重庆市2020年九年级第一次月考数学试题B卷
重庆市商务学校(重庆市第九十四初级中学校)2024-2025学年九年级上学期第一次月考数学试题

重庆市商务学校(重庆市第九十四初级中学校)2024-2025学年九年级上学期第一次月考数学试题一、单选题1.在实数 13-, 0,中,无理数是( )A .13-B .0C D 2.下列美丽的图案中,是中心对称图形的是( )A .B .C .D .3.下列运算正确的是( ) A .233a a a += B .222()a b a b +=+ C .()3251a a ÷=D .22(2)4a a -=4.下列说法正确的是( ) A .四条边相等的四边形是正方形 B .对角线相等的四边形是矩形C .对角线互相垂直且平分的四边形是菱形D .一组对边平行,另一组对边相等的四边形是平行四边形52的结果在( ) A .7和8之间B .8和9之间C .9和10之间D .10和11之间6.下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,…….按此规律,图形⑬中共有n 个小三角形,这里的n =( )A .110B .112C .114D .1167.用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x +=B .()216x -=C .()229x +=D .()229x -=8.如图,正方形ABCD 中,E 为BC 上一点,过B 作BG AE ⊥于点G ,延长BG 至点F ,使得AG GF =,连接CF AF ,.若DAF α∠=,则DCF ∠一定等于( )A .αB .602α︒-C .2αD .45α︒-9.如图,菱形ABCD 的边长为2,60DAB ∠=︒,M ,N 分别是AD ,AC 上的两个动点,则DN MN +的最小值为( )A .1BC D .210.有依次排列的两个整式1A x =-,1B x =+,用后一个整式B 与前一个整式A 作差后得到新的整式记为1C ,用整式1C 与前一个整式B 求和操作得到新的整式2C ,用整式2C 与前一个整式1C 作差后得到新的整式3C ,用整式3C 与前一个整式2C 求和操作得到新的整式4C ,……,依次进行作差、求和的交替操作得到新的整式.下列说法:①整式31C x =+;②整式53C x =+;③整式2C 、整式5C 和整式8C 相同;④20242021202320232C C C C =+.正确的个数是( ) A .1B .2C .3D .4二、填空题11.计算:)2122-=⎛⎫- ⎪⎝⎭.12.若一个多边形的内角和是 1980°,则这个多边形的边数为.13.已知关于x 的一元二次方程2(21)20ax a x a +++-=有两个不相等的实数根,则a 的取值范围是.14.如图,在Rt ABC V 中,90C ∠=︒,30A ∠=︒,2BC =.以点C 为圆心,CB 长为半径画弧,分别交AC ,AB 于点D ,E ,则图中阴影部分的面积为(结果保留π).15.如图,长方形纸片53ABCD AB BC ==,,,点E 在边AD 上,将ABE V 沿BE 折叠,点A 恰巧落在边CD 上的点F 处;点G 在CD 上,将BCG V 沿BG 折叠,点C 恰好落在线段BF 上的点H 处,那么HF 的长度是.16.如图,在正方形ABCD 中,AD =BC 绕点B 逆时针旋转30°得到线段BP ,连接AP 并延长交CD 于点E ,则线段PE 的长为 .17.已知关于x 的分式方程13122++=--ax x x 有整数解,且关于y 的不等式组()432122y y y y a ⎧≥-⎪⎨--<⎪⎩有解且至多5个整数解,则所有满足条件的整数a 的值之和为.18.一个各个数位上的数字均不为0的四位正整数,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数为“倍和数”,对于“倍和数”m ,任意去掉一个数位上的数字,得到四个三位数,这四个三位数的和记为()F m ,则()2136F =;若“倍和数”m 千位上的数字与个位上的数字之和为8,且()2411F m +能被7整除,则所有满足条件的“倍和数”中的最大值与最小值的和为.三、解答题 19.计算: (1)2230x x --=(2)2241244-⎛⎫-÷ ⎪+++⎝⎭x x x x x 20.某市开展茶文化论坛,为了解A B 、两种绿茶的亩产量,工作人员从两种类型的绿茶产区中各随机抽取10亩,在完全相同条件下试验,统计了茶叶的亩产量(单位:千克/亩),并进行整理、描述和分析(亩产量用x 表示,共分为三个等级:合格5055x ≤<,良好5560x ≤<,优秀60x ≥),下面给出了部分信息:10亩A 型绿茶的亩产量:50545555555757585960,,,,,,,,,. 10亩B 型绿茶中“良好”等级包含的所有数据为:57575759,,,. 抽取的A B 、型绿茶亩产量统计表:根据以上信息,解答下列问题:(1)填空:a =_________,b =__________,m =__________;(2)根据以上数据,你认为哪款绿茶更好?请说明理由(写出一条理由即可);(3)若该市今年种植B 型绿茶3000亩,估计今年B 型绿茶亩产量在“良好”等级及以上的有多少亩?21.学习了等腰三角形后,小颖进行了拓展性研究.她过等腰三角形底边上的一点向两腰作垂线段,她发现,这两条线段的和等于等腰三角形一腰上的高.她的解决思路是通过计算面积得出结论.请根据她的思路完成以下作图与填空:用无刻度直尺和圆规,过点C 作AB 的垂线CD ,垂足为点D ,点P 在BC 边上.(只保留作图痕迹,不写作法)已知:如图,在ABC V 中,AB AC =,PE AB ⊥于点E ,PF AC ⊥于点F . 求证:PE PF CD +=.证明:如图,连接AP .PE AB ⊥Q ,PF AC ⊥,CD AB ⊥,12APB S AB PE ∴=⋅△,12APC S AC PF =⋅△,12ABC S AB CD =⋅△.APB APC ABC S S S +=Q △△△, ∴①______12AB CD =⋅,即AB PE AC PF AB CD ⋅+⋅=⋅. Q ②______,()AB PE PF AB CD ∴⋅+=⋅,∴③______.再进一步研究发现,过等腰三角形底边上所有点向两腰作垂线段均具有此特征,请你依照题目中的相关表述完成下面命题填空:过等腰三角形底边上一点向两腰作垂线段,则④______.22.如图,在菱形ABCD 中,对角线AC BD ,交于点O ,64AC BD ==,,动点P 从点A 出发,沿着折线A →O →B 运动,速度为每秒1个单位长度,到达B 点停止运动,设点P 的运动时间为t 秒,PAD △的面积为y .(1)直接写出y 关于t 的函数表达式,并注明自变量t 的取值范围; (2)在直角坐标系中画出y 与t 的函数图象,并写出它的一条性质; (3)根据图象直接写出当4y ≤时t 的取值范围.23.龙岩市公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔10月份到12月份的销量,该品牌头盔10月份销售50个,12月份销售72个,10月份到12月份销售量的月增长率相同. (1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,商家经过调查统计,当售价为40元/个时,月销售量为500个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到8000元,且尽可能让顾客得到实惠,则该品牌头盔每个售价应定为多少元?24.金秋十一月,阳光大草坪ABCD 正处于草坪养护阶段,如图为草坪的平面示意图.经勘测,入口B 在入口A 的正西方向,入口C 在入口B 的正北方向,入口D 在入口C 的北偏东60︒方向400m 处,入口D 在入口A 的北偏西45︒方向1000m 处.( 1.73≈≈)(1)求AB 的长度;(结果精确到1米)(2)小明从入口D 处进入前往M 处赏花,点M 在AB 上,距离入口B 的500m 处.小明可以选择鹅卵石步道①D C B M ---,步行速度为50m/min ,也可以选择人工步道②D A M --,步行速度为60m/min ,请计算说明他选择哪一条步道时间更快?(结果精确到0.1min ) 25.如图,在平面直角坐标系中,直线6y x =+分别交x 轴、y 轴于点A 、点B ,点C 在x 轴正半轴且2OB OC =.(1)求直线BC 的解析式;(2)如图2,过点A 的直线交线段BC 于点M ,且满足ABM V 与ACM △的面积比为1:2,点()5,1N -在线段AB 上,点E 和点F 是x 轴上的两个动点(点E 在点F 左边)且满足2EF =,连接,NE MF ,求NE EF MF ++的最小值.(3)如图3,在(2)的条件下,将点M 沿着射线AB 方向平移M ',若点P 是直线BC 上的一个动点,当45BM P '∠=︒时,请直接写出所有满足条件点P 的坐标,并写出其中一个点P 的求解过程. 26.在ABC V 中,AB AC =.(1)如图1,当90A ∠=︒时,取AC 上一点D ,取BC 上一点E ,连接BD ,DE .若BD 平分ADE ∠,2AD DE ==,求AC 的长;(2)如图2,当60BAC ∠=︒时,取AB 上一点F ,取BC 上一点G ,连接FG ,AG ,延长BC 至点H ,连接AH .已知60GAH ∠=︒,AH AG FG =+,求证:CH BF =;(3)当60BAC ∠=︒,点P 在ABC V 内部时,连接AP ,BP ,CP.当2AP BP +的值最小时,请直接写出BPC ABCS S V V 的值.。
