共射极基本放大电路解读
基本共射极放大电路电路分析

基本共射极放大电路电路分析共射极放大电路是一种常见的放大电路,其基本原理是将输入信号通过基极电容耦合到晶体管的基极,经过放大后输出到负载电阻。
本文将详细介绍共射极放大电路的电路分析。
首先,我们需要了解共射极放大电路的基本组成部分。
它由一个NPN型晶体管、一个输入电容、一个负载电阻、一个偏置电阻和一个电源组成。
偏置电阻用于提供适当的偏置电压,以确保晶体管工作在合适的工作区域。
接下来,我们将进行电路的直流分析。
在直流分析中,我们可以假设输入信号为零,即直流情况下没有输入信号。
在这种情况下,我们可以将输入电容视为开路。
根据基尔霍夫定律,我们可以得到以下方程:1.晶体管的输出特性方程:IC=βIB+(1+β)IB0其中,IC是晶体管的集电极电流,IB是基极电流,β是晶体管的放大倍数,IB0是逆向饱和电流。
2.输入回路的欧姆定律:VBB-IBRB-VBE=0其中,VBB是偏置电压,RB是偏置电阻,VBE是基极与发射极之间的电压。
根据晶体管的特性曲线,我们可以将VBE近似等于0.7V。
通过解这两个方程,我们可以得到基极电流IB和集电极电流IC,从而得到电流放大倍数β。
从而我们可以计算出输出电压的增益Av=ΔVO/ΔVD(其中ΔVO是输出电压变化,ΔVD是输入电压变化)。
接下来,我们进行电路的交流分析。
在交流分析中,我们考虑输入信号,并将输入电容视为闭路。
通常情况下,我们可以使用小信号模型来近似分析。
小信号模型的基本原理是将非线性的晶体管电路线性化,以便我们能够使用常见的线性电路分析方法。
在小信号模型中,我们可以使用一个等效电路来表示晶体管的特性。
该等效电路由一个输入电阻ri、一个输出电阻ro和一个电流放大倍数β组成。
根据这个等效电路,我们可以将输入信号与输入电阻串联,将输出信号与输出电阻并联。
根据这个等效电路,我们可以计算出电路的输入电阻Ri、输出电阻Ro和电压增益Av。
输入电阻Ri等于输入电阻ri与偏置电阻RB并联的结果。
共发射极放大电路原理

共发射极放大电路原理
共发射极放大电路原理是一种常见的放大电路结构,也称为共基极放大电路。
它由一个BJT晶体管组成,包括基极、发射
极和集电极。
共发射极放大电路的工作原理如下:当输入信号加到基极时,基极电流会引起发射极电流的变化,进而改变集电极电流。
这种电流变化使得输出电压发生变化,实现了信号的放大。
具体地说,当输入信号的幅度上升时,基极电流也会随之上升。
这样,发射极电流会随之增加,从而提高集电极电流。
当集电极电流增大时,输出电压也会随之增加,实现信号的放大。
共发射极放大电路的特点是输入电流和输出电流都是相加的。
因此,尽管放大倍数比较小,但可以在高频信号的放大过程中保持输入输出相位的一致性。
此外,由于信号是从基极注入到发射极,所以输入阻抗较低,输入信号源可以直接连接到基极,无需耦合电容。
然而,共发射极放大电路的缺点是输出阻抗较高,输出电压受到负载影响较大。
为了解决这个问题,通常会添加一个输出级,如共射极放大电路,以降低输出阻抗并增加输出功率。
总之,共发射极放大电路是一种常见的电路结构,能够实现信号的放大。
虽然具有一些缺点,但在一些特定的应用场合中仍然具有一定的优势。
共射极基本放大电路的输出信号与输入信号相位相反

