>0位置一、三象限增减性每一象限内,y随x的增大而减小k<0位置二、四象限增减性每一象限内,y随x的增大而增大二、例题讲解例1.如图是反比例函数的图象的一支。
(1)函数图象的另一支在第几象限?试求常数m的取值范围;(2)点都在这个反比例函数的图象上,比较、的大小例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积。
三、课堂练习课本P70练习1、2题四、课堂小结1、反比例函数的图象。
2、反比例函数的性质。
五、课堂作业课本P72/第5题教学目标知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力。
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点教学难点1)重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键教师画图中要规范,为学生树立一个可以学习的模板教学方法激发诱导,探索交流,讲练结合三位一体的教学方式教学手段教师画图,学生模仿教具三角板,小黑板学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法教学过程(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)内容设计意图一:课前检测:1.什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。
湘教版九年级数学《反比例函数的图象及性质》PPT课件
感悟新知
知1-练
1.若双曲线 y=kx与直线 y=2x+1 的一个交点的横坐 标为-1,则 k 的值为( B )
A.-1
B.1
C.-2
D.2
感悟新知
第一章 反比例函数
1.2反比例函数的图象及性质
第1课时 反比例函数 y = k (k>0)
x
的图象与性质
学习目标
1 课时讲解 2 课时流程
会用描点的方法画反比例函数
y= k x
(k>0)的图象
理解反比例函数 y =
k
(k>0)的性质
x
逐点 导讲练
课堂 小结
作业 提升
课时导入
复习提问
引出问题
我们已经学习了用“描点法”画一次函数的图
四象限内的两支曲线组成, 它们与x 轴、 y 轴都不 相交,在每个象限内,函数值 y 随自变量 x 的增大 而增大.
感悟新知
1.反比例函数 y=-4x(x>0)的图象位于( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
知1-练
感悟新知
知1-练
2.如图,函数 y=1x-(x1x>(x<0),0)的图象所在坐标系的原点是 ( A) A.点 M B.点 N C.点 P D.点 Q
知1-导
(2) 把点A,B 的坐标分别代入 y 8 ,可知点 A 的坐标
x
满足函数表达式 , 点 B 的坐标不满足函数表达式, 所以点 A 在这个函数的图象上,点B不在这个函数 的图象上.
感悟新知
知1-导
(3) 因为k>0,所以这个反比例函数的图象位于第一、 三象限,在每个象限内,函数值 y 随自变量 x 的 增大而减小.
感悟新知
11、反比例函数PPT课件
【考查内容】反比例函数与几何图形的综合,一次函数与反比例函数的交点问 题,待定系数法,相似三角形的判定与性质,勾股定理.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
10
(2)作 AD⊥y 轴于 D,AE⊥x 轴于 E,BF⊥x 轴于 F,BG⊥y 轴于 G,AE、BG
交于 H,
则 AD∥BG∥x 轴,AE∥BF∥y 轴,
∴CODC=AODP,PPFE=BAFE=PPAB,
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
【注意】a.反比例函数的图象是两支双曲线,而且双曲线无限接近于坐标轴,但 永不与坐标轴相交;b.反比例函数的图象位置及图象的曲折程度都与k有关;c.反比 例函数图象的增减性必须强调在每一个分支上比较,不能认为在整个自变量取值范 围内增大(或减小);d.反比例函数的图象关于原点呈中心对称,即在反比例函数图象 的一支曲线上找一点A(a,b),那么点A关于原点的对称点A′(-a,-b)也必在该反比 例函数的另一支曲线上;e.反比例函数的图象是轴对称图形,当k>0或k<0时,都有 两条对称轴,即y=x和y=-x.
的值.
用待定系数法求反比例函数解析式的一般步骤:
(1)设:设所求反比例函数为 y=kx(k≠0); (2)列:根据已知条件(自变量与函数的对应值)列出含 k 的方程; (3)解:解方程得待定的系数 k 的值; (4)代:把 k 的值代入反比例函数 y=kx,得出答案.
八年级数学下册第11章反比例函数:反比例函数的图像与性质pptx课件新版苏科版
知2-练
(3)[模拟·徐州] 对于反比例函数 y= 6x,当 x>2 时,y的取值 范围是__0_<_y_<_3__.
解:把 x=2 代入 y= 6x,得 y=3. ∵ k=6 > 0,∴图像位于第一、三象限,且在每一个 象限内,y随x的增大而减小,∴当 x > 2时,0 < y < 3.
对应值,解一元一次方程;
(2)当题目中已经明确表示“y是x的反比例函数”或“y与
x成反比例关系”时,可直接设函数的表达式为
y=
k x
(k
为常数,k ≠ 0).
知3-练
例 3 已知反比例函数的图像经过点 P(2,4). (1)求该反比例函数的表达式 . (2)判断点 A(-2,-4),B(3,5)是否在这个函数图 像上 . 解题秘方:用待定系数法求出反比例函数的表达式, 然后根据反比例函数图像上点的坐标特征进行判断.
特别提醒
知1-讲
1. 因为反比例函数图像的两个分支关于原点对称,所以只
要画出它在一个象限内的分支,就可以对称地画出另
一个分支 .
2. 画实际问题中的反比例函数的图像时,要考虑自变量取
值范围的限制,一般地,实际问题的图像是反比例函
数图像在第一象限内的一支或其中一部分 .
知1-练
例 1 在平面直角坐标系中画出反比例函数 y=-5x的图像 . 解题秘方:紧扣画图像的“一列、二描、三连” 的步骤作图.