【解析版】重庆市巴蜀中学九年级上第一次月考数学试卷

重庆市巴蜀中学九年级上学期第一次月考数学试卷一、选择题:(每小题4分,共48分)1.(4分)已知点A(2,a)在反比例函数y=的图象上,则a的值是()A.2B.﹣2 C.﹣4 D.2.(4分)已知a是锐角,若sina=,则锐角a是()A.30°B.45°C.60°D.90°3.(4分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.4.(4分)若△ABC的三个内角满足|tanA﹣1|+(cos B﹣)2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.(4分)如图,AB是⊙O的直径,点C、D是⊙O上的点,若∠CAB=25°,则∠ADC 的度数为()A.65°B.55°C.60°D.75°6.(4分)若锐角A满足tana=,则sina的值是()A.B.C.D.7.(4分)已知直线AB与反比例函数y=﹣和y=交于A、B两点与y轴交于C,若AC=BC,则S△AOB=()A.6B.7C.4D.38.(4分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.9.(4分)一次函数y=kx+b,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k,乙口袋的卡片上的数字作b,则该一次函数的图象经过一、二、四象限的概率是()A.B.C.D.10.(4分)如图所示,李鑫老师利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐(即PA=PC),水平线l与OC夹角a=8°(点A在OC上),则铅锤P处的水深h为()(参考数据:sin8°≈,cos8°≈,tan8°≈)A.150cm B.144cm C.111cm D.105cm11.(4分)如图△ABC是一个直三棱柱的俯视图,若该直三棱柱的高10cm,∠A=30°,∠C=45°,BC=2cm,则该直三棱柱的三种视图的面积之和为()A.(42+22)cm2B.(22+42)cm2C.(44+24)cm2D.(60+20+20)cm212.(4分)如图,直线y1=x与双曲线y2=(x>0)交于点A,将直线y1=x向下平移4个单位后称该直线为y3,若y3与双曲线交于B,与x轴交于C,与y轴交于D,AO=2BC,连接AB,则以下结论错误的有()①点C坐标为(3,0);②k=;③S四边形OCBA=;④当2<x<4时,有y1>y2>y3;⑤S四边形ABDO=2S△COD.A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)13.(4分)计算tan60°﹣sin60°+cos245°=.14.(4分)如图,过O的直线交反比例函数y=于A、B两点,分别过A、B两点作y 轴,x轴的平行线交于C,则S△ABC=.15.(4分)如图所示的几何体的三视图,这三种视图中画图不符合规定的是.16.(4分)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.17.(4分)如图,AB是⊙O的直径,AB=4cm,C、D是半圆的三等分点,连接AD、AC,则弦AC=.18.(4分)已知点A、B、C在⊙O上,若AB=AC,BC=24,⊙O半径为13,则△ABC 的BC边上的高为.19.(4分)如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为秒.20.(4分)如图,矩形OABC,tan∠AOB=,OB=10,将矩形OABC沿对角线OB翻折,点A落在A′,若反比例函数y=的图象经过A′,则反比例函数的解析式为.三、解答题21.(18分)计算:(1)3tan30°﹣tan45°+2cos30°+4sin60°(2)|sin45°﹣1|﹣+cos45°﹣tan60°(3)已知△ABC中,∠ABC=135°,tanA=,BC=2,求△ABC的周长.22.(10分)在4张完全相同的卡片的上面分别写上数字3,2,4,4,再将它们的背面朝上洗均匀(1)随机抽出一张卡片,求抽到数字“4”的概率.(2)若随机抽出一张卡片记下数字后放回洗均匀,再随机抽出一张卡片,用树状图或列表法求两次都没有数字“4”的概率.(3)如果再增加若干张写有数字“4”的同样卡片放入前面的卡片中洗均匀后,使得随机抽出一张卡片是4的概率为,求增加了多少张卡片?23.(10分)如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C 在B处的南偏东75°方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.24.(10分)江北区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了若干名常驻市民,对他们喜爱以上的体育项目(每人只选一项)进行了问卷调查,将数据进行统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整)(1)在这次问卷调查中,一共抽查名常驻市民,篮球项目所占圆心角的度数是;估计该区1200万常驻市民中有人喜爱足球运动、有人喜欢跑步;(2)补全频数分布直方图;(3)若这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率.25.(10分)如图,直线l1:y1=kx+b与反比例函数y2=相交于A(﹣1,4)和B(﹣4,a),直线l2:y3=﹣x+c与反比例函数y2=相交于B、C两点,交y轴于点D,连接OB、OC、OA.(1)求反比例函数的解析式和c的值.(2)求△BOC的面积(3)直接写出当kx+b≥时x的取值范围.(4)若过原点O的直线交反比列函数于P、Q两点(P在第二象限、Q在第四象限)当以P、A、C、Q为顶点的四边形的面积为30时,求点Q的坐标.26.(12分)如图,在平面直角坐标系中,已知矩形ABCD,E是BC上一点,∠AED=90°,AB=6,SIN∠AEB=,矩形ABCD的点B与O重合,BC在x轴上,现有一张硬纸片△MGN,∠MGN=90°,点M在x轴上,点G在ED上,NG=3,N与E重合.现将△MGN以每秒1个单位的速度沿EB方向在x轴上匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD方向向点D匀速移动,点Q为直线GN与线段AE的交点,连接QP,当点P到达终点D时,△MGN和点P同时停止运动,设运动时间x秒.(1)若反比例函数的图象经过点D,求该反比例函数的解析式.(2)在整个运动过程中,设△MGN与△ABE重叠部分的面积为y,求y与x的函数关系式,并写出x的取值范围.(3)在整个运动过程中,是否存在点P,使△APQ为等腰三角形,若存在,求出x的值,若不存在,说明理由.重庆市巴蜀中学九年级上学期第一次月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共48分)1.(4分)已知点A(2,a)在反比例函数y=的图象上,则a的值是()A.2B.﹣2 C.﹣4 D.考点:反比例函数图象上点的坐标特征.分析:直接将点(2,a)代入y=即可求出a的值.解答:解:由题意知,a=﹣,解得:a=﹣2.故选B.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.2.(4分)已知a是锐角,若sina=,则锐角a是()A.30°B.45°C.60°D.90°考点:特殊角的三角函数值.分析:根据特殊角的三角函数值求解.解答:解:∵sina=,∴∠α=60°.故选C.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.(4分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:俯视图为不规则四边形,只有C符合.故选C.点评:本题考查由三视图确定几何体的形状,可运用排除法来解答.4.(4分)若△ABC的三个内角满足|tanA﹣1|+(cosB﹣)2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质,求出∠A和∠B的度数,然后可判定△ABC的形状.解答:解:由题意得,tanA﹣1=0,cosB﹣=0,则tanA=1,cosB=,∠A=45°,∠B=45°,则∠C=180°﹣45°﹣45°=90°,故△ABC为等腰直角三角形.故选C.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.5.(4分)如图,AB是⊙O的直径,点C、D是⊙O上的点,若∠CAB=25°,则∠ADC 的度数为()A.65°B.55°C.60°D.75°考点:圆心角、弧、弦的关系.分析:由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠CAB=25°,得出∠B的度数,根据同弧所对的圆周角相等继而求得∠ADC的度数.