中考数学圆与相似综合经典题附详细答案

合集下载

中考数学专题复习圆与相似的综合题附答案

中考数学专题复习圆与相似的综合题附答案

中考数学专题复习圆与相似的综合题附答案一、相似1.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.【答案】(1)解:∴代入,得解得∴抛物线对应二次函数的表达式为:(2)解:如图,设直线CD切⊙P于点E.连结PE、PA,作点.由得对称轴为直线x=1,∴∴∴为等腰直角三角形.∴∴∴∴为等腰三角形.设∴在中,∴∴整理,得解得,∴点P的坐标为或(3)解:存在点M,使得∽.如图,连结∵∴为等腰直角三角形,∴由(2)可知,∴∴分两种情况.当时,∴,解得.∴∴当时,∴,解得∴∴综上,点M的坐标为或【解析】【分析】(1)用待定系数法即可求解;(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。

2.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。

(1)求证:DC2=CE·AC;(2)若AE=2EC,求之值;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,∴,∴DC2=CE·AC;(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,DC= k,连接OC,OD,∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,∵AB是⊙O的直径,∴在Rt△ACB中,,∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,过C作CG⊥AB于G,设EC=k,∵∠CAB=30°,∴,又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。

中考数学压轴题专题圆与相似的经典综合题及答案.doc

中考数学压轴题专题圆与相似的经典综合题及答案.doc

中考数学压轴题专题圆与相似的经典综合题及答案一、相似1.如图所示,△ ABC 中, AB=AC,∠ BAC=90°, AD⊥ BC, DE⊥ AC,△ CDE 沿直线 BC 翻折到△ CDF,连结 AF 交 BE、 DE、 DC分别于点 G、 H、I.(1)求证: AF⊥ BE;(2)求证: AD=3DI.【答案】(1)证明:∵在△ ABC中, AB=AC,∠ BAC=90°, D 是 BC 的中点,∴AD=BD=CD,∠ ACB=45 ,°∵在△ ADC中, AD=DC,DE⊥ AC,∴A E=CE,∵△ CDE沿直线 BC 翻折到△ CDF,∴△ CDE≌ △CDF,∴C F=CE,∠ DCF=∠ACB=45 ,°∴C F=AE,∠ ACF=∠DCF+∠ACB=90 ,°在△ ABE 与△ ACF中,,∴△ ABE≌ △ ACF(SAS),∴∠ ABE=∠ FAC,∵∠ BAG+∠ CAF=90 ,°∴∠ BAG+∠ ABE=90 ,°∴∠ AGB=90 ,°∴AF⊥BE(2)证明:作IC 的中点 M,连接 EM,由( 1)∠ DEC=∠ECF=∠ CFD=90°∴四边形 DECF是正方形,∴EC∥ DF, EC=DF,∴∠ EAH=∠ HFD, AE=DF,在△ AEH 与△FDH 中,∴△ AEH≌ △FDH( AAS),∴EH=DH,∵∠ BAG+∠ CAF=90 ,°∴∠ BAG+∠ ABE=90 ,°∴∠ AGB=90 ,°∴AF⊥BE,∵M 是 IC 的中点, E 是 AC 的中点,∴EM∥AI,∴,∴DI=IM ,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】( 1)根据翻折的性质和SAS 证明△ ABE≌ △ ACF,利用全等三角形的性质得出∠ ABE=∠ FAC,再证明∠ AGB=90°,可证得结论。

中考数学 圆与相似综合试题及答案解析

中考数学 圆与相似综合试题及答案解析

中考数学圆与相似综合试题及答案解析一、相似1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sinA= ,求BH的长.【答案】(1)证明:如图,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线(2)证明:连接AC,如图2所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE= ,∴AB=5,BE=AB•sin∠BAE=5× =3,∴EA= =4,∵,∴BE=CE=3,∵CE2=EH•EA,∴EH= ,∴在Rt△BEH中,BH= .【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。

由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°;(2)连接AC,要证CE2=EH•EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解;(3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。