共射极基本放大电路的输出信号与输入信号相位相反1. 什么是共射极基本放大电路?共射极基本放大电路是一种常见的放大电路拓扑结构。
在该电路中,晶体管的发射极是输入端,集电极是输出端,基极则承担控制电路的作用。
共射极基本放大电路被广泛应用于各种电子产品中,如音频放大器、无线电发射器等。
2. 共射极基本放大电路的工作原理共射极基本放大电路的工作原理涉及三个主要元件:NPN晶体管、输入信号源和负载电阻。
输入信号源提供输入信号Vin,并通过耦合电容Cc与晶体管的发射极相连。
NPN晶体管的基极由偏置电路提供稳定的直流偏置点,并通过耦合电容Cb与输入信号源相连。
输出信号Vout通过负载电阻RL从晶体管的集电极中获取。
工作过程如下: 1. 输入信号Vin经过耦合电容Cc传入晶体管的发射极,同时也通过耦合电容Cb传入晶体管的基极。
2. 当输入信号的正半周期到来时,基极电压将上升,使得晶体管导通。
这样就会使得集电极与地之间的电阻产生电压降,从而产生电流流过负载电阻RL。
3. 通过负载电阻RL,输出信号Vout被提取。
4. 当输入信号的负半周期到来时,基极电压下降,晶体管截止,此时集电极电流变为零。
3. 共射极基本放大电路的输出信号相位反转原因在共射极基本放大电路中,当输入信号的正半周期到来时,晶体管导通,输出信号Vout存在。
而在输入信号的负半周期到来时,晶体管截止,输出信号Vout为零。
因此,输出信号与输入信号的相位存在180度的差异,即相位相反。
这种输出信号相位反转的现象有以下原因: 1. 在晶体管导通状态下,输入信号的正半周期会使得晶体管发射极电位上升,集电极电位下降,导致集电极电流产生电压降,从而产生输出信号。
而在晶体管截止状态下,输入信号的负半周期使得集电极电位恢复到正常状态,没有输出信号。
2. 晶体管是一个双极型的器件,其放大特性表现为电流的放大。
当晶体管导通时,输入信号的正半周期电流被放大到输出信号中,而在负半周期时,因为晶体管截止,没有电流被放大,所以输出信号也就不存在。
基本共射放大电路原理

基本共射放大电路原理
基本共射放大电路原理是一种常见的放大电路。
该电路由一个NPN晶体管组成,通过将输入信号与电池电压施加在晶体管的基极上,实现对输入信号的放大。
在基本共射放大电路中,负载电阻连接在晶体管的集电极上,输出信号从集电极处取出。
基本共射放大电路的工作原理如下:当输入信号施加在基极上时,如果该信号为正半周,使得基极电流增加,晶体管进入放大状态,导通电流增加。
这导致由晶体管集电极到负载电阻的电压降增加,从而输出信号得到放大。
反之,当输入信号为负半周时,基极电流减小,导通电流减小,从而导致输出信号的电压降减小。
基本共射放大电路有几个特点和应用。
首先,它具有较高的电压放大倍数。
其次,该电路具有较低的输入阻抗和较高的输出阻抗,因此能够驱动高阻抗负载。
此外,基本共射放大电路还具有较宽的频率响应范围,可以用于音频放大、射频放大和功率放大等应用。
虽然基本共射放大电路具有很多优势,但也存在一些不足之处。
例如,由于晶体管存在饱和区和截止区,输出信号存在一定的失真。
此外,该电路还可能受到温度变化和晶体管参数的影响,需要进行相应的补偿和稳定措施。
总之,基本共射放大电路是一种常用的放大电路,在许多电子设备中得到了广泛应用。
通过深入了解其工作原理和特点,可以更好地理解和设计电子电路。
基本共射极放大电路电路分析

基本共射极放大电路电路分析3.2.1基本共射放大电路1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。
a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。
b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。
■■童■ Br - - ■:必)iy, :信号慷:I ■t>A放大电路!»!2.电路组成:(1)三极管T;(2)VCC :为JC提供反偏电压,一般几〜几十伏;(3)RC :将IC的变化转换为Vo的变化,一般几K〜几十K。
VCE=VCC-ICRC RC,VCC同属集电极回路。
(4)VBB :为发射结提供正偏。
(习R十一般为儿1 K - JLT-Rb一般,程骨V開=e7V当%*宀只£时;,V B,I B A(6)Cb1,Cb2 :耦合电容或隔直电容,(7)Vi :输入信号(8)Vo :输出信号(9)公共地或共同端,电路中每一点的电位实际上都是该点与公共端之间的电位差。
图中各电压的极性是参考极性,电流的参考方向如图所示。
其作用是通交流隔直流。
V⑵输入电阻RiI£黒 b ZCKt亡/〒气V.V2^3.共射电路放大原理f' h : 1112V峠变化% %变化7变化 %尸%-叫好变化 > %变化SOOK A 4KTHl/cc/jt 躍—=40w/{ Ic = E h = \ .6rffA J cE = f4v-AVr = -bn y T M = —5 址44.放大电路的主要技术指标放大倍数/输入电阻Ri /输出电阻Ro /通频带(1)放大倍数放大电路的输出信号的电压和电流幅度得到 了念大,所以输出功零也龛筋「所肢大.对赦夫电ffilfilH'W:电压放人侣数;凰=峙电 电流放脸倚tt : ■半二扫冷 功率ttXMSi :心=£『尸=峡!鰹 通常它们蛊;fi 按F 张怙宦义的4放大俗数定 义式中各有其S 如图所示,慮频段九—中频段一■久高频詁(3)输出电阻Ro输出电阻是表明放大电路帯负栽的能力,饨大表明 放大电路带负载的能力差,心的宦义:R 、=4-g(町根捌图"}・在帯竝肘,测得!色 鶴 JF 跑时的繭dj 为J*畀 则;心人! 丁 乂(厂:=口}认C 」叫 / 4 K 10 — 1 : %注总:肚大倍数、输入电阻、输岀电阻通常^^;11在 E 弦信巧下的它渝琴®, iHr n-放k 电呂&处于威k 状态且输;IM 伙珥的条件卜V 们息义.(4)通频带放大电路的增率的歯数4在低预段和 高频段放大缶数祁要下降。
共射极基本放大电路工作原理解读