解答:解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=25°,∴∠ABC=90°﹣∠CAB=65°,∴∠ADC=∠ABC=65°.故选A.点评:本题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.6.(4分)若锐角A满足tana=,则sina的值是()A.B.C.D.考点:锐角三角函数的定义.分析:根据题意,由tana=,易得sina==.解答:解:∵tana=,∴sina==,故答案为:.点评:本题主要考查了同角三角函数的基本关系,解题的关键是结合三角函数的定义.7.(4分)已知直线AB与反比例函数y=﹣和y=交于A、B两点与y轴交于C,若AC=BC,则S△AOB=()A.6B.7C.4D.3考点:反比例函数与一次函数的交点问题.专题:计算题.分析:作AD⊥y轴于D,BE⊥y轴于E,如图,先证明△ACD≌△BCE得到S△ACD=S△BCE,再利用面积代换得到S△AOB=S△AOD+S△BOE,然后根据反比例函数比例系数k的几何意义进行计算.解答:解:作AD⊥y轴于D,BE⊥y轴于E,如图,在△ACD和△BCE中,,∴△ACD≌△BCE,∴S△ACD=S△BCE,∴S△AOB=S△AOC+S△BOC=S△AOD+S△ACD+S△BOC=S△AOD+S△BCE+S△BOC=S△AOD+S△BOE=•|﹣2|+•|4|=3.故选D.点评:本题考查了反比例函数与一次函数的交点问题:一次函数与反比例函数的交点坐标满足两个函数解析式.也考查了反比例函数比例系数k的几何意义.8.(4分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.B.C.D.考点:列表法与树状图法;轴对称图形.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.解答:解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:=.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.(4分)一次函数y=kx+b,现分别从装有1,﹣2两张数字卡片的甲口袋和装有﹣1,2,3三张数字卡片的乙口袋中随机抽一张,甲口袋的卡片上的数字作k,乙口袋的卡片上的数字作b,则该一次函数的图象经过一、二、四象限的概率是()A.B.C.D.考点:列表法与树状图法;一次函数图象与系数的关系.分析:先根据题意列出树状图,再找出所有情况,看k<0,b>0的情况占总情况的多少即可求出答案.解答:解:画树状图共有6种情况,因为一次函数y=kx+b经过第一、二、四象限,则k<0,b>0,又因为k<0,b>0的情况有k=﹣1,b=2或k=﹣1,b=3两种情况,所以一次函数y=kx+b经过第一、二、四象限的概率为=;故选:D.点评:此题考查了列表法与树状图,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验;10.(4分)如图所示,李鑫老师利用国庆假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐(即PA=PC),水平线l与OC夹角a=8°(点A在OC上),则铅锤P处的水深h为()(参考数据:sin8°≈,cos8°≈,tan8°≈)A.150cm B.144cm C.111cm D.105cm考点:解直角三角形的应用.分析:在Rt△ABC中,已知∠ACB=α=8°,AB=6,根据三角函数就可以求出BC的长;在直角△ABC中,根据已知条件,利用勾股定理就可以求出水深h.解答:解:∵l∥BC,∴∠ACB=α=8°,在Rt△ABC中,∵tanα=,∴BC===42(cm),根据题意,得h2+422=(h+6)2,∴h=144(cm).故选:B.点评:本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.11.(4分)如图△ABC是一个直三棱柱的俯视图,若该直三棱柱的高10cm,∠A=30°,∠C=45°,BC=2cm,则该直三棱柱的三种视图的面积之和为()A.(42+22)cm2B.(22+42)cm2C.(44+24)cm2D.(60+20+20)cm2考点:解直角三角形;简单几何体的三视图.分析:该直三棱柱的主视图与左视图都是矩形,俯视图是三角形,根据矩形与三角形的面积公式分别计算,再相加即可.解答:解:过B作BD⊥AC于D.在Rt△BCD中,∵∠BDC=90°,∠C=45°,BC=2cm,∴BD=CD=BC=2cm,在Rt△BAD中,∵∠BDA=90°,∠A=30°,∴AB=2BD=4cm,AD=BD=2cm,∴AC=AD+CD=(2+2)cm.主视图的面积是:10(2+2)=20+20(cm2),左视图的面积是:10×2=20(cm2),俯视图的面积是:×(2+2)×2=2+2(cm2),∴该直三棱柱的三种视图的面积之和为:20+20+20+2+2=42+22(cm2).故选A.点评:本题考查了解直角三角形,简单几何体的三视图,得出该直三棱柱的三种视图的形状是解题的关键.12.(4分)如图,直线y1=x与双曲线y2=(x>0)交于点A,将直线y1=x向下平移4个单位后称该直线为y3,若y3与双曲线交于B,与x轴交于C,与y轴交于D,AO=2BC,连接AB,则以下结论错误的有()①点C坐标为(3,0);②k=;③S四边形OCBA=;④当2<x<4时,有y1>y2>y3;⑤S四边形ABDO=2S△COD.A.1个B.2个C.3个D.4个考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据一次函数图象的平移规律,由y1=x向下平移4个单位得到直线BC的解析式为y3=x﹣4,然后把y=0代入确定C点坐标,即可判断①;作AE⊥x轴于E点,BF⊥x 轴于F点,易证得Rt△OAE∽△RtCBF,则===2,若设A点坐标为(a,a),则CF=a,BF=a,得到B点坐标(3+a,a),然后根据反比例函数上点的坐标特征得a•a=(3+a)•a,解得a=2,于是可确定点A点坐标为(2,),再将A点坐标代入y2=,求出k的值,即可判断②;根据S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF,求出S,即可判断③;根据图象得出当2<x<4时,直线y1在双曲线y2的上方,双曲四边形OCBA线y2又在直线y3的上方,即可判断④;先根据三角形面积公式求出S△COD=×3×4=6,再由S四边形ABDO=S四边形OCBA+S△OCD,得出S四边形ABDO=12,即可判断⑤.解答:解:①∵将直线y1=x向下平移4个单位后称该直线为y3,y3与双曲线交于B,与x轴交于C,∴直线BC的解析式为y3=x﹣4,把y=0代入得x﹣4=0,解得x=3,∴C点坐标为(3,0),故本结论正确;②作AE⊥x轴于E点,BF⊥x轴于F点,如图,∵OA∥BC,∴∠AOC=∠BCF,∴Rt△OAE∽Rt△CBF,∴===2,设A点坐标为(a,a),则OE=a,AE=a,∴CF=a,BF=a,∴OF=OC+CF=3+a,∴B点坐标为(3+a,a),∵点A与点B都在y2=(x>0)的图象上,∴a•a=(3+a)•a,解得a=2,∴点A的坐标为(2,),把A(2,)代入y=,得k=2×=,故本结论正确;③∵A(2,),B(4,),CF=a=1,∴S四边形OCBA=S△OAE+S梯形AEFB﹣S△BCF=×2×+×(+)×2﹣×1×=+4﹣=6,故本结论错误;④由图象可知,当2<x<4时,有y1>y2>y3,故本结论正确;⑤∵S△COD=×3×4=6,S四边形ABDO=S四边形OCBA+S△OCD=6+6=12,∴S四边形ABDO=2S△COD,故本结论正确.故选A.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了相似三角形的判定与性质,图形的面积以及一次函数图象的平移问题.二、填空题(每小题4分,共32分)13.(4分)计算tan60°﹣sin60°+cos245°=.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入求解.解答:解:原式=﹣+=.故答案为:.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.14.(4分)如图,过O的直线交反比例函数y=于A、B两点,分别过A、B两点作y 轴,x轴的平行线交于C,则S△ABC=8.考点:反比例函数系数k的几何意义.分析:设点A(x,y),则xy=﹣4,根据交点关于原点对称可得出B(﹣x,﹣y),再根据三角形面积的公式进行计算即可.解答:解:设点A(x,y),则B(﹣x,﹣y),所以xy=﹣4,S△ABC=•(﹣x﹣x)(y+y)=﹣2xy=8,故答案为8.点评:本题考查了反比例函数系数k的几何意义,解题关键是确定点A、B坐标,三角形面积的计算.15.(4分)如图所示的几何体的三视图,这三种视图中画图不符合规定的是左视图和俯视图.考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.解答:解:根据几何体的摆放位置可知,主视图正确;左视图的高度不对;俯视图缺少两条看不到的虚线.故不符合规定的是左视图和俯视图.故答案为:左视图和俯视图.点评:本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.16.