2.如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB 重合部分的面积为S.根据上述条件,回答下列问题:(1)当矩形OEDC的顶点D在直线AB上时,求t的值;(2)当t=4时,求S的值;(3)直接写出S与t的函数关系式(不必写出解题过程);(4)若S=12,则t=________.【答案】(1)解:由题意可得∠BCD=∠BOA=90°,∠CBD=∠OBA,∴△BCD∽△BOA,∴而CD=OE=t,BC=8−CO=8− ,OA=4,则8− ,解得t=,∴当点D在直线AB上时,t=(2)解:当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得,即,解得CF=3,∴S= OC(OE+CF)= ×2×(3+4)=7(3)解:①当0<t≤时,S= t2②当<t≤4时,S=-t2+10t−16③当4<t≤16时,S=t2+2t(4)8【解析】【解答】解:(3)①当0﹤t≤时,如图(1),②当<t≤4时,如图(2),∵A(4,0),B(0,8)∴直线AB的解析式为y=-2x+8,∴G(t,-2t+8),F(4-,),∴DF=t-4,DG=t-8,∴S=S矩形COED-S△DFG=t·③当4<t≤16时,如图(3)∵CD∥OA,∴△BCF∽△BOA,∴∴,∴CF=4-,∴S=S△BOA-S△BCF=(4)由题意可知把S=12代入S= t2+2t中, . t2+2t=12,整理,得t2-32t+192=0.解得 t1=8,t2=24>16(舍去)当S=12时,t=8【分析】(1)首先判断出△BCD∽△BOA,根据相似三角形对应边成比例得出BC ∶BO=CD ∶OA ,根据矩形的性质及线段的和差得出CD=OE=t,BC=8−CO=8- ,OA=4,利用比例式即可得出方程,求解得出t的值;(2)当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得CF :CB=OA ∶OB ,根据比例式得出方程,求解得出CF的长,根据梯形的面积公式即可算出答案;(3)①当0﹤t≤ 时,如图(1),其重叠部分的面积就是矩形的面积,根据矩形的面积公式即可得出函数关系式;②当<t≤4时,如图(2),利用待定系数法,求出直线AB 的解析式,根据和坐标轴平行的直线上的点的坐标特点及直线上的点的坐标特点分别表示出G,F的坐标,进而表示出DF的长,DG的长,根据S=S矩形COED-S△DFG即可得出函数关系式;③当4<t≤16时,如图(3)根据矩形的性质得出CD∥OA,根据平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似得出△BCF∽△BOA,由相似三角形的对应边成比例得出BC:BO=CF:OA,根据比例式表示出CF的长,再根据S=S△BOA-S△BCF即可得出函数关系式。

