光电系统模拟与仿真设计报告
光电系统模拟与仿真设计报告

实验内容
1、用 MATLAB 可以识别的格式输入下面两个矩阵
1 2 A 1 3 1
2 3 3 2 8
3 5 5 3 9
3 7 7 9 4
4 1 4i
6 5 3 5
7 8 5 4 2i 4 2 4 3
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
-5-
(2) sin(tan t ) tan(sin t ) ,其中 t ( , ) Plot_sin&tan.m clear; clc; t = -pi: pi/100: pi; y=sin(tan(t)) - tan(sin(t)); plot(t, y); Result:
Non-Cycling.m clear; clc; i = 0: 63; sum_frt = sum(2.^i) Result: sum_frt = 1.8447e+019
-4-
4、编程实现:一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数,输出全 部水仙花数。 Narcissus.m clear; clc; n = 1; for i = 100: 999 h = floor(i/100); t = floor(i/10 - h*10); u = floor(i - t*10 - h*100); if (h^3 + t^3 + u^3) == i fprintf('第%d个水仙花数:%d\n', n, i); n = n + 1; end end Result: 第 1 个水仙花数:153 第 2 个水仙花数:370 第 3 个水仙花数:371 第 4 个水仙花数:407
光电类课程虚拟仿真实验教学系统的构建与应用

光电类课程虚拟仿真实验教学系统的构建与应用一、引言光电类课程虚拟仿真实验教学系统是利用计算机技术和虚拟仿真技术,构建模拟真实光电实验环境,为学生提供可视化、交互性强的实验教学平台。
本文旨在探讨光电类课程虚拟仿真实验教学系统的构建与应用,介绍系统的特点、建设过程以及应用效果,以期为教学实践提供参考。
二、光电类课程虚拟仿真实验系统构建1.系统需求分析光电类课程主要涉及光学、光电子学、光通信等多个领域,要求系统能够模拟各种相关实验,包括光的衍射、干涉、光电效应等实验内容。
同时,系统需要具备良好的用户交互性和可视化效果,以提升学生的学习体验。
2.系统技术选型针对光电类实验的特点,选择合适的虚拟仿真技术和开发工具进行系统构建。
常用的虚拟仿真技术包括虚拟现实技术、增强现实技术等,可以根据具体需求进行选择。
3.数据模型设计构建光电类课程虚拟仿真实验系统需要建立相应的数据模型,包括实验场景模型、光学元件模型、光源模型等,以便系统能够准确地模拟实验过程。
4.系统功能设计根据教学需求,设计系统的功能模块,包括实验模拟模块、实时数据采集模块、实验结果分析模块等,以满足学生的实验学习需求。
5.界面设计与优化系统的界面设计要简洁直观,符合用户习惯,通过图形化处理,使得实验操作更加直观,提升学生的学习积极性。
6.系统测试与优化系统构建完成后需进行全面测试,发现问题并及时修复,确保系统的稳定性和可靠性。
三、光电类课程虚拟仿真实验系统应用1.教学案例设计根据光电类课程的具体内容,设计相关的教学案例,通过虚拟仿真实验系统展现给学生,帮助学生理解理论知识,并进行实际操作。
2.实验教学辅助虚拟仿真实验系统可以作为实验教学的重要辅助手段,帮助学生更好地理解实验原理,提升实验操作能力。
3.独立实验操作学生可以利用虚拟仿真实验系统进行独立实验操作,通过模拟实验环境,进行实验操作和数据采集,提高实验技能。
4.在线实验评估系统可以记录学生的实验操作过程和结果,进行在线实验评估,帮助教师及时发现学生在实验操作中存在的问题,进行及时辅导。
光电类课程虚拟仿真实验教学系统的构建与应用

光电类课程虚拟仿真实验教学系统的构建与应用随着科技的发展,虚拟仿真实验教学系统在各个领域得到了广泛的应用,尤其是在光电类课程教学中。
光电类课程是现代科学技术中非常重要的一门学科,因此如何有效地教授光电类课程的实验内容成为了教师们面临的挑战。
虚拟仿真实验教学系统为我们提供了一个有效的解决方案。
首先,光电类课程虚拟仿真实验教学系统可以极大地提高学生的学习效果。
传统的光电实验通常需要一定的设备和实验环境,同时存在实验时间限制和操作风险。
虚拟仿真实验系统能够模拟真实实验环境,使学生可以在虚拟实验室中进行实验操作,同时能够提供实验材料和实验步骤的详细说明。
学生可以通过虚拟实验系统进行多次实验操作,避免了传统实验中可能出现的不确定性因素,从而提高了实验结果的稳定性和准确性。
其次,光电类课程虚拟仿真实验教学系统能够提供更加生动直观的实验展示。
实验结果通过虚拟仿真系统可以以图形、动画等形式呈现给学生,使学生更加直观地理解实验原理和结果,有助于加深对理论知识的理解和记忆。
同时,虚拟仿真系统还可以提供实验数据的实时监测和分析,学生可以通过对实验数据的观察和分析来掌握实验规律和方法,进一步提高实验操作和数据处理的能力。
再次,光电类课程虚拟仿真实验教学系统能够实现个性化教学。
虚拟仿真实验系统能够根据学生的不同学习需求提供个性化的学习环境和学习内容。