(4分)如图所示的圆面图案是用相同半径的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在黑色区域的概率为.考点:几何概率.分析:计算出黑色区域的面积与整个图形面积的比,利用几何概率的计算方法解答即可.解答:解:∵由有图可看出圆面图案总面积S总=6S1+6S2,∴黑色区域的面积S黑=2S1+2S2=S总,∴飞镖落在黑色区域的概率为;故答案为:.点评:此题考查了几何概率,一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=.17.(4分)如图,AB是⊙O的直径,AB=4cm,C、D是半圆的三等分点,连接AD、AC,则弦AC=2cm.考点:圆周角定理;含30度角的直角三角形.分析:连接OC、OD、BC,利用圆周角、弧、弦间的关系求得∠COB=60°,则由圆周角定理得到∠CAB=30°,∠ACB=90°.易求BC的长度,利用勾股定理来求AC的长度.解答:解:如图,连接OC、OD、BC.∵C、D是半圆的三等分点,∴∠COB=60°,∴∠CAB=30°.又AB是直径,∴∠ACB=90°.又AB=4cm,∴BC=AB=2cm.∴由勾股定理得到:AC==2cm.故答案是:2cm.点评:本题考查了圆周角定理、含30度的直角三角形.根据已知条件“C、D是半圆的三等分点”求得∠COB=60°是解题的关键.18.(4分)已知点A、B、C在⊙O上,若AB=AC,BC=24,⊙O半径为13,则△ABC 的BC边上的高为8或18.考点:垂径定理;勾股定理.专题:分类讨论.分析:分点A在优弧和劣弧上两种情况,当A在优弧上时,过A作AD⊥BC于点D,则可知O在AD上,连接BD,在Rt△BOD中可求得OD=5,可知AD=5+13,当点A在劣弧上时可知AD=OA﹣AD=8.解答:解:如图1,当点A在优弧上时,过A作AD⊥BC于点D,∵AB=AC,∴BD=CD=12,且圆心O在AD上,连接OB,则OB=OA=13,在Rt△BOD中,由勾股定理可求得OD=5,∴AD=AO+OD=13+5=18;如图2,当点A在劣弧上时,过A作AD⊥BC于点D,∵AB=AC,∴BD=CD=12,且圆心O在AD上,连接OB,则OB=OA=13,在Rt△BOD中,由勾股定理可求得OD=5,∴AD=AO﹣OD=13﹣5=8;综上可知△ABC的BC边上的高为8或18,故答案为:8或18.点评:本题主要考查垂径定理和等腰三角形的性质、勾股定理等知识的应用,分点A在优弧和劣弧上两种情况求解是解题的关键.注意勾股定理的应用.19.(4分)如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为2.5秒.考点:视点、视角和盲区;相似三角形的应用.分析:如图,根据相似的判定可得出△ABC∽△ADE,从而得出DE的长,再根据小强骑车速度10米/秒,即可得出答案.解答:解:如图,∵BC∥DE,∴△ABC∽△ADE,∴BC:DE=5:25,∵BC=5米,∴DE=25米,∵小强骑车速度10米/秒,∴25÷10=2.5(秒),故答案为2.5米.点评:本题考查了视点、视角和盲区,以及相似三角形的应用,根据相似得出DE的长是解题的关键.20.(4分)如图,矩形OABC,tan∠AOB=,OB=10,将矩形OABC沿对角线OB翻折,点A落在A′,若反比例函数y=的图象经过A′,则反比例函数的解析式为y=﹣.考点:反比例函数综合题.分析:根据正切值,可得OA、AB的关系,根据勾股定理,可得OA的长,根据翻折的性质,可得OA′与OA的关系,根据倍角三角函数的关系,可得∠AOA′的正切,再根据补角正切间的关系,可得∠A′OE的正切,根据勾股定理,可得A′点的坐标,根据待定系数法,可得函数解析式.解答:解:如图:作A′E⊥x轴与E点.,由tan∠AOB==,得AB=4x,OA=3x.由勾股定理,得OA2+AB2=OB2,即(3x)2+(4x)2=102,解得x=2,3x=6.由翻折的性质,得OA′=OA=6,∠AOA′=2∠AOB.tan∠AOA′=tan2∠AOB===﹣.tan∠A′OE=tan(π﹣∠AOA′)=﹣tan∠AOA′=.由正切函数值,可设OE=7x,A′E=24x.由勾股定理,得A′E2+OE2=A′O2,即(7x)2+(24x)2=62.解得x=,OE=﹣,A′E=,即A′点的坐标是(﹣,).反比例函数y=的图象经过A′,得k=xy=﹣×=﹣.反比例函数的解析式为y=﹣,故答案为:y=﹣.点评:本题考查了反比例函数综合题,利用了翻折的性质,三角函数的倍角关系,勾股定理.三、解答题21.(18分)计算:(1)3tan30°﹣tan45°+2cos30°+4sin60°(2)|sin45°﹣1|﹣+cos45°﹣tan60°(3)已知△ABC中,∠ABC=135°,tanA=,BC=2,求△ABC的周长.考点:解直角三角形;特殊角的三角函数值.专题:计算题.分析:(1)原式利用特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果;(3)过CD垂直于AB,交AB延长线于点D,由题意得到三角形BCD为等腰直角三角形,根据BC的长求出CD=BD=2,在直角三角形ACD中,由tanA的值,根据CD求出AD的长,进而确定出AB的长,利用勾股定理求出AC的长,即可确定出三角形ABC周长.解答:解:(1)原式=﹣1++2=4﹣1;(2)原式=1﹣﹣1++﹣=﹣;(3)作CD⊥AB,交AB延长线于点D,∵∠ABC=135°,BC=2,∴∠CBD=45°,在Rt△BCD中,BD=CD=BC=2,在Rt△ADC中,tanA==,∴AD=4,AB=2,根据勾股定理得:AC==2,则△ABC周长为2+2+2.点评:此题考查了解直角三角形,涉及的知识有:勾股定理,特殊角的三角函数值,二次根式的性质,锐角三角函数定义,以及等腰直角三角形的判定与性质,熟练掌握定理及法则是解本题的关键.22.(10分)在4张完全相同的卡片的上面分别写上数字3,2,4,4,再将它们的背面朝上洗均匀(1)随机抽出一张卡片,求抽到数字“4”的概率.(2)若随机抽出一张卡片记下数字后放回洗均匀,再随机抽出一张卡片,用树状图或列表法求两次都没有数字“4”的概率.(3)如果再增加若干张写有数字“4”的同样卡片放入前面的卡片中洗均匀后,使得随机抽出一张卡片是4的概率为,求增加了多少张卡片?考点:列表法与树状图法;概率公式.专题:计算题.分析:(1)根据概率公式求解;(2)利用树状图展示所有16种等可能的结果数,再找出两次都没有数字“4”所占的结果数,然后根据概率公式求解;(3)设增加了x张卡片,根据概率公式得到=,然后解方程即可.解答: .解:(1)抽到数字“4”的概率==;(2)画树状图为:共有16种等可能的结果数,其中两次都没有数字“4”占4种结果数,所有两次都没有数字“4”的概率==;(3)设增加了x张卡片,根据题意得=,解得x=4,即增加了4张卡片.点评:本题考查了列表法与树状图法:通过列表法或树状图法所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了概率公式.23.(10分)如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C 在B处的南偏东75°方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:本题是将实际问题转化为直角三角形中的数学问题,可通过构造出与实际问题有关的直角三角形,利用题中已知角和边,借助于三角函数来求解.解答:解:连接AC、AD、BC、BD,延长AT,过B作BT⊥AT于T,AC与BT交于点E.过B作BP⊥AC于点P.由已知得∠BAD=90°,∠BAC=30°,AB=3×25=75(海里),在△BEP和△AET中,∠BPE=∠A TE=90°,∠AET=∠BEP,∴∠EBP=∠EAT=30度.∵∠BA T=60°,∴∠BAP=30°,从而BP=×75=37.5(海里).∵港口C在B处的南偏东75°方向上,∴∠CBP=45度.在等腰Rt△CBP中,BC=BP=(海里),∴BC<AB.∵△BAD是Rt△,∴BD>AB.综上,可得港口C离B点位置最近.∴此船应转向南偏东75°方向上直接驶向港口C.设由B驶向港口C船的速度为每小时x海里,则据题意应有(60÷5×4﹣8)≤75,解不等式,得:x≥20(海里).答:此船应转向沿南偏东75°的方向向港口C航行,且航行速度至少不低于每小时20海里,才能保证船在抵达港口前不会沉没.点评:根据题意准确画出示意图是解这类题的前提和保障.可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,使问题得以解决.24.(10分)江北区为了了解该区常驻市民对跑步、篮球、足球、羽毛球、舞蹈等体育项目的喜爱情况,在该区范围内随机抽取了若干名常驻市民,对他们喜爱以上的体育项目(每人只选一项)进行了问卷调查,将数据进行统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整)(1)在这次问卷调查中,一共抽查50名常驻市民,篮球项目所占圆心角的度数是144°;估计该区1200万常驻市民中有480万人喜爱足球运动、有48万人喜欢跑步;(2)补全频数分布直方图;(3)若这次问卷调查中喜欢跑步的人员中有1名男士,喜欢舞蹈的人员中有2名女士,现从喜欢跑步和喜欢舞蹈的人员中随机选取两名作区代表参加重庆市的竞技比赛,用列表法或树状图求所选的两名恰好是一位喜欢跑步的男士和一位喜欢舞蹈的女士的概率.。