中考数学 圆与相似 综合题附答案解析

中考数学 圆与相似 综合题附答案解析

中考数学圆与相似综合题附答案解析一、相似1.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M 从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN= EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.【答案】(1)证明::∵ °, ° ,∴ °∵ ,∴∵∥ ,∴∴ °,∴过点作于点 ,则 .在中,∴∴(2)解:在中,,∴∵a.当点在线段上时,过点作于点 ,在中,由(1)可知:,∴∴∴b.当点在线段延长线上时,过点作于点在中, ,在中, ,∴ ,∴(3)解:连接 ,交于点 .∵为的中点∴ ,∴ .∵ ,∴ ,∴ ,∴ ,∴ .∵∥∴ ,∴ ,,∵ ,∴ ,又∵ ,∴∽ ,∴,即 ,∴【解析】【分析】(1)过点E作EH⊥MN于点H ,由已知条件易得EN=EM,解直角三角形EMH易得MH和EM的关系,由等腰三角形的三线合一可得MN=2MH即可求解;(2)在Rt△ABE中,由直角三角形的性质易得DE=BE=2AE,由题意动点M从点E出发沿射线ED运动可知点M可在线段ED上,也可在线段ED外,所以可分两种情况求解:①当点M在线段ED上时,过点N作NI⊥AD于点I ,结合(1)中的结论MN=EM即可求解;②当点M在线段ED延长线上时,过点N作NI'⊥AD于点I ',解RtΔNI′M 和可求得NI'和NE,则DM=NE−DE,所以以M、N、D为顶点的三角形面积y=MD.NI可求解;(3)连接CM,交BD于点N',由(2)中的计算可得MN、CD、MC的长,解直角三角形CDM可得∠DMC的度数,于是由三角形内角和定理可求得∠NMC=,根据平行线的性质可得DMN'是直角三角形,根据直角三角形的性质可得MN′=MD;则NC的长可求,由已知条件易得ΔNMC∽ΔMN′G根据所得的比例式即可求解.,2.如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆与AC相切于点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G.(1)求证:D是弧EC的中点;(2)如图2,延长CB交⊙O于点H,连接HD交OE于点K,连接CF,求证:CF=OK+DO;(3)如图3,在(2)的条件下,延长DB交⊙O于点Q,连接QH,若DO=,KG=2,求QH的长【答案】(1)证明:如图1中,连接OC.∵AC是⊙O的切线,∴OC⊥AC,∴∠ACO=90°,∴∠A+∠AOC=90°,∵CA=CB,∴∠A=∠B,∵EF⊥BC,∴∠OGB=90°,∴∠B+∠BOG=90°,∴∠BOG=∠AOC,∵∠BOG=∠DOE,∴∠DOC=∠DOE,∴点D是的中点(2)证明:如图2中,连接OC.∵EF⊥HC,∴CG=GH,∴EF垂直平分HC,∴FC=FH,∵∠CFK= ∠COE,∵∠COD=∠DOE,∴∠CFK=∠COD,∵∠CHK= ∠COD,∴∠CHK= ∠CFK,∴点K在以F为圆心FC为半径的圆上,∴FC=FK=FH,∵DO=OF,∴DO+OK=OF+OK=FK=CF,即CF=OK+DO;(3)解:如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF= ﹣(2﹣x),∵CG2=CF2﹣FG2=CO2﹣OG2,∴( +x)2﹣[ -(2﹣x)]2=()2﹣(2﹣x)2,解得x= ,∴CF=5,FG=4,CG=3,OG= ,∵∠CFE=∠BOG,∴CF∥OB,∴ = = ,可得OB= ,BG= ,BH= ,由△BHM∽△BOG,可得 = = ,∴BM= ,HM= ,MQ=OQ﹣OB﹣BM=在Rt△HMQ中,QH= = =【解析】【分析】(1)如图1中,连接OC.根据切线的性质得出OC⊥AC,根据垂直的定义得出∠ACO=90°,根据直角三角形两锐角互余得出∠A+∠AOC=90°,根据等边对等角得出∠A=∠B,根据垂直的定义得出∠OGB=90°,根据直角三角形两锐角互余得出∠B+∠BOG=90°,根据等角的余角相等得出∠BOG=∠AOC,根据对顶角相等及等量代换得出∠DOC=∠DOE,根据相等的圆心角所对的弧相等得出结论;(2)如图2中,连接OC.根据垂径定理得出CG=GH,进而得出EF垂直平分HC,根据线段垂直平分线上上的点到线段两个端点的距离相等得出FC=FH,根据圆周角定理及等量代换得出∠CFK=∠COD,∠CHK=∠CFK,从而得出点K在以F为圆心FC为半径的圆上,根据同圆的半径相等得出FC=FK=FH,DO=OF,根据线段的和差及等量代换得出CF=OK+DO;(3)如图3中,连接OC、作HM⊥AQ于M.设OK=x,则CF= +x,OG=2﹣x,GF=﹣(2﹣x),根据勾股定理由CG2=CF2﹣FG2=CO2﹣OG2,列出关于x的方程,求解得出x的值,从而得出CF=5,FG=4,CG=3,OG= 根据平行线的判定定理得出,内错角相等,两直线平行得出CF∥OB,根据平行线分线段成比例定理得出C F ∶O B = C G∶ G B = F G ∶G O ,进而可得OB,BG,BH的长,由△BHM∽△BOG,可得 B H ∶O B = B M ∶B G = H M ∶O G,再得出BM,HM,MQ的长,在Rt△HMQ中,根据勾股定理得出QH的长。

中考数学圆与相似综合经典题及答案解析

中考数学圆与相似综合经典题及答案解析

算易得比例式:
,根据有两对边对应相等,且它们的夹角也相等的两个三角形相似
可得△ ABD∽ △ AME,则∠ AME=∠ ABD=45°,于是可得点 E 在射线 MC 上,根据轴对称的性
质可得△ ABE′就是所求周长最小的△ ABE,在 Rt△ ABN 中,用勾股定理即可求得 AN 的值,
则△ ABE 周长最小值=AB+AN 即可求解。
EF∥ BC, 于,
∴ QM∥ BE, ∴


