共射极基本放大电路分析

合集下载

基本共射极放大电路电路分析

基本共射极放大电路电路分析

基本共射极放大电路电路分析共射极放大电路是一种常见的放大电路,其基本原理是将输入信号通过基极电容耦合到晶体管的基极,经过放大后输出到负载电阻。

本文将详细介绍共射极放大电路的电路分析。

首先,我们需要了解共射极放大电路的基本组成部分。

它由一个NPN型晶体管、一个输入电容、一个负载电阻、一个偏置电阻和一个电源组成。

偏置电阻用于提供适当的偏置电压,以确保晶体管工作在合适的工作区域。

接下来,我们将进行电路的直流分析。

在直流分析中,我们可以假设输入信号为零,即直流情况下没有输入信号。

在这种情况下,我们可以将输入电容视为开路。

根据基尔霍夫定律,我们可以得到以下方程:1.晶体管的输出特性方程:IC=βIB+(1+β)IB0其中,IC是晶体管的集电极电流,IB是基极电流,β是晶体管的放大倍数,IB0是逆向饱和电流。

2.输入回路的欧姆定律:VBB-IBRB-VBE=0其中,VBB是偏置电压,RB是偏置电阻,VBE是基极与发射极之间的电压。

根据晶体管的特性曲线,我们可以将VBE近似等于0.7V。

通过解这两个方程,我们可以得到基极电流IB和集电极电流IC,从而得到电流放大倍数β。

从而我们可以计算出输出电压的增益Av=ΔVO/ΔVD(其中ΔVO是输出电压变化,ΔVD是输入电压变化)。

接下来,我们进行电路的交流分析。

在交流分析中,我们考虑输入信号,并将输入电容视为闭路。

通常情况下,我们可以使用小信号模型来近似分析。

小信号模型的基本原理是将非线性的晶体管电路线性化,以便我们能够使用常见的线性电路分析方法。

在小信号模型中,我们可以使用一个等效电路来表示晶体管的特性。

该等效电路由一个输入电阻ri、一个输出电阻ro和一个电流放大倍数β组成。

根据这个等效电路,我们可以将输入信号与输入电阻串联,将输出信号与输出电阻并联。

根据这个等效电路,我们可以计算出电路的输入电阻Ri、输出电阻Ro和电压增益Av。

输入电阻Ri等于输入电阻ri与偏置电阻RB并联的结果。

共射极基本放大电路

共射极基本放大电路
画出放大电路的交流通路 将直流电压源短路,将电容短路。
R b1 C b1
+
u-i
短路
+ 置VC零C
Rc
C b2
T 短路
+
uo RL -
.
上一页 下一页 返回
共射极基本放大电路
交流通路
+
+
ui RB -
+
T Rc
+
RL u o -
上一页 下一页 返回
共射极基本放大电路
三极管微变等效电路
T rbe
26(mV)
C = 12V , RB1 = 20kΩ ,
RB2 =10kΩ, RC=2 kΩ,
RB1
RE=2 kΩ,RL=3 kΩ,β =50, UBE =o.6V。试求:+
C1
+
1)静态值 IB、IC 和UCE 。
u i
RB2
2) 电压放大倍数Au ,输入 -
电阻 Ri和输出电阻 Ro。
+
Rc
+VCC C2
T
共射极基本放大电路
1. 共射基本放大电路的组成
图所示是一个典型的共射基 本放大电路。电路中各元件的 作用如下所述:
(1)三极管T。它是放大电 路的核心器件,具有放大电流 的作用
(2)基极偏流电阻RB。其作 用是向三极管的基极提供合适 的偏置电流,并使发射结正向 偏置。
R b1 Cb1
+
u-i
+ VCC
RL
u
o
-
+
+
u i
R B1
R B2
rbe
-

共射极基本放大电路分析

共射极基本放大电路分析

共射极基本放大电路分析为了更好地理解共射极基本放大电路,我们需要进行以下几个方面的分析:1.伏安特性分析:首先我们需要了解晶体管的伏安特性曲线,它描述了晶体管的电流与电压之间的关系。