2020年重庆市中考招生考试数学试题(B卷)(解析版)

A. 23 米
B. 24 米
C. 24.5 米
D. 25 米
2x 1 3x 2
10.若关于
x的一元一次不等式组x 2a Nhomakorabea1
的解集为 x≥5,且关于 y 的分式方程
y
y
2
2
a
y
1 有非负整数解,则符合条件的所有整数
a
的和为(
)
A. -1
B. -2
C. -3
D. 0
11.如图,在△ABC 中,AC= 2 2 ,∠ABC=45°,∠BAC=15°,将△ACB 沿直线 AC 翻折至△ABC 所在的平
上一动点,点 N 为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A, E,M,N 为顶点的四边形为平行四边形,若存在,直接写出点 N 的坐标;若不存在,请说明理由.
四、解答题(本大题 1 个小题,共 8 分) 26.△ABC 为等边三角形,AB=8,AD⊥BC 于点 D,E 为线段 AD 上一点,AE= 2 3 .以 AE 为边在直线 AD
4.如图,AB 是⊙O 的切线,A 为切点,连接 OA,OB,若∠B=35°,则∠AOB 的度数为( )
重庆市 2020 年初中学业水平暨高中招生考试数学试题(B 卷)
(全卷共四个大题,满分 150 分,考试时间 120 分钟)
参考公式:抛物线 y=ax2+bx+c(a≠0)的顶点坐标为( b ,4ac b2 ),对称轴公式为 x= b .
2a 4a
2a
一、选择题(本大题 12 个小题,每小题 4 分,共 48 分)
为 2510 元,第三时段返现金额比第一时段多 420 元,则第二时段返现金额为____元.
2024年重庆市中考数学试题B卷(含答案)

重庆市2024年初中学业水平暨高中招生考试数学试题(B卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a=++≠的顶点坐标为24,24b ac ba a⎛⎫-- ⎪⎝⎭,对称轴为2bxa=-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列各数中最小的数是()A.1-B.0C.1D.2【答案】A【解析】【分析】根据正数大于0,0大于负数,即可作出判断.【详解】1-是负数,其他三个数均是非负数,故1-是最小的数;故选:A.【点睛】本题考查了有理数大小的比较:负数小于一切非负数,明确此性质是关键.2.下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D .该标点符号不是轴对称图形,故此选项不符合题意.故选:A .3.反比例函数10y x =-的图象一定经过的点是()A.()1,10 B.()2,5- C.()2,5 D.()2,8【答案】B【解析】【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =-=-,图象不经过()1,10,故A 不符合要求;当2x =-时,1052y =-=-,图象一定经过()2,5-,故B 符合要求;当2x =时,1052y =-=-,图象不经过()2,5,故C 不符合要求;当2x =时,1052y =-=-,图象不经过()2,8,故D 不符合要求;故选:B .4.如图,AB CD ∥,若1125∠=︒,则2∠的度数为()A .35︒ B.45︒ C.55︒ D.125︒【答案】C【解析】【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒-∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .5.若两个相似三角形的相似比为1:4,则这两个三角形面积的比是()A.1:2B.1:4C.1:8D.1:16【答案】D【解析】【分析】本题主要考查了相似三角形的性质,根据相似三角形的面积之比等于相似比的平方进行求解即可.【详解】解:∵两个相似三角形的相似比为1:4,∴这两个三角形面积的比是221:41:16=,故选:D .6.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】C【解析】【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.6=,而45<=,∴10611<<,故答案为:C7.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是()A.20B.21C.23D.26【答案】C【解析】【分析】本题考查了图形类的规律探索,解题的关键是找出规律.利用规律求解.通过观察图形找到相应的规律,进行求解即可.【详解】解:第①个图案中有()131112+⨯-+=个菱形,第②个图案中有()132115+⨯-+=个菱形,第③个图案中有()133118+⨯-+=个菱形,第④个图案中有()1341111+⨯-+=个菱形,∴第n 个图案中有()131131n n +-+=-个菱形,∴第⑧个图案中菱形的个数为38123⨯-=,故选:C .8.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为()A.28︒B.34︒C.56︒D.62︒【答案】B【解析】【分析】本题考查了圆周角定理,等腰三角形的性质等知识,利用圆周角定理求出COB ∠,根据等腰三角形的三线合一性质求出AOB ∠,等边对等角然后结合三角形内角和定理求解即可.【详解】解:∵28D ∠=︒,∴256BOC D ∠=∠=︒,∵OC AB ⊥,OA OB =,∴2112AOB BOC ∠=∠=︒,OAB OBA ∠=∠,∴()1180342OAB AOB ∠=︒-∠=︒,故选:B .9.如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为()A.2B.C.D.125【答案】D【解析】【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到AE AF =,进一步证明()SAS AEM AFM △≌△得到EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=-=-,,在Rt CEM △中,由勾股定理得()()222134x x +=+-,解方程即可得到答案.【详解】解:∵四边形ABCD 是正方形,∴904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,又∵1BE DF ==,∴()SAS ABE ADF △≌△,∴AE AF =,∵AM 平分EAF ∠,∴EAM FAM ∠=∠,又∵AM AM =,∴()SAS AEM AFM △≌△,∴EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=-=-,,在Rt CEM △中,由勾股定理得222EM CE CM =+,∴()()222134x x +=+-,解得125x =,∴125DM =,故选:D .10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是()A.0B.1C.2D.3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:023-+=______.【答案】3【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.12.甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.【答案】13【解析】【分析】本题考查了列表法与树状图法:画树状图展示所有9种等可能的结果数,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,他们选择同一个景点有3种,故他们选择同一个景点的概率是:3193=,故答案为:13.13.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045︒÷︒可求得边数.【详解】解: 多边形外角和是360度,正多边形的一个外角是45︒,360458∴︒÷︒=即该正多边形的边数是8,故答案为:8.【点睛】本题主要考查了多边形外角和以及多边形的边数,解题的关键是掌握正多边形的各个内角相等,各个外角也相等.14.重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.【答案】()22001401x +=【解析】【分析】本题主要考查了一元二次方程的实际应用,设第二、第三两个季度安全运行架次的平均增长率为x ,则第二季度低空飞行航线安全运行了()2001x +架次,第三季度低空飞行航线安全运行了()22001x +架次,据此列出方程即可.【详解】解:设第二、第三两个季度安全运行架次的平均增长率为x ,由题意得,()22001401x +=,故答案为:()22001401x +=.15.如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.