(舍)或

(3)解:当点 Q 在 DF 上时,如图 2,


.
当点 Q 在 BF 上时,
,如图 3,
∴ ∴
时,如图 4,
∴ ∴
时,如图 5,
∴ ∴ 综上所述,t=1 或 3 或 或 秒时,△ PQF 是等腰三角形 【解析】【分析】(1)根据题中的已知条件可得△ BEF 和△ DCB 中的两角对应相等,从而 可证△ BEF∽ △ DCB;(2)过点 Q 作 QM⊥EF 于 M ,先根据相似三角形的预备定理可证 △ QMF ∽ △ BEF;再由△ QM F ∽ △ BEF 可用含 t 的代数式表示出 QM 的长;最后代入三角 形的面积公式即可求出 t 的值。(3)由题意应分两种情况:(1)当点 Q 在 DF 上时,因 为 ∠ PFQ 为钝角,所以只有 PF = QF 。(2)当点 Q 在 BF 上时,因为没有指明腰和底,所 以有 PF=QF;PQ = FQ;PQ = PF 三种情况,因此所求的 t 值有四种结果。 4.如图 1,在△ ABC 中,∠ BAC=90°,AB=AC=4,D 是 BC 上一个动点,连接 AD,以 AD 为 边向右侧作等腰直角△ ADE,其中∠ ADE=90°.

中考数学压轴题专题圆与相似的经典综合题含答案

中考数学压轴题专题圆与相似的经典综合题含答案

中考数学压轴题专题圆与相似的经典综合题含答案一、相似1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【答案】(1)解:由题意得:,解得:a= ,b=(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,且∠ACB=90°.∵AE=2t,AF= t,∴ .又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE= AB= t= ÷2= ;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE= ,∴t= ;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= ,DH=2m,∴DB= .∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:.【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。

中考数学圆与相似的综合题试题含详细答案

中考数学圆与相似的综合题试题含详细答案一、相似1.如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.【答案】(1)解:设直线的解析式为()∵,∴解得∴直线的解析式为∵抛物线经过点,∴解得∴(2)解:∵轴,则,∴,∵点是的中点∴∴解得,(不合题意,舍去)∴(3)解:∵,,∴,∴∵∴当与相似时,存在以下两种情况:∴解得∴∴ ,解得∴【解析】【分析】(1)运用待定系数法解答即可。