晶体管的伏安特性曲线通常具有三个区域:截止区域、饱和区域和放大区域。

在截止区域,输入电压较低,晶体管处于截止状态,没有电流通过。

在饱和区域,输入电压较高,晶体管处于饱和状态,有最大的电流通过。

在放大区域,输入电压介于截止电压和饱和电压之间,晶体管将以放大信号的形式输出。

2.小信号模型分析:在共射极基本放大电路中,输入信号通常是小信号,我们可以将晶体管视为线性放大器。

我们可以使用小信号模型来简化电路,将晶体管视为电流放大器和电压放大器。

在这种情况下,共射极基本放大电路可以被看作是一个共射极放大器。

3.增益分析:共射极基本放大电路的放大增益是指输出电压与输入电压之间的比值。

放大增益通常用β表示,β是晶体管的电流放大因子或射极电流与基极电流之比。

增益值可以通过测量输入和输出信号的幅度来计算。

4.截止频率分析:共射极基本放大电路的截止频率是指输入信号频率超过该频率时,晶体管的放大增益开始下降。

截止频率可以通过晶体管的频率响应特性来确定。

5.稳定性分析:共射极基本放大电路的稳定性是指输出信号对于电源电压和温度变化的抗干扰能力。

稳定性分析可以通过电压分压器和电流源的设计来实现。

除了上述的分析,还可以对共射极基本放大电路进行功率分析、频率响应分析、电流增益分析等等。

这些分析可以帮助我们更好地理解共射极基本放大电路的工作原理,并且有助于我们进行电路设计和性能优化。

总结起来,共射极基本放大电路是一种重要的放大电路,需要对其伏安特性、小信号模型、增益、截止频率和稳定性等方面进行详细分析,以便更好地理解其工作原理并进行电路设计和优化。

共射极放大电路分析

共射极放大电路分析
思考题 P40 2、3、5 P52 2、3、6
3.输入电阻大小适中,一般为几kΩ;
4.输出电阻大小适中,一般为几kΩ。
2021/4/21
38
谢谢观赏
模拟电子技术
第2章 晶体三极管及其应用
2.微变等效电路法
为什么放大电路要用微变等效电路来分析?
2021/4/21
23
模拟电子技术
第2章 晶体三极管及其应用
1)三极管的微变线性模型
小功率三极管 的输入电阻
2021/4/21
rbe200(1)2I6m EQV
24
模拟电子技术
第2章 晶体三极管及其应用
故基极电流改为
I BQ
U CC RB
2)集电极电流
注:当UCC和RB确定后, IBQ即为固定值, 故 此电路称为固定偏置 式放大电路。
3)三极管输出电压
IC Q IB Q
UCE QUCC RCICQ
2021/4/21
13
模拟电子技术
第2章 晶体三极管及其应用
静态工作点Q的定位
2021/4/21
14
1.放大电路的基本组成
2021/4/21
5
模拟电子技术
第2章 晶体三极管及其应用
2.共射极放大电路的组成
2021/4/21
6
模拟电子技术
第2章 晶体三极管及其应用
电路中各元件的作用如下
⑴三极管:电流放大
⑵电容C1和C2:隔直耦合 ⑶基极偏置电阻: Rb ⑷基极回路电源:UBB ⑸集电极电源:UCC ⑹集电极负载电阻:Rc
模拟电子技术
第2章 晶体三极管及其应用
一、静态工作点确定
1. 近似估算法
由直流通路应用 KVL可算的静态时的 基极电流为

实验一基本共射放大电路实验报告

实验一基本共射放大电路实验报告

实验一基本共射放大电路实验报告一、实验目的:1.掌握基本共射放大电路的组成和工作原理;2.学会在实验条件下测量并计算电路的增益。

二、实验仪器:1.示波器;2.多用电表;3.功放电路板。

三、实验原理:基本共射放大电路由NPN晶体管、输入电阻、输出电阻和负载电阻组成。

工作原理如下:当输入信号向基极施加交流信号时,晶体管工作于放大状态。

由于输入电阻的存在,输入信号会将电流注入基极,导致基极电流增大。

而这个增大的电流会引发晶体管的放大作用。

输出电阻起到了与负载电阻相匹配的作用,使原信号可以通过负载电阻得到放大。

四、实验步骤:1.按照电路图搭建基本共射放大电路;2.将输入信号接入示波器的输入端,并调节示波器参数使波形清晰可见;3.测量输出信号的幅值,并用多用电表测量电路各个元件的电压和电流。