学生可以根据自己的学习进度和兴趣选择不同的实验项目和实验难度,并可以自由调整实验参数和条件,从而实现个性化的学习路径和学习效果。
同时,虚拟实验系统还可以根据学生的学习情况提供实时的反馈和指导,帮助学生查找和解决学习中的问题。
最后,光电类课程虚拟仿真实验教学系统还能够节省教学资源和提高教学效率。
传统的光电实验通常需要大量的实验设备和实验场地,并且实验过程中需要专业的教师进行指导和解答。
而虚拟仿真实验系统可以通过计算机软件实现实验教学的全部过程,不需要大量的设备和场地,同时也减少了教师的工作量。
模电仿真实验报告

模电仿真实验报告模电仿真实验报告引言模拟电子技术是电子工程中的重要分支,通过对电子电路的仿真实验,可以更好地理解和掌握电路的工作原理和性能特点。
本实验旨在通过模电仿真实验,探索和研究电路的性能参数及其相互关系,提高对电路的理论与实际应用的认识。
实验目的本次模电仿真实验的主要目的是研究和分析RC电路的频率响应特性,并通过仿真实验验证理论计算结果的准确性。
具体目标如下:1. 理解RC电路的基本原理和频率响应特性;2. 通过仿真实验测量RC电路的频率响应曲线,并与理论计算结果进行对比分析;3. 掌握模电仿真软件的基本操作和参数设置。
实验原理RC电路是由电阻(R)和电容(C)组成的一种基本电路,其频率响应特性是指电路在不同频率下对输入信号的响应程度。
根据理论计算,RC电路的频率响应曲线呈现低通滤波特性,即在低频时通过输入信号的幅度较大,而在高频时则衰减较快。
实验步骤1. 搭建RC电路:根据实验要求,选择合适的电阻和电容值,搭建RC电路。
2. 设置仿真参数:打开模电仿真软件,选择合适的电源和信号源,设置仿真参数。
3. 仿真实验:通过模电仿真软件进行RC电路的频率响应仿真实验,记录实验数据。
4. 数据分析:根据实验数据,绘制RC电路的频率响应曲线,并与理论计算结果进行对比分析。
5. 结果总结:总结实验结果,评价实验的准确性和实用性。
实验结果与分析根据实验步骤和原理,我们进行了RC电路的频率响应仿真实验,并得到了实验数据。
通过数据分析和计算,我们绘制了RC电路的频率响应曲线,并与理论计算结果进行了对比。
实验数据显示,随着频率的增加,RC电路的输出幅度逐渐减小,符合低通滤波特性。
而理论计算结果与实验数据吻合较好,验证了理论计算的准确性。
实验总结通过本次模电仿真实验,我们深入了解了RC电路的频率响应特性,并通过仿真实验验证了理论计算结果的准确性。
同时,我们也掌握了模电仿真软件的基本操作和参数设置,为今后的模电实验和电路设计提供了基础。
光电系统设计报告20151213

光电系统课程设计论文/报告《近红外光波长的光功率计设计》姓名小陈学号201XXXXXXXXX专业电子科学与技术班级电科1124(伟钿)目录《近红外光波长的光功率计设计》 (1)近红外光波长的光功率计设计 (3)1系统总体设计方案 (3)2系统分析与各模块或单元电路的设计 (3)2.1光电转换电路 (3)2.2I/V变换与滤波放大电路 (3)2.3AD转换模块 (4)2.4单片机控制系统。
(4)2.5LCD显示模块 (5)3参数计算 (5)3.1光电转换电路 (5)3.1.1InGaAs-PIN (微型封装)光电探测器的相关参数: (5)3.1.2涉及公式: (6)3.2I/V变换与滤波放大电路 (8)3.2.1LM741的相关参数[2] (8)3.2.2涉及公式 (8)4元器件选择等 (9)5完整的系统原理电路图 (10)6所需的元器件清单 (10)7仿真调试方案与步骤 (11)7.1仿真准备 (11)7.2开始仿真 (11)7.3仿真总结 (12)8相应测量表格与测量结论 (12)9完整的系统印刷电路板布线设计图 (13)10程序设计部分 (13)10.1程序流程图 (13)10.2程序源代码 (14)11参考文献 (18)12任务分组情况 (19)近红外光波长的光功率计设计摘要:这是一个简单的测近红外光功率的仪器,由光纤端口输入光信号至光电传感器InGaAs-PIN 光电二极管,然后通过放大滤波将噪声消除。
再通过一个ADC0809数模转换芯片将模拟电压量转化为数字量。
并且使用最经典的STC89C51单片机。
使得开发成本降低。
总得来说该设备具有成本低。
效率高,误差较小等优点,可以满足普通情况下对精准度要求不高的场所。
1 系统总体设计方案近红外光功率计的基本工作流程图如图1所示[1],它首先把传输过来的光信号投射在InGaAs-PIN 光探测器的光敏面上以将其转变为电流,再经过I/V 变换电路和放大电路得到电压信号。
光伏发电系统建模及其仿真(毕业设计论文)

本科生毕业设计说明书(设计论文)题目:光伏发电系统建模及其仿真光伏发电系统建模及其仿真摘要伴随着能源危机和环境问题的不断加剧,清洁能源的发展进程被大大的推进了。
太阳能作为一种新能源以其没有污染,安全又可靠,能量随处可以得到等优点越来越受到人们的青睐。
无论从近期还是远期,无论从能源环境的角度还是从边远地区和特殊应用领域需求的角度考虑,太阳能发电都极具有吸引力。
那么对光伏发电系统的研究则就变得既有价值又有意义。
通过对光伏发电系统的理论研究学习,建立了完整的光伏发电系统体系,本文深入的研究了光伏电池在不同光照强度、不同温度下的电压、功率输出特性。
