第12讲_一次函数
初二数学-第12讲 一次函数k,b与图象关系

第十二讲 一次函数k,b 与图象关系【知识要点】1.一次函数)0(≠+=k b kx y 中,k (斜率):倾斜程度,b (截距):与y 轴交点坐标, 一次函数图像:一条交x 轴(0,b ),y 轴(kb-,0)的直线; 2.正比例函数的图像(kx y =的图像)是一条过原点(0,0)的直线。
3.正比例函数,一次函数具有相同的性质: ①当k >0时,y 随x 的增大而增大; ②当k <0时,y 随x 的增大而减小;||k 越大,直线与x 轴相交所成的锐角越大. 4.一次函数b kx y +=的图像与k 、b 的符号关系如下表:★同一平面内,两直线111与222的位置关系可由系数决定:①相交与2221l l k k ⇔≠ ②()平行222121//l l b b k k ⇔⎩⎨⎧≠=③重合与=222121l l b b k k ⇔⎩⎨⎧= ④()点,轴上相交与与=12221210b y l l b b k k ⇔⎩⎨⎧≠【经典例题】【例1】在直角坐标系内分别作出下列函数的图像: ① 42+=x y ② 421+-=x y ③ 42-=x y ④ 421--=x y并写出函数与坐标轴交点坐标及与坐标轴所围成面积总结:两直线平行的条件:两直线垂直的条件: 。
小结:函数y kx b =+的图像与坐标轴围成的三角形的面积为22b k。
【例2】已知一次函数)4()36(-++=n x m y 。
求:①m 为何值时,y 随x 的增大而减小;②m 、n 满足什么条件时,函数图像与y 轴的交点在x 轴下方; ③m 、n 分别为何值时,函数图像经过原点; ④m 、n 满足什么条件时,函数图像不经过第二象限。
【例3】①直线y kx b =+,经过一、二、四象限,到直线y bx k =-的图象只能是( )②设b >a ,将一次函数y=bx+a 与y=ax+b 的图象画在平面直角坐标系内,则有一组a 、b 的取值,使得下列四个图中的一个为正确的是( )③当00<,>ac ab ,直线0ax by c ++=不通过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 ④已知abc ≠0,且p acb bc a c b a =+=+=+,那么直线p px y +=一定经过( )。
北师大2014年中考数学复习方案课件(考点聚焦+归类探究+回归教材+中考预测):一次函数的应用(22张PPT)

图12-3
考点聚焦 归类探究 回归教材 中考预测
第12讲┃一次函数的应用
(1)轿车到达乙地后,货车距乙地多少千米? (2)求线段CD对应的函数解析式; (3)轿车到达乙地后,马上沿原路以CD段速度返回,求 货车从甲地出发后多长时间再与轿车相遇(结果精确到 0.01).
考点聚焦
归类探究
回归教材
中考预测
一次函数的应用
第12讲┃一次函数的应用
考 点 聚 焦
考点 一次函数的应用 1.建模思想:解答一次函数的应用题时,应从给定的信息 中抽象出一次函数关系,理清哪个是自变量,哪个是自变量的 函数,再利用一次函数的图象与性质求解,同时要注意自变量 的取值范围. 2.一次函数的最大(小)值:一次函数y=kx+b(k≠0)自变 量x的范围是全体实数,图象是直线,因此没有最大值与最小 值. 3.实际问题中的一次函数:自变量的取值范围一般受到限 制,其图象可能是线段或射线,根据函数图象的性质,就存在 最大值或最小值. 常见类型:(1)求一次函数的解析式.(2)利用一次函数的图 象与性质解决某些问题如最值等.
考点聚焦
归类探究
回归教材
中考预测
第12讲┃一次函数的应用
解
析
(1)通过函数图象可以直接得出用电量为180千
瓦时,电费的数量; (2)从函数图象可以看出第二档的用电范围; (3)用总费用÷总电量就可以求出基本电价;
(4)结合函数图象可以得出小明家8月份的用电量超过450
千瓦时,先求出直线BC的解析式就可以得出结论
考点聚焦
归类探究
回归教材
中考预测
第12讲┃一次函数的应用
考点聚焦
归类探究
回归教材
中考预测
第12讲┃一次函数的应用
第12讲 一次函数

【即时应用】
若直线y=x+3与直线y=2x-1的交点坐标为(4,7),
x 4, x y 3, 则方程组 的解为______ y 7. 2x y 1
【核心点拨】
1.理解一次函数的定义应注意以下三个方面:
(1)形式:y=kx+b;(2)条件:k≠0;(3)实质:函数y是自变量x 的一次式. 2.正比例函数都是一次函数,但一次函数不一定是正比例函数. 3.一次函数的增减性由k的符号决定,与b的符号无关.