五、实验结果与分析:根据示波器上显示的波形,我们可以得到输入信号和输出信号的波形图,并通过测量得到其幅值。

根据实验数据,可以计算电路的输入电阻和输出电阻,以及电路的增益。

具体计算步骤如下:1.计算输入电阻:输入电阻可以通过测量输入电流和输入电压得到,用输入电压除以输入电流即可。

2.计算输出电阻:输出电阻可以通过测量输出电压和输出电流得到,用输出电压除以输出电流即可。

3.计算增益:增益是指输出信号幅值与输入信号幅值之间的比值,通过测量输出信号和输入信号的幅值即可计算。

根据实验数据和上述计算步骤,我们可以得到电路的输入电阻、输出电阻以及增益的数值。

六、实验分析与结论:通过实验,我们成功搭建了基本共射放大电路,并且根据测量数据计算了电路的输入电阻、输出电阻以及增益。

这些数据可以帮助我们评估电路的性能和效果。

实验结果分析:1.输入电阻越大,表示电路对输入信号的损耗越小,但也较容易受到外界干扰。

2.输出电阻越小,表示电路可以驱动更大的负载电阻,但也对负载电阻变化较敏感。

3.增益越大,表示电路对输入信号的放大效果越好,但也容易引起失真。

实验二 BJT共射极电压放大电路的分析

实验二  BJT共射极电压放大电路的分析
f/kHFra bibliotek VO/V 0.1
fL
1
10
100
fH
1000
典型幅频 特性曲线
Av Av0 0.707Av0
fL
fH
f
改变信号频率
观察波形
保持 vi为5mV
(四)常见故障的分析方法
(1)实验器件故障的判别
电位器好坏的判别
万用表作为测量电阻使用
探头线好坏的判别
探头线好坏的判别
(2)电路故障点的判别
共地(接地)
电源端
电路的设计分析
参见教材 P 59 – 62页
(三)实验内容
1、静态工作点的测量
调整RW,使静态集电极电流ICQ=2mA,测量静态时晶体 管集电极-发射极之间电压VCEQ 。
ICQ(mA)
2mA
VCEQ(V)
调节
ICQ
不加入任何信号 用直流电压表 测量VCEQ
IEQ
ICQ的确定:根据ICQ= IEQ,测量RE直流电压间接确定
加入正弦信号
观察波形不能失真
用交流毫伏表观察, Vi=5mV
数据表格:
静态工作点电流ICQ/mA
保持输入信号Vi/mV VS/mV 测量值 VO/V VO′/V AV (有负载 时) 由测量 数据 计算值 A’V (空载 时)
1.5
5
2
5
2.5
5 要弄清楚 各个参量 的含义
Ri/kΩ
RO/kΩ
其中:
为直流工作点信号, 要用万用表测
为交流信号, 用示波器测峰峰值
ICQ(mA)
VOP-P (V)
加大信号幅度
调节
观察波形
用电压表间接 测量ICQ