本文的研究重点是光伏发电系统的控制技术,以及在MATLAB/SIMULINK仿真环境下的仿真结果。
讨论了多种最大功率点跟踪方法;且分别讨论学习了在光伏并网和独立发电系统情况下的逆变器和MPPT的控制,并建立了仿真模型,提出了相应的控制策略。
且在最后论述了孤岛效应的产生和反孤岛策略,用电压频率检测法完成了孤岛检测与保护。
关键词:光伏电池,逆变器,最大功率点跟踪,孤岛效应, MATLAB仿真AbstractWith the growing energy crisis and environmental problems, clean energy is greatly promote the development process. Solar energy as a new kind of energy for its no pollution, safe and reliable, widely available energy advantages, such as more and more get the favor of people. No matter from the near future or long-dated and, no matter from the Angle of energy and environment, or from remote areas and special applications demand point of view, solar power generation is extremely attractive. So the study of photovoltaic power generation system has become both a rewarding and meaningful.Through the study of theoretical research of photovoltaic power generation system, established a complete system of photovoltaic power generation system, this paper in-depth study the photovoltaic cells under different illumination intensity, temperature, voltage, power output characteristics.In this paper, the research emphasis is the control technology of photovoltaic power generation system, and the simulation results in MATLAB/SIMULINK environment. Discussed a variety of maximum power point tracking methods; And, respectively, to discuss the study under the condition of independent power generation and photovoltaic (pv) grid system of the inverter with MPPT control, and established the simulation model, put forward the corresponding control strategy. And islanding is discussed at the end of the production and the reverse island strategy, using frequency voltage tests completed island detection and protection.Keywords: photovoltaic batteries, inverter, maximum power point tracking, islanding, the MATLAB simulation目录摘要 (I)Abstract .......................................................................................................................... I I 第一章绪论.. (1)1.1新能源发电的背景和意义 (1)1.2光伏产业的现状和前景 (1)1.2.1太阳能光伏发电的发展现状 (2)1.2.2光伏发电产业的前景 (3)1.3本文设计内容 (4)第二章光伏发电系统概述 (5)2.1光伏发电系统的基本工作原理 (5)2.2光伏发电系统的组成 (6)2.3光伏发电系统的分类 (6)2.3.1太阳能独立光伏发电系统 (6)2.3.2 并网光伏发电系统 (7)2.3.3互补型光伏发电系统 (9)第三章光伏发电系统建模及其仿真 (10)3.1光伏电池阵列的建模 (10)3.1.1 光伏电池阵列的数学模型 (10)3.1.2 光强和温度对光伏电池输出结果的影响 (13)3.1.3太阳光光照强度模型 (14)3.2光伏发电系统的主电路模型 (15)3.2.1光伏并网发电系统的主电路模型 (16)3.2.2离网型光伏发电系统的主电路的模型 (17)第四章光伏发电系统的控制技术 (18)4.1光伏发电MPPT技术 (18)4.2电导增量法 (19)4.2.1电导增量法的原理 (19)4.2.2电导增量法改进 (21)4.3 最大功率控制技术仿真 (23)4.4光伏并网发电系统的控制 (27)4.4.1并网逆变器控制 (27)4.4.2 电流环的分析建模 (29)4.4.3锁相环的原理分析 (31)4.5离网光伏发电系统的控制 (33)4.5.1 光伏充电控制分析 (33)4.5.2独立光伏发电系统的逆变器控制技术 (37)第五章光伏并网系统中的孤岛效应 (40)5.1孤岛效应的分析和危害 (40)5.2 孤岛效应的检测 (40)5.2.1孤岛检测标准 (40)5.2.2孤岛检测方法 (41)结论 (46)展望 (47)参考文献 (48)致谢 (50)第一章绪论1.1新能源发电的背景和意义能源一直是人类社会生存和发展的动力和源泉。
光电系统课程设计报告

光电系统课程设计报告设计题目:光电心率计指导老师:吴xx班级: 10XX设计者: XXX设计者学号: *************同组者姓名: ********************************************************************************************* 设计者联系电话: ******************目录一.摘要 (4)二.技术指标 (4)三.设计原理 (5)3.1、光电探测电路 (5)3.2、电源电路 (6)3.3、滤波放大电路及虚拟地电路 (6)3.4、单片机电路 (7)3.5、显示电路 (8)3.6、蜂鸣器电路 (9)四.设计方案论证 (9)4.1、心率计的软件实现方法 (9)4.2、滤波放大电路的实现 (9)4.3、光电探测电路的实现 (10)4.4、心率值的显示方法 (10)五. 硬件电路设计 (11)5.1、电源电路设计 (11)5.2、光电探测电路 (12)5.3、“虚拟地”电路 (12)5.4、滤波放大电路 (12)5.5、单片机电路 (13)5.6、译码显示电路 (15)5.7、蜂鸣器电路 (16)六.软件设计 (16)6.1 总流程图 (17)6.2 主函数流程图 (18)6.3 采样比较程序 (19)6.4 心率计算与显示警报模块 (20)七.结论 (21)八.课程设计的心得体会 (21)参考文献 (22)附录 (23)附录一、程序代码 (23)附录二、原理图 (28)附录三、PCB所有层图 (29)附录四、顶层PCB图 (30)附录五、底层PCB图 (30)附录六、元件清单 (31)一.摘要随着现代社会,人们对自己的健康越来越关心,因此对各种医疗设备的需要也越来越大。
其中心率测量仪是最常见的医疗设备之一,它能应用于医疗、健康、体育以及我们生活中的方方面面,因此一个简单便宜而又有较高精度的心率测量仪是很有市场的。
光电系统模拟与仿真指导书

实验一MATLAB基本操作实验目的1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。
2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。
实验原理MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。
MATLAB 有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。
1.命令窗口(The Command Window)当MA TLAB启动后,出现的最大的窗口就是命令窗口。
用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。
在MA TLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。
在命令窗口中输入该文件名,这一连串命令就被执行了。
因为这样的文件都是以“.m”为后缀,所以称为m-文件。
2.m-文件编辑窗口(The Edit Window)我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。
在MATLAB主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。
3.图形窗口(The Figure Window)图形窗口用来显示MA TLAB程序产生的图形。
图形可以是2维的、3维的数据图形,也可以是照片等。
实验内容1 用MATLAB可以识别的格式输入下面两个矩阵12332357135732391894A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 144367823355422675342189543i i B i +⎡⎤⎢⎥+⎢⎥=⎢⎥+⎢⎥⎣⎦再求出它们的乘积矩阵C ,并将C 矩阵的右下角2×3子矩阵赋给D 矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电系统模拟与仿真设计报告