(2)由(1)可得直线AB的解析式和抛物线的解析式,由点M(m,0)可得点N,P用m 表示的坐标,则可求得NP与PM,由NP=PM构造方程,解出m的值即可。

(3)在△BPN与△APM中,∠BPN=∠APM,则有和这两种情况,分别用含m的代数式表示出BP,PN,PM,PA,代入建立方程解答即可。

2.如图,Rt△AOB在平面直角坐标系中,已知:B(0,),点A在x轴的正半轴上,OA=3,∠BAD=30°,将△AOB沿AB翻折,点O到点C的位置,连接CB并延长交x轴于点D.(1)求点D的坐标;(2)动点P从点D出发,以每秒2个单位的速度沿x轴的正方向运动,当△PAB为直角三角形时,求t的值;(3)在(2)的条件下,当△PAB为以∠PBA为直角的直角三角形时,在y轴上是否存在一点Q使△PBQ为等腰三角形?如果存在,请直接写出Q点的坐标;如果不存在,请说明理由.【答案】(1)解:∵B(0,),∴OB= .∵OA= OB,∴OA=3,∴AC=3.∵∠BAD=30°,∴∠OAC=60°.∵∠ACD=90°,∴∠ODB=30°,∴ = ,∴OD=3,∴D(﹣3,0);(2)解:∵OA=3,OD=3,∴A(3,0),AD=6,∴AB=2 ,当∠PBA=90°时.∵PD=2t,∴OP=3﹣2t.∵△OBA∽△OPB,∴OB2=OP•OA,∴3﹣2t= =1,解得t=1,当∠APB=90°时,则P与O重合,∴t= ;(3)解:存在.①当BP为腰的等腰三角形.∵OP=1,∴BP= =2,∴Q1(0, +2),Q3(0. ﹣2);②当PQ2=Q2B时,设PQ2=Q2B=a,在Rt△OPQ2中,12+(﹣x)2=x2,解得x= ,∴Q2(0,);③当PB=PQ4时,Q4(0,﹣)综上所述:满足条件的点Q的坐标为Q1(0, +2),Q2(0,),Q3(0. ﹣2),Q4(0,﹣).【解析】【分析】(1)根据已知得出OA、OB的值以及∠DAC的度数,进而求得∠ADC,即可求得D的坐标;(2)根据直角三角形的判定,分两种情况讨论求得;(3)求得PB 的长,分四种情形讨论即可解决问题.3.在平面直角坐标系中,抛物线与轴的两个交点分别为A (-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.【答案】(1)解:设抛物线的解析式为,∵抛物线过点A(-3,0),B(1,0),D(0,3),∴,解得,a=-1,b=-2,c=3,∴抛物线解析式为,顶点C(-1,4);(2)解:如图1,∵A(-3,0),D(0,3),∴直线AD的解析式为y=x+3,设直线AD与CH交点为F,则点F的坐标为(-1,2)∴CF=FH,分别过点C、H作AD的平行线,与抛物线交于点E,由平行间距离处处相等,平行线分线段成比例可知,△ADE与△ACD面积相等,∴直线EC的解析式为y=x+5,直线EH的解析式为y=x+1,分别与抛物线解析式联立,得,,解得点E坐标为(-2,3),,;(3)解:①若点P在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH,∴,分别过点C、P作x轴的平行线,过点Q作y轴的平行线,交点为M和N,由△CQM∽△QPN,得 =2,∵∠MCQ=45°,设CM=m,则MQ=m,PN=QN=2m,MN=3m,∴P点坐标为(-m-1,4-3m),将点P坐标代入抛物线解析式,得,解得m=3,或m=0(与点C重合,舍去)∴P点坐标为(-4,-5);②若点P在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH,∴,延长CD交x轴于M,∴M(3,0)过点M作CM垂线,交CP延长线于点F,作FN x轴于点N,∴,∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F点坐标为(5,2),∴直线CF的解析式为y= ,联立抛物线解析式,得,解得点P坐标为( , ),综上所得,符合条件的P点坐标为(-4,-5),( , ).【解析】【分析】(1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax2+bx+3求出即可;(2)求出直线AD的解析式,分别过点C、H作AD的平行线,与抛物线交于点E,利用△ADE与△ACD面积相等,得出直线EC和直线EH的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P在对称轴左侧;②点P在对称轴右侧.4.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:① 为何值时为等腰三角形;② 为何值时线段PN的长度最小,最小长度是多少.【答案】(1)解:设平移后抛物线的解析式,将点A(8,,0)代入,得 = ,所以顶点B(4,3),所以S阴影=OC•CB=12(2)解:设直线AB解析式为y=mx+n,将A(8,0)、B(4,3)分别代入得,解得:,所以直线AB的解析式为,作NQ垂直于x轴于点Q,①当MN=AN时, N点的横坐标为,纵坐标为,由三角形NQM和三角形MOP相似可知 ,得,解得(舍去).当AM=AN时,AN= ,由三角形ANQ和三角形APO相似可知,,MQ=,由三角形NQM和三角形MOP相似可知得:,解得:t=12(舍去);当MN=MA时,故是钝角,显然不成立,故;②由MN所在直线方程为y= ,与直线AB的解析式y=﹣x+6联立,得点N的横坐标为X N= ,即t2﹣x N t+36﹣x N=0,由判别式△=x2N﹣4(36﹣)≥0,得x N≥6或x N≤﹣14,又因为0<x N<8,所以x N的最小值为6,此时t=3,当t=3时,N的坐标为(6,""),此时PN取最小值为【解析】【分析】(1)平移前后的两个二次函数的a的值相等,平移后的图像经过点原点,因此设函数解析式为:,将点A的坐标代入就可求出b的值,再求出顶点B的坐标,利用割补法可得出阴影部分的面积=以OC,BC为边的矩形的面积。

中考数学 圆与相似 综合题含答案

中考数学圆与相似综合题含答案一、相似1.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,求,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则 =________;(3)如图3,若 =k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)【答案】(1)解:如图1中,作PG⊥AC于G,PH⊥BC于H,∵AC=BC,∠ACB=90°,且D为AB的中点,∴CD平分∠ACB,∵PG⊥AC于G,PH⊥BC于H,∴PG=PH,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴ =1(2)(3)解:如图3中,作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K,易证△PMH∽△PGN,∴,∵,∴,∵DT∥PG,DK∥PH,∴,∴,∴【解析】【解答】解:(2)如图2中,作PG⊥AC于G,PH⊥BC于H,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴,∵△PHC∽△ACB,PG=HC,∴,故答案为:;【分析】(1)作PG⊥AC于G,PH⊥BC于H,根据已知条件可证△PHM和△PGN的两角对应相等,进而可得△PHM∽△PGN,由相似三角形的对应边成比例即可求出。