11.2 反比例函数的图像与性质
1 课时讲解 反比例函数的图像
反比例函数的性质 求反比例函数的表达式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 反比例函数
一、 热身练习
1、如图,函数y =k (x +k )与x
k
y =
在同一坐标系中,图象只能是下图中的( )
2、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221
k k y x
++=的
图象上。
若点A 的坐标为(-2,-2),则k 的值为( )
A .1
B .-3
C .4
D .1或-3
3、如图,是反比例函数1=
k y x
和2=k
y x (k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B
两点,若S △AOB =2,则k 2-k 1的值是_________.
第2题图 第3题图 第8题图 4、已知反比例函数x
y 2
-
=,下列结论正确..的是 ①.y 随x 的增大而增大 ②.图象必经过点(-1,2) ③.图象在第二、四象限内 ④.若x >1,则02<<-y 5、过反比例函数y=
x
k
(k≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B,C ,如果⊿ABC 的面积为3.则k 的值为 .
6、已知函数y m m x m m =+-+-()21222是一次函数,它的图象与反比例函数y k x
=的图象交于一点,交点的横坐标是
13
,则此反比例函数的解析式是 7、对于反比例函数4
y x
=,当函数值y ≥-2时,自变量x 的取值范围是___________
8、如图,反比例函数y 1=k 1x 和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1
x >k 2x ,则x 的取值
范围是
9、如图,在直角坐标系中,直线x y -=6与双曲线x x
y (4
=>0)的图象相交于点A,B,设点A 的坐标为(1,1y x ),那么长为1x ,宽为1y 的矩形面积和周长为 .
二、例题分析
例1、如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m
y x
=的图象的两个交点. (1)求反比例函数和一次函数的解析式;
(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程x
m
b kx =+的解(请直接写出答案); (4)求不等式0<-
+x
m
b kx 的解集(请直接写出答案).
例2、在平面直角坐标系xOy 中,已知反比例函数2(0)k
y k x
=
≠满足:当0x <时,y 随x 的增大而减小.若该反
比例函数的图象与直线y x =-+都经过点P
,且OP =,则实数k=________ _.
例3、直线y=a 分别与直线x y 2
1=
和双曲线x y 1
=交于A 、D 两点,过点A 、D 分别作x 轴的垂线段,垂足为点B ,
C. 若四边形ABCD 是正方形,则a 的值为 .
例4、如图,已知△OP 1A 1、△A 1P 2A 2、△A 2P 3A 3、……均为等腰直角三角形,直角顶点P 1、P 2、 P 3、……在函数4y x
=(x >0)图象上,点A 1、A 2、 A 3、……在x 轴的正半轴上,则点P 2012的横坐标为 .
例5、如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y =2
x (x >0)的图像上,顶点A 1、B 1分别在x 轴和y 轴的正
半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2
x (x >0)的图象上,
顶点A 2在x 轴的正半轴上,则点P 3的坐标为
10
x
1x
x 三、 巩固练习
1、已知一次函数b kx y +=与反比例函数x
k
y =的图像有两个交点,一个交点坐标为(2,1),那么另一个交点的坐标是( ) A.(4,2
1
--
) B. ( -2 , -1 ) C. (-1 , -2 ) D.(-1,-5 ) 2、反比例函数x
a a y 12+-=(其中a 为常数)图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,
则1y ,2y ,
3
y 的大小关系是_________。
3、如图,已知双曲线
()110y x x =
>,()
240y x x =>,点P 为双曲线
24
y x =上的一点,且PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA 、PB 分别交双曲线11
y x =
于D 、C 两点,则
△PCD 的面积为_____.
4、如图所示,点A 1,A 2,A 3在x 轴上,且OA 1=A 1A 2=A 2A 3,分别过点A 1,A 2,A 3作y 轴的平行线,与反比例函数y=8
x
(x>0)
的图象分别交于点B 1,B 2,B 3,分别过点B 1,B 2,B 3作x 轴的平行线,分别交y 轴于点C 1,C 2,C 3,连接OB 1,OB 2,OB 3,那么图中阴影部分的面积之和为 .
5、如图,双曲线)0(2
x x
y =
经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .
第5题图 第3题图
6、两个反比例子函数y =
x 3,y =x 6
在第一象限内的图象如图所示,点P 1,P 2,P 3,……,P 2010在反比例函数y =x
6图象上,它们的横坐标分别是x 1,x 2,x 3,……,x 2010,纵坐标分别是1,3,5,……,共2010个连续奇数,过点P 1,P 2,P 3,……,P 2010分别作y 轴的平行线,与y =x
3
的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3)
,
……,Q 2010(x 2010,y 2010),则y 2010=_______________。
7、如图,在函数12
y x
=
(x >0)的图象上,有点1P ,2P ,3P ,…,n P ,1n P +,若1P 的横坐标为2,且以后每点的横坐标与它前面一个点的横坐标的差都为2,过点1P ,2P ,3P ,…,n P ,1n P +分别作x 轴、y 轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为1S ,2S ,3S ,…,n S , 则1S = , 1S +2S +3S +…+n S = .(用n 的代数式表示)
8、如图,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (2,0)作直线l 交AO 于D ,交AB 于E ,点E 在某反比例函数图象上,当△ADE 和△DCO 的面积相等时,那么该反比例函数解析式为 。
四、挑战题
1、 如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数k
y x
=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列三个结论:①△CEF 与△DEF 的面积相等;②△DCE≌△CDF; ③AC BD =.其中正确结论的序号是 .
2、如图,正方形OABC 的面积是4,点B 在反比例函数(00)k
y k x x
=
><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S=m(m 为常数,且0<m<4)时,点R 的坐标是________________________ (用含m 的代数式表示)。