姓名:
学号:
专业:
光电技术学院
实验一Zemax仿真设计
实验目的
1.熟悉Zemax实验环境,练习使用元件库中的常用元件组建光学系统。
2.利用Zeamx的优化功能设计光学系统并使其系统的各项性能参数达到最优。
实验内容(1、2中任选一个,3必做)
1、显微物镜系统设计
在图1 显示一个10X 显微物镜。
其包含二组远距的胶合双重透镜(Lister型式)。
NA:0.25;EFL=0.591。
表1 提供了这个设计的数据。
第一镜面到像距为0.999。
第一镜面到物距为6.076。
最后一面供作保护面之用。
畸变=0.26﹪。
图1 10倍显微物镜系统
表1 10倍显微物镜参数
要求:(1)运用zemax软件仿真实现该系统,并进行像质评价和分析,给出多个波长和多个视场的像质评价和分析。
(2)改变某一Lens Data,观察像质评价和分析,然后设置该Lens Data为变量并进行优化,再观察像质评价和分析,最后比较优化前后结果,在此基础上多选几个变量
进行优化看能否得到更好的像质。
(3)在原有系统基础上再加一个单透镜或双透镜,选取一定的参数进行优化,看能否得到更好像质的系统。
(4)改变系统波长,观察像质评价和分析,重复完成(3),比较优化前后像质情况。
2、望远镜头系统设计
在图2 是一个望远镜头具有20°视场以及EFL=5 。
这个镜组的资料给定在表2。
图2 望远镜头系统
表2 望远镜头系统参数
要求:(1)运用zemax软件仿真实现该系统,并进行像质评价和分析,给出多个波长和多个视场的像质评价和分析。
(2)改变某一Lens Data,观察像质评价和分析,然后设置该Lens Data为变量并进行优化,再观察像质评价和分析,最后比较优化前后结果,在此基础上多选几个变量进行优化看能否得到更好的像质。
(3)在原有系统基础上再加一个单透镜或双透镜,选取一定的参数进行优化,看能否得到更好像质的系统。
(4)改变系统波长,观察像质评价和分析,重复完成(3),比较优化前后像质情况。
3、广告投影机物镜设计
(1)相关规格:
光学总长:162mm(第一片玻璃到像面的距离);
后工作距:107.6mm;焦距:118mm
视场:36.5*36.5m(在50m 远时);畸变:<2%;
前端镜片口径:46mm;后端镜片口径:64mm
镜片数:5PCS
(2)结构尺寸图
要求:(1)运用zemax软件设计出该系统,最后给出各镜头数据、系统2D图,以及系统像质评价和分析。
(2)在此基础上增加1-2片透镜并进行优化,看能否改善系统成像质量。
实验二Optisystem仿真设计
实验目的
1.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。
2.利用Optisystem的优化功能仿真计算光纤通信系统的各项性能参数,并进行分析。
实验内容
1、OptiSystem用于WDM设计
根据下图,运用OptiSystem练习设计WDM通信系统,并得出WDM分析结果,在此基础上练习使用该软件的优化功能,如何实现系统优化,同时选取一定的参数进行
掺铒光纤
优化,最后给出最优条件和系统达到的最优结果。
2、OptiSystem 用于EDFA 设计
根据下图,运用OptiSystem 练习设计EDFA 通信系统,并得出EDFA 产生的增益,如采用双泵浦,其增益又如何,在此基础上练习使用该软件的优化功能,如何实现系统优化,同时选取一定的参数如EDFA 长度、铒离子浓度、掺杂半径、纤芯半径等参数进行优化,最后给出最优条件和系统达到的最大增益。
3、光纤通信系统设计
选择NRZ 、RZ 调制格式,直接调制或者外调制,APD 管或者PIN 管,low pass rectangular filter 或者 low pass gauss filter ,等设计一个光纤通信系统。
同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察和分析。
因此,需要在系统中加入Eye Diagram Analyzer 、BER Analyzer 、Optical Time Domain Visualizer 、Optical Power Meter 、Optical Spectrum Analyzer 、Oscilloscope Visualizer 。
通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态和运行结果,最后根据运行结果优化该系统。
实验三Lascad仿真设计
实验目的
1.熟悉LASCAD实验环境,练习使用软件组建激光谐振腔光学系统。
2.利用LASCAD设计激光谐振腔光学系统并仿真计算该系统的各种特性。
实验内容
1、熟悉LASCAD软件,利用该软件计算若干腔型。
2、自己任选一模型(侧面泵浦圆棒、端面泵浦板条),计算给定谐振腔稳定性、热分析、输出特性、不同位置的光斑,改变其中某个元器件的参数,如位置、曲率半径等,计算参数变换对谐振腔稳定性等特性的影响。