(2)作PG⊥AC于G,PH⊥BC于H,由两角对应相等,可得△PHM∽△PGN,由相似三角形的对应边成比例可得 = ,由两角对应相等,可得△PHC∽△ACB,又PG=HC,相似三角形的对应边成比例及等量代换即可求出。

中考数学圆与相似综合经典题.doc

中考数学圆与相似综合经典题一、相似1.综合题(1)【探索发现】如图①,是一张直角三角形纸片,∠ B=90°,小明想从中剪出一个以∠ B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、 EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为多少.(2)【拓展应用】如图②,在△ ABC 中, BC=a, BC边上的高AD=h,矩形 PQMN 的顶点 P、 N 分别在边AB、AC 上,顶点Q、M 在边 BC 上,则矩形PQMN 面积的最大值为多少.(用含a, h 的代数式表示)(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE, AB=32, BC=40, AE=20, CD=16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积.(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm, CD=60cm,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M 、 N 在边BC 上且面积最大的矩形PQMN,求该矩形的面积.【答案】(1)解:∵EF、 ED 为△ ABC中位线,∴ED∥AB, EF∥ BC,EF= BC, ED=AB,又∠ B=90°,∴四边形 FEDB是矩形,则;(2)解:∵ PN∥BC,∴△ APN∽△ ABC,∴,即,∴P N=a- PQ,设 PQ=x,则 S 矩形PQMN=PQ?PN=x( a- x) =- x2+ax=-(x-)2+,∴当 PQ=时,S矩形PQMN最大值为.(3)解:如图 1,延长 BA、 DE 交于点 F,延长 BC、 ED 交于点 G,延长 AE、CD 交于点H,取BF 中点 I, FG 的中点 K,由题意知四边形ABCH是矩形,∵A B=32, BC=40, AE=20,CD=16,∴EH=20、 DH=16,∴A E=EH、 CD=DH,在△ AEF和△ HED中,∵,∴△ AEF≌ △ HED( ASA),∴A F=DH=16,同理△ CDG≌ △HDE,∴C G=HE=20,∴BI==24,∵B I=24<32,∴中位线 IK 的两端点在线段AB 和 DE上,过点 K 作 KL⊥ BC 于点 L,由【探索发现】知矩形的最大面积为×BG? BF=×(40+20)× (32+16)=720,答:该矩形的面积为720;(4)解:如图2,延长 BA、CD 交于点 E,过点 E 作 EH⊥BC 于点 H,∵t anB=tanC= ,∴∠ B=∠C,∴EB=EC,∵B C=108cm,且 EH⊥ BC,∴BH=CH=BC=54cm,∵t anB= = ,∴E H= BH= × 54=72cm,在 Rt△ BHE中, BE==90cm,∵AB=50cm,∴AE=40cm,∴BE 的中点 Q 在线段 AB 上,∵C D=60cm,∴E D=30cm,∴CE 的中点 P 在线段 CD 上,∴中位线 PQ 的两端点在线段AB、 CD上,由【拓展应用】知,矩形 PQMN 的最大面积为答:该矩形的面积为 1944cm 2.2 BC?EH=1944cm ,【解析】【分析】(1)由三角形的中位线定理可得ED∥AB, EF∥ BC, EF= BC, ED= AB,根据两组对边分别平行的四边形是平行四边形可得四边形FEDB 是平行四边形,而∠B=90 °,根据一个角是直角的平行四边形是矩形可得四边形 FEDB 是矩形,所以;(2)因为PN∥ BC,由相似三角形的判定可得△ APN∽ △ ABC,则可得比例式, 即, 解得, 设PQ=x,因为,则S矩形PQMN=PQ?PN=x(0,所以函数有最大值,即当PQ=)时,S 矩形PQMN有最大值为;(3)延长 BA、 DE 交于点 F,延长 BC、 ED 交于点 G,延长 AE、 CD 交于点 H,取 BF 中点I,FG 的中点 K,由矩形的判定可得四边形 ABCH 是矩形,根据矩形的性质和已知条件易得AE=EH、CD=DH,于是用角边角可得△ AEF≌ △ HED,所以 AF=DH=16,同理可得△CDG≌ △ HDE,则 CG=HE=20,所以=24,BI=24< 32,所以中位线IK 的两端点在线段 AB 和 DE 上,过点K 作 KL⊥ BC 于点 L,由( 1)得矩形的最大面积为×BG? BF=×( 40+20)×(32+16) =720;(4)延长 BA、CD 交于点 E,过点 E 作 EH⊥BC 于点 H,因为 tanB=tanC,所以∠ B=∠ C,则EB=EC,由等腰三角形的三线合一可得BH=CH= BC=54cm;由 tanB 可求得 EH= BH=×54=72cm,在 Rt△BHE 中,由勾股定理可得 BE=90cm,所以 AE=BE-AB=40cm,所以 BE 的中点Q 在线段 AB 上,易得 CE 的中点 P 在线段 CD 上,由( 2)得矩形 PQMN 的最大面积为BC?EH=1944cm2。