共射极基本放大电路工作原理1.输入信号ui=0时,输出信号uo=0。
这时在直流电源电压VCC作用下通过RB产生了IBQ,经晶体管的电流放大,转换为ICQ,ICQ通过RC在C-E极间产生了UCEQ 。
IBQ、ICQ、UCEQ均为直流量,即静态工作点。
2.若输入信号电压ui,即ui≠0时,称为动态。
通过电容C1送到晶体管的基极和发射极之间,与直流电压UBEQ叠加,这时基极总电压为uBE=UBEQ+ui这里所加的ui为低频小信号,工作点在输入特性曲线线性区域移动,电压和电流近似为线性关系。
在ui的作用下产生基极电流ib,这时基极总电流为iB=IBQ+ibiB经晶体管的电流放大,这时集电极总电流为iC=ICQ+iciC在集电极电阻RC上产生电压降iCRC(为了便于分析,假设放大电路为空载),使集电极电压uCE=VCC-iCRC经变换: uCE=UCEQ+(-icRC)即 uCE=UCEQ+uce由于电容C2的隔直作用,在放大器的输出端只有交流分量uce输出,输出的交流电压为uo=uce=-icRC式中,“-”号表示输出交流电压uo与ic相位相反。
只要电路参数能使晶体管工作在放大区,且RC足够大,则uo的变化幅度将比ui变化幅度大很多倍,由此说明该放大器对ui进行了放大。
电路中,uBE、iB、iC和uCE都是随ui的变化而变化,它的变化作用顺序如下:ui→uBE→iB→iC→uCE→uo放大器动态工作时,各电极电压和电流的工作波形,如图7-1-12所示。
图7-1-12 共射极基本放大电路各极电压、电流工作波形从工作波形我们可以看出:输出电压uo的幅度比输入电压ui的幅度大,说明放大器实现了电压放大。
ui、ib、ic三者频率相同,相位相同,而uo与ui相位相反,这叫做共射极放大器的“倒相”作用。
动态时,uBE、iB、iC、uCE都是直流分量和交流分量的叠加,波形也是两种分量的合成。
虽然动态时各部分电压和电流大小随时间变化,但方向却始终保持和静态时一致,所以静态工作点IBQ、ICQ、UCEQ是交流放大的基础。
共射极基本放大电路分析

共射极基本放大电路分析为了更好地理解共射极基本放大电路,我们需要进行以下几个方面的分析:1.伏安特性分析:首先我们需要了解晶体管的伏安特性曲线,它描述了晶体管的电流与电压之间的关系。
晶体管的伏安特性曲线通常具有三个区域:截止区域、饱和区域和放大区域。
在截止区域,输入电压较低,晶体管处于截止状态,没有电流通过。
在饱和区域,输入电压较高,晶体管处于饱和状态,有最大的电流通过。
在放大区域,输入电压介于截止电压和饱和电压之间,晶体管将以放大信号的形式输出。
2.小信号模型分析:在共射极基本放大电路中,输入信号通常是小信号,我们可以将晶体管视为线性放大器。
我们可以使用小信号模型来简化电路,将晶体管视为电流放大器和电压放大器。
在这种情况下,共射极基本放大电路可以被看作是一个共射极放大器。
3.增益分析:共射极基本放大电路的放大增益是指输出电压与输入电压之间的比值。
放大增益通常用β表示,β是晶体管的电流放大因子或射极电流与基极电流之比。
增益值可以通过测量输入和输出信号的幅度来计算。
4.截止频率分析:共射极基本放大电路的截止频率是指输入信号频率超过该频率时,晶体管的放大增益开始下降。
截止频率可以通过晶体管的频率响应特性来确定。
5.稳定性分析:共射极基本放大电路的稳定性是指输出信号对于电源电压和温度变化的抗干扰能力。
稳定性分析可以通过电压分压器和电流源的设计来实现。
除了上述的分析,还可以对共射极基本放大电路进行功率分析、频率响应分析、电流增益分析等等。
这些分析可以帮助我们更好地理解共射极基本放大电路的工作原理,并且有助于我们进行电路设计和性能优化。
总结起来,共射极基本放大电路是一种重要的放大电路,需要对其伏安特性、小信号模型、增益、截止频率和稳定性等方面进行详细分析,以便更好地理解其工作原理并进行电路设计和优化。
共发射极放大电路