2
3.①y=x2+5x;②y=2π r;③y=
②⑤⑥ ⑤y=( 2 3 )x+1;⑥s=30t.其中是一次函数的是_______,是 ②⑥ 正比例函数的是_____.(只填序号)
10 ;④y=kx+b; x
二、一次函数的图象和性质
1.一次函数y=kx+b(k,b是常数,k≠0)的图象和性质
k,b符号
4.(2012·怀化中考)如果点P1(3,y1),P2(2,y2)在一次函数y=2x-
1的图象上,则y1_______y2(填“>”“<”或“=”).
【解析】∵一次函数关系式为y=2x-1,∴y随x的增大而增大, 又∵3>2,∴y1>y2. 答案:>
5.如图,直线y=- 3 x+3与x轴、y轴分别交于A,B两点,则△AOB
【即时应用】 0 1.一次函数y=-2x+b的图象过原点,则b=__.
2.在直线y=2x+1上有两个点(x1,y1)和(x2,y2),且x1>x2,则 > y1___y2. 3.将直线y=-x+1向下平移两个单位后,所得直线的解析式为 y=-x-1 _______. > > 4.直线y=(k-2)x+b+1经过第一、二、三象限,则k___2,b___-1.
第12讲一次函数复习PPT课件

当b=0 时,y=kx+b 即为 y=kx,
所以正比例函数,是一次函数的特例.
(1)若y=5x3m-2是正比例函数,m= 1 。 (2)若 y (m 2)xm23 是正比例函数,m= -2 。
考点2、正比例函数与一次函数的图象与性质
正比例函数y=kx的图象与性质
(1)图象:正比例函数y= kx (k 是常 数,k≠0)) 的图象是经过原点的一条直线, 我们称它为直线y= kx 。
1、通过近三年潍坊中考考点的展示及连接中考环节,体验潍坊中考对一次函 数的考查。 2、通过一次函数知识网络的整理,整体把握本讲的知识构成。 3、通过考点精讲及例习题,进一步加深以下知识点的认知及应用:
(1)一次函数及正比例函数的概念。 (2)一次函数的图象及性质。 (3)用待定系数法求一次函数的解析式。 (4)一次函数的实际应用。 4、通过检测过关环节反馈本讲知识的达标情况,及时查缺补漏。
4.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位 置正确的是 ( C)
A
B
C
D
5.(202X·安徽第20题)如图,一次函数y=kx+b的图象分别与反比例函数y= a x
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y= a 的表达式; x
【答案】 (1)由图象可知,当x=4 h时,y=380 km,故从小刚家到该景区乘车一共用了 4小时. (2)设直线AB的函数关系式为y=kx+b, 由题意可知:A(1,80),B(3,320),
∴
∴线段AB的解析式为y=120x-40(1≤x≤3). (3)小刚一家出发2.5小时时处于AB段,把x=2.5代入y=120x-40,得y=120×2.540=260(km), 380-260=120(km). 所以小刚一家出发2.5小时时离目的地120 km.
2024年人教版数学九年级上册第12讲 一次函数-课件

【思路点拨】根据日销售利润=单件利润×日销售量即可求出日销售利润;根据点D的 坐标,利用待定系数法即可求出线段OD的函数关系式,求出线段DE的函数关系式,联 立两函数关系式求出交点D的坐标,此题得解.
都二
能分
运浇
律;
”二
,分
我管
们教
一,
起八
,分
静放
待手
花;
开二
。分
成
➢ Pure of heart, life is full of sweet and joy!
解析:由正比例函数的定义可得:m2-1=0,且m-1≠0,解得:m=-1,故答案为:-1. 【思路点拨】正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.
-2
解析:∵若正比例函数y=kx的图象经过第二、四象限,∴k<0,∴符合要求的k的值是-2, 故答案为:-2.
【思路点拨】据正比例函数的性质;当k<0时,正比例函数y=kx的图象经过第二、四 象限,可确定k的取值范围,再根据k的范围选出答案即可.
(2,0)
(0,4)
4
解析:令y=0得一次函数的图象与x轴交点坐标为(2,0),令x=0得一次函数的图象与y轴交 点坐标为(0,4),易求面积为4.
解:一次函数y=kx+b的图象经过M(0,2)和N(1,3)两点,可用待定系数法求得k=1, b=2.∴y=x+2.
B
解析:把点(1,m)代入y=3x,可得:m=3,故选B. -1
< 解析:∵一次项系数2>0,又∵-1<2,∴y1<y2.故答案是:<.