中考数学圆与相似的综合复习附详细答案

中考数学圆与相似的综合复习附详细答案一、相似1.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时, =________;②当α=180°时, =________.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.【答案】(1);(2)解:如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴(3)解:①如图3,,∵AC=4 ,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC= .②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC= ,CD=4,CD⊥AD,∴AD= ,∵点D、E分别是边BC、AC的中点,∴DE= =2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD= .综上所述,BD的长为或.【解析】【解答】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC= ,∵点D、E分别是边BC、AC的中点,∴ ,BD=8÷2=4,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴【分析】(1)①当α=0°时,Rt△ABC中,根据勾股定理算出AC的长,根据中点的定义得出AE,BD的长,从而得出答案;②如图1,当α=180°时,根据平行线分线段成比例定理得出AC∶AE=BC∶BD,再根据比例的性质得出AE∶BD=AC∶BC,从而得出答案。

(2)当0°≤α<360°时,A E∶ B D 的大小没有变化,由旋转的性质得出∠ECD=∠ACB,进而得出∠ECA=∠DCB,又根据EC∶DC=AC∶BC=,根据两边对应成比例,及夹角相等的三角形相似得出△ECA∽△DCB,根据相似三角形对应边成比例得出AE∶BD=EC∶DC=;(3)①如图3,在Rt△ADC中,根据勾股定理得出AD的长,根据两组对边分别相等,且有一个角是直角的四边形是矩形得出四边形ABCD是矩形,根据矩形对角线相等得出BD=AC=;②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,在Rt△ADC中,利用勾股定理得出AD的长,根据中点的定义得出DE的长,根据AE=AD-DE算出AE的长,由(2),可得AE∶BD=,从而得出BD的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ 构造的三角形是等腰三角形的概率=
(3)解:存在,
易得 BC 的解析是为 y=﹣2x+4,S△ ABC= AC•OB= ×3×4=6, M 点的坐标为(m,﹣2m+4)(0≤m≤2), ①当 N 点在 AC 上,如图 1,
∴ △ AMN 的面积为△ ABC 面积的 ,
∴ (m+1)(﹣2m+4)=2,解得 m1=0,m2=1, 当 m=0 时,M 点的坐标为(0,4),N(0,0),则 AN=1,MN=4,
, ∴ AM=
=1 , ∴ CM=CA ﹣ AM=2 , ∴ S△ BCM=
×23=3.
(2)解:如图 2 中,连接 EC、CN,作 EQ⊥BC 于 Q,EP⊥BA 于 P.

③当 N 点在 AB 上,如图 3,
作 AH⊥BC 于 H,设 AN=t,则 BN= ﹣t,
由②得 AH= ,则 BH=

∵ ∠ NBG=∠ HBA,
∴ △ BNM∽ △ BHA,

,即

∴ MN=,ຫໍສະໝຸດ ∵ AN•MN=2,即 •( ﹣t)•
=2,
整理得 3t2﹣3 t+14=0,△ =(﹣3
∴ 点 N 在 AB 上不符合条件,
【答案】(1)解:y=x2+2x+1=(x+1)2 的图象沿 x 轴翻折,得 y=﹣(x+1)2 , 把 y=﹣(x+1)2 向右平移 1 个单位,再向上平移 4 个单位,得 y=﹣x2+4, ∴ 所求的函数 y=ax2+bx+c 的解析式为 y=﹣x2+4
(2)解:∵ y=x2+2x+1=(x+1)2 , ∴ A(﹣1,0), 当 y=0 时,﹣x2+4=0,解得 x=±2,则 D(﹣2,0),C(2,0); 当 x=0 时,y=﹣x2+4=4,则 B(0,4), 从点 A,C,D 三个点中任取两个点和点 B 构造三角形的有:△ ACB,△ ADB,△ CDB, ∵ AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 , ∴ △ BCD 为等腰三角形,
∴ tan∠ MAC=
=4;
当 m=1 时,M 点的坐标为(1,2),N(1,0),则 AN=2,MN=2,
∴ tan∠ MAC=
=1;
②当 N 点在 BC 上,如图 2,
BC=
=2 ,
∵ BC•AN= AC•BC,解得 AN=