【答案】2【解析】【分析】本题主要考查了等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,先根据等边对等角和三角形内角和定理求出72C ABC ∠=∠=︒,再由角平分线的定义得到36ABD CBD ∠=∠=︒,进而可证明A ABD BDC C ==∠∠,∠∠,即可推出2AD BC ==.【详解】解:∵在ABC 中,AB AC =,36A ∠=︒,∴180722A C ABC ︒︒-∠∠=∠==,∵BD 平分ABC ∠,∴1362ABD CBD ABC ∠=∠=∠=︒,∴72A ABD BDC A ABD C ==+=︒=∠∠,∠∠∠∠,∴AD BD BD BC ==,,∴2AD BC ==,故答案为:2.16.若关于x 的一元一次不等式组2133423x x x a +⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是________.【答案】12【解析】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出2a >;解分式方程得到102a y -=,再由关于y 的分式方程8122a y y y --=++的解均为负整数,推出10a <且6a ≠且a 是偶数,则210a <<且6a ≠且a 是偶数,据此确定符合题意的a 的值,最后求和即可.【详解】解:2133423x x x a +⎧≤⎪⎨⎪-<+⎩①②解不等式①得:4x ≤,解不等式②得:2x a <+,∵不等式组的解集为4x ≤,∴24a +>,∴2a >;解分式方程8122a y y y --=++得102a y -=,∵关于y 的分式方程8122a y y y --=++的解均为负整数,∴1002a -<且102a -是整数且102202a y -+=+≠,∴10a <且6a ≠且a 是偶数,∴210a <<且6a ≠且a 是偶数,∴满足题意的a 的值可以为4或8,∴所有满足条件的整数a 的值之和是4812+=.故答案为:12.17.如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.【答案】①.203##263②.83##223【解析】【分析】由直径所对的圆周角是直角得到90ADB BDC ∠=∠=︒,根据勾股定理求出4BD =,则3cos 5CD C BC ==,由切线的性质得到90ABC ∠=︒,则可证明C ABD ∠=∠,解直角三角形即可求出20cos 3BD AB ABD ==∠;连接AE ,由平行线的性质得到BAF ABE ∠=∠,再由F ADE ∠=∠,ADE ABE ∠=∠,推出F BAF ∠=∠,得到203BF AB ==,则208433DF BF BD =-=-=.【详解】解:∵AB 是O 的直径,∴90ADB BDC ∠=∠=︒,在Rt BDC中,由勾股定理得4BD ==,∴3cos 5CD C BC ==,∵BC 是O 的切线,∴90ABC ∠=︒,∴90C CBD CBD ABD +=+=︒∠∠∠∠,∴C ABD ∠=∠,在Rt △ABD 中,4203cos 35BD AB ABD ===∠;如图所示,连接AE,∵AF BE ∥,∴BAF ABE ∠=∠,∵F ADE ∠=∠,ADE ABE ∠=∠,∴F BAF ∠=∠,∴203BF AB ==,∴208433DF BF BD =-=-=;故答案为:203;83.【点睛】本题主要考查了切线的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,解直角三角形,等腰三角形的判定等等,证明F BAF ∠=∠是解题的关键.18.一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.【答案】①.3456②.6273【解析】【分析】本题主要考查了新定义,根据新定义得到9a d b c +=+=,再由1b a c b -=-=可求出a 、b 、c 、d 的值,进而可得答案;先求出9999099M a b =++,进而得到()36981313F M ab cda b a ++++=++,根据()13F M ab cd++是整数,得到369813a b a ++++是整数,即3613a b ++是整数,则36a b ++是13的倍数,求出8a ≤,再按照a 从大到小的范围讨论求解即可.【详解】解:∵abcd 是一个“友谊数”,∴9a d b c +=+=,又∵1b a c b -=-=,∴45b c ==,,∴36a d ==,,∴这个数为3456;∵M abcd =是一个“友谊数”,∴100010010M a b c d=+++()10001001099a b b a=++-+-9999099a b =++,∴()11110119M F M a b ==++,∴()13F M ab cd++1111011101013a b a b c d++++++=()111101*********a b a b b a +++++-+-=12011013a b ++=1173104613a a b ++++=369813a b a ++=++,∵()13F M ab cd++是整数,∴369813a b a ++++是整数,即3613a b ++是整数,∴36a b ++是13的倍数,∵a b c d 、、、都是不为0的正整数,且9a d b c +=+=,∴8a ≤,∴当8a =时,313638a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当7a =时,283635a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当6a =时,253632a b ≤++≤,此时可以满足36a b ++是13的倍数,即此时2b =,则此时37d c ==,,∵要使M 最大,则一定要满足a 最大,∴满足题意的M 的最大值即为6273;故答案为:3456;6273.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭.【答案】(1)42a -(2)2x x +【解析】【分析】本题主要考查了整式的混合计算,分式的混合计算∶(1)先根据单项式乘以多项式的计算法则和多项式乘以多项式的计算法则去括号,然后合并同类项即可得到答案;(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.【小问1详解】解:()()()312a a a a -+-+22322a a a a a =-+-+-42a =-;【小问2详解】解:22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭()()()2222222x x x x x +--+=÷--()()()22222x x x x x -=⋅-+-2x x =+.20.数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数七年级8687b 八年级86a 90根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【解析】【分析】本题主要考查了中位数,众数,用样本估计总体,扇形统计图等等:(1)根据中位数和众数的定义可求出a 、b 的值,先求出把年级A 组的人数,进而可求出m 的值;(2)根据八年级学生成绩的中位数和众数都比七年级学生成绩的高即可得到结论;(3)用七年级的人数乘以七年级样本中优秀的人数占比求出七年级优秀人数,用八年级的人数乘以八年级样本中优秀的人数占比求出八年级优秀人数,再二者求和即可得到答案.【小问1详解】解:八年级C 组的人数为1020%2⨯=人,而八年级B 组有4人,则把八年级10名学生的成绩按照从低到高排列,处在第5名和第6名的成绩分别为88分,88分,∴八年级学生成绩的中位数8888882a +==;∵七年级10名学生成绩中,得分为87分的人数最多,∴七年级的众数87b =;由题意得,1041020%%100%40%10m --⨯=⨯=,∴40m =;故答案为:88;87;40;【小问2详解】解:八年级学生数学文化知识较好,理由如下:∵两个年级10名学生的平均成绩相同,但是八年级学生成绩的中位数和众数都比七年级学生成绩的高,∴八年级学生数学文化知识较好;【小问3详解】解:350040040%31010⨯+⨯=人,∴估计该校七、八年级学生中数学文化知识为“优秀”的总共有310人.21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EFAC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是25平方米.【解析】【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键;(1)设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x -元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【小问1详解】解:设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x -元,∴()300300215000x x +-=,解得:26x =,∴224x -=,答:A 种外墙漆每千克的价格为26元,B 种外墙漆每千克的价格为24元.