(0,6) 解析:根据题意令x=0,解得:y=6,∴一次函数y=-3x+6的图象与y轴的交点坐标是(0,6).
【思路点拨】根据一次项系数的符号,以及一次函数的性质即可直接判断;根据题意令x=0, 解得y值即可得图象与y轴的交点坐标.
第12讲一次函数

考点知识精讲
考点三 一次函数图象的性质
一次函数y=kx+b,当k>0时,y随x的增大而 增大 ,图象一定经 过第 一、三 象限;当k<0时,y随x的 增大 而减小,图象一定经过第 二、四 __________象限. 考点四 一次函数的应用
用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量 ;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解 决问题;⑤答.
第12讲 一次函数
考点知识精讲
考点一 一次函数的定义
一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b= 0 时,一次函数y=kx+b就成为 y=kx(k是常数,
正比例函数. k≠0),这时,y叫做x的______________. 1.由定义知:y是x的一次函数⇔它的解析式是 y=kx+b ,其中k 、b是常数,且k≠0. 2.一次函数解析式y=kx+b(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是1;(3)常数项b可为任意实数. 3.正比例函数解析式y=kx(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是 1 ;(3)没有常数项或者说常数项为 0 .
6.如右图所示,直线l过A、B两点,A(0,-1),
B(1,0),则直线l的解析式为
y=x-1 .
举
一
反
三
7.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山 顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路
长的2倍.小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180
b =5 , 2 解得 k=1, 4
1 5 所以 y 乙= x+ . 4 2
第12讲 一次函数应用

第12讲 一次函数的应用方案选择:1.某单位急需用车,准备和甲、乙两个出租公司中的一家签订租车合同. 设汽车每月行驶x 千米,每月应付给甲公司费用为y1元,应付给乙公司费用为y2元,y1,y2与x 的函数关系如图所示,若该单位每月行驶的路程为4000km ,为使费用最少,则该单位应该选择( ) A.甲公司 B.乙公司 C.甲、乙都一样 D.无法确定2.为了缓解用电紧张的矛盾,某电力公司制定了新的用电收费标准,每月用电量x (千瓦·时)与应付电费y (元)的关系如图所示.(1)根据图象求出y 与x 的函数关系式; (2)请回答该电力公司的收费标准是什么?3.某酒厂每天生产A. B 两种品牌的白酒共600瓶,A. B 两种品牌的白酒每瓶的成本和利润如表: 设每天生产A 种品牌白酒x 瓶,每天获利y 元。
(1)求y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?4.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg −5000kg (含2000kg 和5000kg )的客户有两种销售方案(客户只能选择其中一种方案): 方案A :每千克5.8元,由基地免费送货。
方案B :每千克5元,客户需支付运费2000元。
(1)请分别写出按方案A ,方案B 购买这种苹果的应付款y (元)与购买量x (kg )之间的函数表达式 (2)求购买量x 在什么范围时,选用方案A 比方案B 付款少(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案。
5.某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费。
(1)分别写出甲、乙两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由。
2014中考总复习第12讲一次函数

第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
【思路点拨】 一次函数 y=kx+b中, k的符号决定其图象的变化规律, 当 k>0 时, 直线 y=kx+b自左至右上升, 当 k<0 时, 直线 y=kx+b自左至右下降; b决定直线 y=kx+b 与 y轴的交点, 当 b>0 时, 交点在 y轴正半轴, 当 b=0 时, 交点为原点, 当 b<0 时, 交点在 y轴负半轴. 【自主解答】 由图象自左而右下降知: m -2<0, ∴m <2, 故选 D . 【答案】 D
【答案】 D
第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
7.(2010·南平中考)我国西南五省市的部分地区发生严重旱 灾,为鼓励节约用水,某市自来水公司采取分段收费标准,如图 反映的是每月收取水费 y(元)与用水量 x(吨)之间的函数关系. (1)小明家五月份用水 8 吨,应交水费 元; (2)按上述分段收费标准,小明家三、四 月份分别交水费 26 元和 18 元,问四月份比三月份节约用水多 少吨? 【解析】 (1)由图象可设:y=kx(0≤x≤10),当 x=10 时,y=20, 代入并求出 k=2,即 y=2x(0≤x≤10), 当 x=8 时,y=16,∴应交水费 16 元.