共射极基本放大电路分析解读

共射极基本放大电路分析解读

共射极基本放大电路分析解读共射极放大电路是一种常见的基本放大电路结构,由晶体管的射极连接到负载电阻,集电极通过电阻连接到直流电源。

在此结构下,输入信号为电压信号,输出信号也为电压信号。

在共射极放大电路中,晶体管的射极作为输出端,负载电阻通过集电极与直流电源相连。

输入信号通过耦合电容连接到基极。

该电路结构的特点是电流放大倍数大,输入阻抗小,输出阻抗大。

因此,它适合作为信号放大器使用。

下面我们将对共射极放大电路进行详细的分析和解读。

首先,我们来看放大电路的小信号模型,通过将晶体管的直流工作点移到集电极所连的负载电阻上,得到共射极放大电路的小信号模型。

在该模型中,集电极电阻、等效输入电阻和输出电阻在直流条件下都是无穷大,可以忽略。

这样可以简化电路分析,只需关注放大电路的增益和频率特性。

接下来,我们分析共射极放大电路的电压增益。

根据放大电路的小信号模型,我们可以得到电压增益的表达式。

通常情况下,共射极放大电路的电压增益为负值,可以通过对电路参数的调整来改变增益的值。

其中,负载电阻的值越大,电压增益越大,但同时输出阻抗也将变大。

除了电压增益外,我们还可以分析共射极放大电路的频率特性。

通常情况下,晶体管的集电极电容和输入电容将影响电路的频率特性。

为了获得更宽的频率响应范围,可以通过添加补偿电容来提高电路的频率响应。

此外,共射极放大电路还有一些特殊的应用。

例如,在无线电通信领域中,共射极放大电路常常用于放大电路和混频器电路中。

在音频放大器中,共射极放大电路也是常见的电路结构。

总体来说,共射极放大电路是一种常见的基本放大电路结构,具有电流放大倍数大、输入阻抗小和输出阻抗大的特点。

通过详细的分析和解读,我们可以更好地理解该电路的工作原理和性能特点。

共射、共集、共基三种放大电路的不同

共射、共集、共基三种放大电路的不同

共射、共集、共基三种放大电路的不同标题:共射、共集、共基三种放大电路的不同导言:在电子领域中,放大电路起到了至关重要的作用,主要用于将弱信号放大为强信号。

共射、共集、共基是三种常见的放大电路,它们各自有着不同的特点和应用。

本文将逐步深入探讨这三种电路的不同之处。

第一部分:共射电路1.共射放大电路的基本原理在共射电路中,输入信号与基极相连,输出信号在集电极处取。

当输入信号为正向时,基极电流增大,集电极电流增大,即可实现放大。

这种电路可将输入信号相位反转,并具有中等的电压增益。

2.共射放大电路的特点(1)输入阻抗高,输出阻抗低:共射电路具有较高的输入阻抗和较低的输出阻抗,可以有效地接收和放大弱信号。

(2)电压增益大:共射电路在电压增益方面表现出色,适用于需要较大放大倍数的应用。

(3)频率响应宽:共射电路的频率响应能力较好,能够在较宽的频率范围内稳定工作。

(4)输出相位反转:共射电路能够将输入信号的相位反转180度,适用于需要相位反转的应用。

第二部分:共集电路1.共集放大电路的基本原理在共集电路中,输入信号与发射极相连,输出信号在集电极处取。

共集电路将输入信号通过集电极输出,同时与电源的电压无关,可以有效地悬浮输出。

该电路以电流放大为主,电压放大相对较小。

2.共集放大电路的特点(1)输入阻抗低,输出阻抗高:共集电路的输入阻抗相对较低,输出阻抗相对较高,能够实现较好的匹配和驱动负载。

(2)电压增益小:共集电路在电压放大方面通常有一个较小的增益,适用于需要电流放大的应用。

(3)频率响应一般:共集电路的频率响应一般,在高频率下会出现一定的衰减,不适用于高频放大应用。

(4)无相位反转:共集电路不对信号进行相位反转,适用于不需要相位反转的应用。

第三部分:共基电路1.共基放大电路的基本原理在共基电路中,输入信号与集电极相连,输出信号在发射极处取。

共基电路以电流放大为主,电压放大相对较小。

它能够在宽频带内放大信号,适用于高频应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共射极基本放大电路分析
教学内容分析:§2-2共发射极低频电压放大电路的分析中的“近似估算法”:
近似估算静态工作点、电压放大倍数。

教学对象及分析: 1、基础知识:学生已基本掌握了共发射极低频电压放大电路
参评组别:B 组 专业分类:电工电子 课程名称:电子技术基础
2009年全国技工教育和职业培训 优秀教研成果评选活动参评教案
组成及工作原理。

2、分析与理解能力:由于放大电路的工作原理比较抽象,学生对此理解不够深刻,并且动手调试电子电路的能力有待提高。

所以本次课堂将结合共发射极低频电压放大电路演示测试方式调动学生的主动性和积极性。

教学目的: 1、了解、掌握放大电路的分析方法:近似估算法;
2、培养学生分析问题的能力。

3、培养学生耐心调试的科学精神。

教学方法:演示法、启发法、讲练结合法
教具准备:分压式偏置放大电路实验板、示波器、万用表。

教学重点: 1、共射极放大电路的静态工作点的估算;
2、放大器的电压放大倍数的估算。

教学难点:静态工作点的估算。

教学过程:
一、复习及新课引入:
1、复习旧知识:(1)放大电路的工作原理。

(提问:简述共发射极放大电路的工作原理。


(2)基本放大电路的工作状态分:静态和动态。

(3)静态工作点的设置。

(提问:设置静态工作点的目的是什么?)
2、启发、提出问题:(1)放大电路设置静态工作点的目的是为了避免产生非线
性失真,那么如何设置静态工作点才能避免非线性失真呢?
(2)放大器的主要功能是放大信号,那怎样计算放大器的放
大能力呢?
引入新课题:必须学习如何分析放大电路。

=
板书设计:
§2—2 共发射极放大电路的分析
一、近似估算法
1.静态工作点的估算。

2.电压放大倍数的估算:
u o
i c
+U CC
I +U CC
2
放大电路的分析方法: 近似估算法; 图解分析法
(1)目的:计算I
B 、I
C
、U
CE。

(1)目的:计算A
u
、R
i
、R
o。

(2)步骤:(2)步骤:
①画直流通路。

①画交流通路。

②计算I B、I C、U CE。

②计算A u。

改进措施:强调三极管的非线性,分析非线性元件电量计算的特点。

11。

相关文档
最新文档