【小问2详解】设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;∴500500545y y -=,解得:25y =,经检验:25y =是原方程的根且符合题意,答:甲每小时粉刷外墙的面积是25平方米.23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y.(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)【答案】(1)()()124606063y x x y x x=<≤=<≤,(2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【解析】【分析】本题主要考查了一次函数与反比例函数综合,相似三角形的性质与判定:(1)证明APQ ABC ∽,根据相似三角形的性质得到APQABC C PQ AP C BC AB==△△,据此可得答案;(2)根据(1)所求利用描点法画出对应的函数图象并根据函数图象写出对应的函数图象的性质即可;(3)找到一次函数图象在反比例函数图象上方时自变量的取值范围即可.【小问1详解】解:∵PQ BC ∥,∴APQ ABC ∽,∴APQABC C PQ AP C BC AB==△△,∴12686y x AB y AP x ===,∴()()124606063y x x y x x =<≤=<≤,;【小问2详解】解:如图所示,即为所求;由函数图象可知,1y 随x 增大而增大,2y 随x 增大而减小;【小问3详解】解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米.1.41≈,1.73≈2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B --,乙选择的路线为:D A B --.请计算说明谁选择的路线较近?【答案】(1)2.5千米(2)甲选择的路线较近【解析】【分析】本题主要考查了解直角三角形的实际应用:(1)过点B 作BE AC ⊥于E ,先求出45ACB ∠=︒,再解Rt ABE △得到BE =千米,进一步解Rt BCE即可得到 2.5sin BE BC BCE ==≈∠千米;(2)过点C 作CF AD ⊥于D ,先解Rt ABE △得到1AE =千米,则(1AC AE CE =+=+千米,再Rt AFC △得到12CF +=千米,32AF +=千米,最后解Rt DCF 得到36DF +=千米,333CD +=千米,即可得到33 4.033CD BC ++=+千米, 5.15AD AB +≈千米,据此可得答案.【小问1详解】解:如图所示,过点B 作BE AC ⊥于E ,由题意得,903060901575CAB ABC =︒-︒=︒=︒-︒=︒∠,∠,∴18045ACB CAB ABC ∠=︒-∠-∠=︒,在Rt ABE △中,902AEB AB =︒=∠,千米,∴cos 2cos60BE AB BAE =⋅=⋅︒=∠千米,在Rt BCE 中, 2.5sin sin 45BE BC BCE ===︒∠千米,∴BC 的长度约为2.5千米;【小问2详解】解:如图所示,过点C 作CF AD ⊥于D ,在Rt ABE △中,cos 2cos601AE AB BAE =⋅=⋅︒=∠千米,∴(13AC AE CE =+=+千米,在Rt AFC △中,(13sin 13sin 302CF AC CAF +=⋅∠=+⋅︒=千米,(33cos 13cos302AF AC CAF =⋅∠=⋅︒=千米,在Rt DCF 中,3090DCF DFC =︒=︒∠,∠,∴1333tan tan 3026DF CF DCF +=⋅=⋅︒=∠千米,13332cos cos303CF CD DCF ++===︒∠千米,∴336 4.033CD BC ++=+≈千米,33332 5.1562AD AB DF AF AB +++=++=++≈千米,∵4.03 5.15<,∴甲选择的路线较近.25.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求52PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 552PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.【答案】(1)215322y x x =--(2)52PD PE +最大值为152;()5,3P -;(3)573,4732N ⎛- ⎝⎭或131113,2⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)直接利用待定系数法求解抛物线的解析式即可;(2)如图,延长PE 交x 轴于G ,过P 作PH y ∥轴于H ,求解223635BC =+=,可得625sin 535OB BCO BC ∠===,证明255PE PH =,设215,322P x x x ⎛⎫-- ⎪⎝⎭,2132PH x x =-+,25PD x =-,再建立二次函数求解即可;(3)由抛物线沿射线BC 方向平移5个单位,即把抛物线向左平移2个单位,再向下平移1个单位,可得新的抛物线为:211722y x x =--,()3,4F -,如图,当N 在y 轴的左侧时,过N 作NK y ⊥轴于K ,证明()0,1M -,可得45AMO OAM FMK ∠=∠=︒=∠,证明NMK ABC ∠=∠,如图,当N 在y 轴的右侧时,过M 作y 轴的垂线,过N '作N T '⊥过M 的垂线于T ,同理可得:N MT ABC '∠=∠,再进一步结合三角函数建立方程求解即可.【小问1详解】解:∵抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =,∴30522a b b a --=⎧⎪⎨-=⎪⎩,解得1252a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴215322y x x =--;【小问2详解】解:如图,延长PE 交x 轴于G ,过P 作PH y ∥轴于H,∵当2153022y x x =--=时,解得:11x =-,26x =,∴()6,0B ,当0x =时,=3y -,∴()0,3C -,∴BC ==,∴25sin 5OB BCO BC ∠===,∵PD x 轴,∴PHE BCO ∠=∠,∴25sin 5PE PHE PH ∠==,∴255PE PH =,∵()6,0B ,()0,3C -,设BC 为3y mx =-,∴630m -=,解得:12m =,∴直线BC 为:132y x =-,设215,322P x x x ⎛⎫-- ⎪⎝⎭,∴1,32H x x ⎛⎫- ⎪⎝⎭,∴2132PH x x =-+,∵抛物线215322y x x =--的对称轴为直线52x =,∴25PD x =-,∴2552512532252PD PE x x x ⎛⎫+=-+-+ ⎪⎝⎭21552x x =-+-,当55122x =-=⎛⎫⨯- ⎪⎝⎭时,52PD PE +取得最大值,最大值为152;此时()5,3P -;【小问3详解】解:∵抛物线沿射线BC方向平移个单位,即把抛物线向左平移2个单位,再向下平移1个单位,∴新的抛物线为:211722y x x =--,()3,4F -,如图,当N 在y 轴的左侧时,过N 作NK y ⊥轴于K ,∵()1,0A -,同理可得:直线AF 为=1y x --,当0x =时,1y =-,∴()0,1M -,∴45AMO OAM FMK ∠=∠=︒=∠,∵45NMF ABC ∠-∠=︒,∴4545NMK ABC ∠+︒-∠=︒,∴NMK ABC ∠=∠,∴1tan tan 2NMK ABC ∠=∠=,设211,722N n n n ⎛⎫-- ⎪⎝⎭,∴211121722NKn MK n n -==--++,解得:5732n =或5732+(舍去)∴573,42N ⎛- ⎝;如图,当N 在y 轴的右侧时,过M 作y 轴的垂线,过N '作N T '⊥过M 的垂线于T,同理可得:N MT ABC '∠=∠,设211,722N x x x ⎛-'⎫- ⎪⎝⎭,则(),1T x -,同理可得:211711222x x x --+=,∴1x =+或1,∴13112N ⎛⎫+ ⎝'⎪⎪⎭.【点睛】本题属于二次函数的综合题,难度很大,考查了待定系数法,二次函数的性质,锐角三角函数的应用,关键是做出合适的辅助线进行转化,清晰的分类讨论是解本题的关键.26.在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:2AM CN BD =+;(3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP 的最大值.