发射极放大电路(common-emitter amplifier)是一种广泛应用的放大电路,它使用电极共发射极(common-emitter)的构造,通常使用二极管构成。
该电路的特性是能够将输入信号的幅度放大,而且可以改变信号的相位。
发射极放大电路的基本结构为:一个输入极、一个发射极和一个输出极。
输入极通常是一个N型晶体管,发射极是一个P型晶体管,输出极则可以是N型或P型晶体管。
发射极放大电路的工作原理是,通过输入极的变化来改变发射极的电流,从而改变发射极的电压。
而发射极的电压变化会影响输出极的电压,从而使输出信号的幅度发生变化。
发射极放大电路具有低噪声、低失真、高频率增益、高输入阻抗和低输出阻抗等特点,因此它在微处理器、声音处理器、视频处理器、无线电收发器等应用中被广泛使用。
由于发射极放大电路具有良好的性能,因此它在微电子领域中应用非常广泛。
它可以用于放大输入信号,也可以用于改变信号的相位,从而控制输出电压的变化。
此外,它还可以用于分离输入极的负反馈信号和输出极的正反馈信号,使系统在稳定运行的同时保持
高效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一共射极基本放大电路
一、实验目的
1、掌握放大器静态工作点的调试及其对放大性能的影响。
2、学习测量放大器Q点,Av,r i,r0的方法,了解共射级电路特性。
二、实验环境
1、Electronics Workbench5.12软件
2、器件:有极性电容滑动变阻器三极管信号发生器直流电源示波器
三、实验内容
图1.1为一共射极基本放大电路,按图连接好电路
. .
图1.1 共射极基本放大电路
1、静态分析
选择分析菜单中的直流工作点分析选项(Analysis/DC operating Point),电路静态分析结果如图1.2所示,分析结果表明晶体管Q1工作在放大电路。
.
图1.2 共射极基本放大器的静态工作点
2、动态分析
用仪器库的函数发生器为电路提供正弦输入信号V i(幅值为5mV,频率为10KHz)用示波器可观察输入、输出信号如图1.3所示,图中V A表示输入电压(电路中的节点4)V B为输出电压(电路中的节点5),由图波形图可观察到电路的输入、输出电压信号反相位关系。
图1.3共射极放大电路的输入、输出波形
由上图可得:
放大器的放大倍数:Av=801.54mv/4.97mv=161.3
理论计算:rbe=300+(1+β)×26mv/I E=300+26mv/I BQ=300+26mv/0.0226mA=1450Ω
Av=-βR L′/ r be= 250×1000Ω/1450Ω=172.4
(其中R L′为RL与Rc的并联值,β的值约为250)
实验结果与理论值基本相符
3、频率响应分析
选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis),在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。
分析结果如图2.4所示。
图1.3 共射极基本放大电路的频率响应
由图1.3可得:电路的上限频率(x1)为10.78Hz,下限频率(x2)为23.1MHz,放大器的通频带约为23.1MHz,频率响应图理论结果基本相符。
1、测量放大器的输入、输出电压:
(1)输入电阻的测量
在A点与B点之间串接一个2KΩ的电阻,如图1.1,测量 A点与B点的电位就可计算输入电阻Ri。
(2)、输出电阻的测量
用示波器监视,在输出不失真是,分别测量有负载是和无负载时的Vo,即可计算Ro
将上述测量及计算填入下表:
Ri=r be×Rb/(r be+Rb)=1.45 KΩ×500 KΩ/(1.45 KΩ+500 KΩ) =1.46 KΩRo=Rc=2 KΩ
实验结果与理论值基本相符。
四、实验报告要求
1、简述本次实验的内容的基本结论。
2、实验数据,分析误差原因。