Hale Waihona Puke 第一部分复习目标知识回顾
重点解析
探究拓展
真题演练
【自主解答】
(1)40
(2)设甲车的速度为 V km/h,从图象可得出: 12V-(12+1)×40=200. 解得 V=60. ∵甲车的速度为 60 km/h. 从图象还可得出:60a=40(a+1),解得 a=2. 答:甲车的速度为 60 km/h,a 的值为 2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.一次函数的图象
a. 正比例函数y=kx(k≠0)的图象是过点(_____),(______) 0,0 1,k 一条直线 的_________。 b b b.一次函数y=kx+b(k≠0)的图象是过点(0,___),(____, 一条直线 0)的__________。 k c.一次函数y=kx+b(k≠0)的图象与k,b符号的关系:
5.(2010·黔南州中考)已知正比例函数 y=kx(k≠0)的图象如图所示,则在下列选 项中k值可能是( (A)1 (C)3 ) (B)2 (D)4
3
【解析】选B.若正比例函数y= kx经过(3,5),此时k= 5 ;若 经过(2,6)此时k=3,由图象可知 5 <k<3,故选B.
3
二、填空题(每小题6分,共24分) 6.已知y是x的一次函数,下表给出了部分对应值,则m的值 是_____.
> k___0,b___0 >
> < k___0,b___0
< > k___0,b___0
< < k___0,b___0
3.一次函数的性质
一次函数y=kx+b(k ≠ 0)的性质: 增大 ⑴当k>0时,y随x的增大而_________。 减小 ⑵当k<0时,y随x的增大而_________。
例:点A(5,y1)和B(2,y2)都在直线y= -x+1上,则y1与 y2的关系是( ) C A、y1≥ y2 B、y1= y2 C、y1<y2 D、y1>y2
11.(12分)如图,已知一次函数y=kx+b的图象经过A(-2, -1),B(1,3)两点,并且交x轴于点C,交y轴于点D,
(1)求该一次函数的解析式;
(2)求tan∠OCD的值;
(3)求证:∠AOB=135°.
【解 ,0),D(0,5 ).在Rt△OCD中,OD= , 4 3 OD 4 5 OC= ,∴tan ∠OCD= = . OC 3 4 3
元,若y1、y2与x之间的函数关系如图所示,其中x=0对应的
函数值为月固定租赁费,则下列判断错误的是( )
(A)当月用车路程为2 000 km时,两家汽车租赁公司租赁费用
相同 (B)当月用车路程为2 300 km时,租赁乙汽车租赁公司的车比
较合算
(C)除去月固定租赁费,甲租赁公司每公里收取的费用比乙租 赁公司多 (D)甲租赁公司平均每公里收到的费用比乙租赁公司少 【解析】选D.根据图象信息,A、B、C选项正确.
(1)解:由题意知:2m-6=12,解得:m=9 ; 当m=9时,m+1=10≠0, 所以函数的解析式:y=10x+12 (2)解: 由题意知:m +1= 2,解得 m = 1; 当m=1时,2m-6=-4 ≠5, 所以函数的解析式: y = 2x-4
4.某软件公司开发出一种图书管理软件,前期投入的开发、 广告宣传费用共50000元,且每售出一套软件,软件公司 还需支付安装调试费用200元. (1)试写出总费用y(元)与销售套数x(套)之间的函数关系式; (2)如果每套定价700元,软件公司至少要售出多少套软件 才能确保不亏本?
2 2 解得,x≥ .所以 ≤x≤1. 3 3 2 3
③当x>1时,依题意,(60x-30)-30x≤10.
4 4 .所以1<x≤ . 3 3 2 4 综上所述,当 ≤x≤ 时,甲、乙两船可以相互望见. 3 3
解得,x≤
一、知识要点
1.一次函数的概念
一次函数的概念:如果函数y=_______(k、b为 kx +b ≠0 常数,且k______),那么y叫做x的一次函数。 kx ≠0 =0 特别地,当b_____时,函数y=____(k____)叫做正比 例函数。
★理解一次函数概念应注意下面两点:
1 ⑴、解析式中自变量x的次数是___次, ⑵、比例系数_____。 k≠0
个白球,3个红球. (1)求从箱中随机取出一个白球的概率是多少? (2)若往装有5个球的原纸箱中,再放入x个白球和y个红球, 从箱中随机取出一个白球的概率是 1 ,求y与x的函数解析
3
式.
2 【解析】(1)取出一个白球的概率P= . 5
(2)∵取出一个白球的概率P= ∴5+x+y=6+3x,即y=2x+1, ∴y与x的函数解析式是y=2x+1.
(3)取点A关于原点的对称点E(2,1), 则问题转化为求证∠BOE=45°.
由勾股定理可得,OE= 5 ,BE=
∴OB2=OE2+BE2, ∴△EOB是等腰直角三角形. ∴∠BOE=45°. ∴∠AOB=135°.