∵ S△ AMN= AN•MN=2,
∴ MN= = ,
∴ ∠ MAC=
轴,


∴ ∵ 点是 ∴
, 的中点

解得

(不合题意,舍去)

(3)解:∵






∴当

相似时,存在以下两种情况:

解得


,解得
∴ 【解析】【分析】(1)运用待定系数法解答即可。 (2)由(1)可得直线 AB 的解析式和抛物线的解析式,由点 M(m,0)可得点 N,P 用 m 表示的坐标,则可求得 NP 与 PM,由 NP=PM 构造方程,解出 m 的值即可。
讨论:①当 N 点在 AC 上,如图 1;②当 N 点在 BC 上,如图 2;③当 N 点在 AB 上,如
图 3。利用△ AMN 的面积=△ ABC 面积的 ,解直角三角形、 相似三角形的判定和性质等相 关的知识,就可求出 tan∠ MAN 的值。
2.如图,抛物线
过点


为线段
OA 上一个动点(点 M 与点 A 不重合),过点 M 作垂直于 x 轴的直线与直线 AB 和抛物线
分别交于点 P、N.
(1)求直线 AB 的解析式和抛物线的解析式;
(2)如果点 P 是 MN 的中点,那么求此时点 N 的坐标;
(3)如果以 B,P,N 为顶点的三角形与
相似,求点 M 的坐标.
【答案】(1)解:设直线 的解析式为





解得
∴ 直线 的解析式为
∵ 抛物线
经过点


解得

(2)解:∵
)2﹣4×3×14=﹣15<0,方程没有实数解,
综上所述,tan∠ MAN 的值为 1 或 4 或 【解析】【分析】(1)将 y=x2+2x+1 配方成顶点式,根据轴对称的性质,可得出翻折后的 函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。 (2)先求出抛物线 y=x2+2x+1 的顶点坐标 A,与 x 轴、y 轴的交点 D、C、B 的坐标,可得 出从点 A,C,D 三个点中任取两个点和点 B 构造三角形的有:△ ACB,△ ADB,△ CDB,再 求出它们的各边的长,得出构造的三角形是等腰三角形可能数,利用概率公式求解即可。 (3)利用待定系数法求出直线 BC 的函数解析式及△ ABC 的面积、点 M 的坐标,再分情况
中考数学圆与相似综合经典题附详细答案 一、相似
1.如图所示,将二次函数 y=x2+2x+1 的图象沿 x 轴翻折,然后向右平移 1 个单位,再向上 平移 4 个单位,得到二次函数 y=ax2+bx+c 的图象.函数 y=x2+2x+1 的图象的顶点为点 A.函数 y=ax2+bx+c 的图象的顶点为点 B,和 x 轴的交点为点 C,D(点 D 位于点 C 的左 侧).
(3)在 △ BPN 与△ APM 中,∠ BPN=∠ APM,则有

这两种情况,分别用
含 m 的代数式表示出 BP,PN,PM,PA,代入建立方程解答即可。 3.如图,在△ ABC 中,AB=AC,∠ BAC=90°,AH⊥BC 于点 H,过点 C 作 CD⊥AC,连接 AD,点 M 为 AC 上一点,且 AM=CD,连接 BM 交 AH 于点 N,交 AD 于点 E.
(1)求函数 y=ax2+bx+c 的解析式; (2)从点 A,C,D 三个点中任取两个点和点 B 构造三角形,求构造的三角形是等腰三角 形的概率;
(3)若点 M 是线段 BC 上的动点,点 N 是△ ABC 三边上的动点,是否存在以 AM 为斜边的
Rt△ AMN,使△ AMN 的面积为△ ABC 面积的 ?若存在,求 tan∠ MAN 的值;若不存在, 请说明理由.
(1)若 AB=3,AD= ,求△ BMC 的面积; (2)点 E 为 AD 的中点时,求证:AD= BN . 【答案】(1)解:如图 1 中,
在 △ ABM 和 △ CAD 中 , ∵ AB=AC , ∠ BAM=∠ ACD=90°, AM=CD , ∴ △ ABM≌ △ CAD ,
∴ BM=AD=
相关文档
最新文档