5,OB= 10 ,
12.(12分) (2010·常州中考)向阳花卉基地出售两种花卉—
【解析】 (1)120,a=2; (2)由点(3,90)求得,y2=30x. 当x>0.5时,由点(0.5,0),(2,90)求得,y1=60x-30. 当y1=y2时,60x-30=30x,解得,x=1. 此时y1=y2=30.所以点P的坐标为(1,30). 该点坐标的意义为:两船出发1 h后,甲船追上乙船,此时两 船离B港的距离为30 km. 求点P的坐标的另一种方法: 由图可得,甲的速度为 乙的速度为
3
【解析】选B.若正比例函数y= kx经过(3,5),此时k= 5 ;若 经过(2,6)此时k=3,由图象可知 5 <k<3,故选B.
3
7.一次函数y1=kx+b与y2=x+a的图象如图, 则下列结论①k<0;②a>0;③当x<3时,
y1<y2中,正确的是_____.(填序号)
答案:①
3、已知:函数y = (m+1) x+2 m﹣6 (1)若函数图象在y轴上的截距是12,求此函数 的解析式。 (2)若函数图象与直线 y = 2 x + 5 平行,求 其函数的解析式。
运费y(元)由如图所示的一次函数图象确定,那么旅客可携带 的免费行李的最大质量为( )
(A)20 kg
(B)25 kg
(C)28 kg
(D)30 kg
【解析】选A.根据函数图象求得解析式为y=30x-600,当y=0时
x的值为20.
2.若一次函数y=(m+1)x+m的图象过第一、三、四象限,则函 数y=mx2-mx(
解: (1) y=200x+50000
(2) 由题意,得 700x≥200x+50000
解得 x ≥100 所以软件公司至少要售出100套软件才能确保不亏本。
宇轩图书
目录
首页
上一页
下一页
末页
一、选择题(每小题6分,共30分)
1.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其
C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、 y2(km),y1、y2与x的函数关系如图所示. (1)填空:A、C两港口间的距离为_____km, a=_____; (2)求图中点P的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km时能够相互望见,求甲、乙两 船可以相互望见时x的取值范围.
【解析】设y=kx+b;根据题意得: ∴y=-2x+3.把x=5代入得y=-7,即m=-7. 答案:-7
9.已知一次函数y=(a-1)x+b的图象如图所示,那么a的取值范 围是_____. 【解析】由图知a-1>0,∴a>1. 答案:a>1
三、解答题(共46分)
10.(10分)已知一纸箱中装有5个只有颜色不同的球,其中2
—百合和玫瑰,其单价为:玫瑰4元/株,百合5元/株.如果同 一客户所购的玫瑰数量大于1 200株,那么每株玫瑰可以降价
1元,现某鲜花店向向阳花卉基地采购玫瑰1 000株~1 500株,
百合若干株,此鲜花店本次用于采购玫瑰和百合恰好花去了9 000元.然后再以玫瑰5元,百合6.5元的价格卖出.问:此鲜花 店应如何采购这两种鲜花才能使获得毛利润最大? (注:1 000株~1 500株,表示大于或等于1 000株,且小于
③ 函数y随x的增大而减小的是______;把②的图像
④y=-4x-3 。
② 其中过原点的直线是_____;函数y随x的增大而
向下平移2个单位的图像解析式是 y=2x-2 ; 图象
④ 过第二、三、四象限的是_____。
8.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为
5,则k的值为_____. 【解析】当x=0时,y=3;当y=0时,x=- , ∴一次函数y=kx+3与x、y轴的交点坐标为(0,3)、(由题意:32+|答案:〒 3
或等于1 500株,毛利润=鲜花店卖出百合和玫瑰所获的总金
额-购进百合和玫瑰的所需的总金额.)
【解析】设采购玫瑰x株,百合y株,毛利润为W元.
①当1 000≤x≤1 200时,
得4x+5y=9 000,y= W=x+1.5y=2 700x , 5
当x取1 000时,W有最大值2 500. ②当1 200<x≤1 500时,
解:把x=1时, y=5;x=6时,y=0分别代入解析式,得
ì k +b = 5 ï í ï 6k + b = 0 î
ì k =-1 ï 解得 í ï b =6 î
y= - x+6
∴此一次函数的解析式为
(2)利用一次函数解决实际问题。
二、例题解析
1. 填空题: (1)有下列函数: ①y=6x-5 , ② y=2x , ③y=x+4 , ①、②、③ 增大的是___________;
9 000-3x 5 11x W=2x+1.5y=2 700+ , 10
得3x+5y=9 000,y=