【答案】(1)证明见解析(2)证明见解析(3)2++【解析】【分析】(1)证明()ASA ACE CBD ≌得到BD CE =,再由点E 是BC 的中点,得到22BC CE BD ==,即可证明2AC BD =;(2)如图所示,过点G 作GH AB ⊥于H ,连接HF ,先证明()AAS AGF DBF ≌,得到AG BD =,BF GF =,再证明AHG 是等腰直角三角形,得到2222AH AG ==;由直角三角形斜边上的中线的性质可得12FH FC BF BG ===,则FBH FHB FBC FCB ==∠∠,∠∠,进而可证明290HFC ABC ==︒∠∠,则HFM CFN =∠∠;设CBG x ∠=,则4590ABG x CGB x =︒-=︒-∠,∠,可得135HMF BFM FBM x =+=︒-∠∠∠由角平分线的定义可得1452GCN ACB ==︒∠∠,则可证明HMF CNF =∠∠,进而证明()AAS HFM CFN ≌,得到HM CN =,即可证明22AM BD CN =+;(3)如图所示,过点D 作DH AC ⊥交AC 延长线与H ,连接FH ,则四边形BCHD 是矩形,可得BC DH AC ==,证明FDH △是等边三角形,得到60DFH FDH ==︒∠∠,进而得到30BDA DAH ==︒∠∠,30FHA FAH ==︒∠∠;由旋转的性质可得60FQ FP PFQ DFH ==︒=,∠∠,证明()SAS DFQ HFP ≌,得到30FDQ FHP ==︒∠∠,则点Q 在直线DQ 上运动,设直线DQ 交FH 于K ,则113022DK FH FK FH FDK FDH ===︒⊥,,∠,可得60BDQ ∠=︒,由垂线段最短可知,当BQ DQ ⊥时,BQ 有最小值,则30DBQ ∠=︒,设6AC DH a ==,则AH ==6BD CH a ==-,则3DQ a =-,9BQ a =-;再求出3FK a =,则DK =,3QK DK DQ a =-=,由勾股定理得FQ =;由全等三角形的性质可得3PH DQ a ==-,则3CP a =-;由折叠的性质可得9TQ BQ a ==-,由FT FQ TQ ≤+,得到当点Q 在线段FT 上时,FT CP 此时有最大值,最大值为FQ TQ CP+,据此代值计算即可.【小问1详解】证明:∵90ACB ∠=︒,BD AC ∥,∴18090CBD ACB ∠∠︒︒=-=,∵AE CD ⊥,∴90ACD CAE ∠+∠=︒,∵90ACD BCD ∠+∠=︒,∴CAE BCD ∠=∠,又∵90AC CB CBD ACE ===︒,∠∠,∴()ASA ACE CBD ≌,∴BD CE =,∵点E 是BC 的中点,∴22BC CE BD ==,∴2AC BD =;【小问2详解】证明:如图所示,过点G 作GH AB ⊥于H ,连接HF ,∵BD AC ∥,∴FBD FGA D FAG ==∠∠,∠∠,∵点F 是AD 的中点,∴AF DF =,∴()AAS AGF DBF ≌,∴AG BD =,BF GF =,∵90AC BC ACB =∠=︒,,∴45CAB ACB ∠=∠=︒,∵GH AH ⊥,∴AHG 是等腰直角三角形,∴2222AH AG BD ==;∵90BHG BCG BF GF ==︒=∠∠,,∴12FH FC BF BG ===,∴FBH FHB FBC FCB ==∠∠,∠∠,∴22GFH FBH FHB FBH GFC FBC FCB FBC =+==+=∠∠∠∠,∠∠∠∠,∴22290HFC GFH GFC FBH FBC ABC =+=+==︒∠∠∠∠∠∠,∵FM BG ⊥,∴90BFM ∠=︒,∴HFM CFN =∠∠;设CBG x ∠=,则4590ABG x CGB x =︒-=︒-∠,∠,∴135HMF BFM FBM x =+=︒-∠∠∠,∵CN 平分ACB ∠,∴1452GCN ACB ==︒∠,∴135CNF CGN GCN x =+=︒-∠∠∠,∴HMF CNF =∠∠,∴()AAS HFM CFN ≌,∴HM CN =,∵AM AH HM =+,∴22AM BD CN =+;【小问3详解】解:如图所示,过点D 作DH AC ⊥交AC 延长线与H ,连接FH ,∵90BD AC ACB =︒∥,∠,∴90BCH CBD ==︒∠∠,∵DH AC ⊥,∴四边形BCHD 是矩形,∴BC DH AC ==,∵点F 是AD 的中点,且AF AC =,∴2222AD AF DH FH DF ====,∴FDH △是等边三角形,∴60DFH FDH ==︒∠∠,∴30BDA DAH ==︒∠∠,∴30FHA FAH ==︒∠∠,由旋转的性质可得60FQ FP PFQ DFH ==︒=,∠∠,∴DFQ HFP =∠∠,。
2024-2025学年九年级上学期第一次月考数学试题(9月)[含答案]
![2024-2025学年九年级上学期第一次月考数学试题(9月)[含答案]](https://img.taocdn.com/s3/m/be3c7d88185f312b3169a45177232f60ddcce72e.png)
九年级数学(考试时间:60分钟,满分:100分)一、选择题(本大题共5小题,每小题2分,共10分).1.已知O e 的半径为4,平面内有一点M .若5OM =,则点M 与O e 的位置关系是( ).A .在圆内B .在圆上C .在圆外D .不能确定2.已知x=2是关于x 的一元二次方程x 2+ax=0的一个根,则a 的值为( )A .-2B .2C .12D .12-3.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是 AC 上的点.连接AC ,若20BAC =°∠,则D Ð的度数为( ).A .100°B .110°C .120°D .130°4.某商品经过连续两次降价,销售单价由原来200元降到160元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .200(1-x )2=160B .200(1+x )2=160C .160(1+x )2=200D .160(1-x )2=2005.如图,四边形ABCD 内接于O e ,AE CB ^交CB 的延长线于点E ,若BA 平分DBE Ð,6AD =,4CE =,则AE 的长为( ).A .2B .3C .D .二、填空题(本大题共10小题,每小题3分,共30分)6.方程230x x -=的根为 .7.用配方法解方程2250x x --=时,原方程应变形为__________.8.写一个一元二次方程,使得它的两个根为1-,3,该方程为 .9.如图,等边△ABC 内接于⊙O ,AD 是直径,则∠CBD= °.10.如图,C 为O e 的劣弧AB 上一点,若124AOB Ð=o ,则ACB =∠ .11.若1x 、2x 是一元二次方程2210x x +-=的两个实数根,则12122x x x x +-的值为 .12.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.54A OC CD Ð=°=,,的长为 .13.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程()2(2)20a xb xc -+-+=的解为 .14.已知O e 的半径1OA =,弦AB ,若在O e 上找一点C ,则BCA Ð= °.15.如图,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,若142Ð=°,则AOC Ð= °.三、解答题(本大题共7小题,共60分)16.解下列方程(1)2316x x-=(2)2(21)63x x -=-.17.已知关于x 的方程x 2+kx -2=0.(1)求证:不论k 取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.18.如图,AD 、BC 是O e 的弦,且AD BC =,AC 是直径,求证:四边形ABCD 是矩形.19.已知关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x .(1)若2,8p q =-=-,则24p q -的值是 ,方程的解是 ;(2)若123,2x x ==-,求24p q -的值;(3)用含12,x x 的代数式表示24p q -,下列结论中正确的是( )A. 22124()p q x x -=+B. 22124()p q x x -=C. 22124()p q x x -=- D. 2212124()p q x x x x -=++20.某商店经销的某种商品,每件成本为40元.调查表明,这种商品的售价为50元时,可售出200件;售价每增加5元,其销售量将减少50件.为了实现2000元的销售利润,这种商品的售价应定为多少元?21.如图,已知点A 、B 是平面内两点,线段a 长度一定,在平面内作O e 使得它过点A 、B 且半程长为a (尺规作图,保留作图痕迹,写出必要的作图说明).22.如图,四边形ABCD 是O e 的内接四边形,AC BD ^,OF AB ^,垂足分别是E 、F .(1)直接写出OF 与CD 的数量关系__________,并证明你的结论;(2)若AB AC ==8BC =.求CD 的长.1.C【分析】本题考查了点与圆的位置关系:设圆的半径为r ,点P 到圆心的距离OP 为d ,当d r >时,则点P 在圆外;当d r =时,点P 在圆上;当d r <时,点P 在圆内,根据点P 与圆的位置关系的判定方法对点M 与O e 位置关系进行判断.【详解】解:∵O e 的半径为4,5OM =∴点M 到圆心的距离大于圆的半径,∴点M 在圆外.故选:C .2.A【分析】把x=2代入x 2+ax=0,即可求解.【详解】∵x=2是关于x 的一元二次方程x 2+ax=0的一个根,∴2220a +=,解得:a=-2.故选A.【点睛】本题主要考查一元二次方程的根的定义,理解方程的根的定义,是解题的关键.3.B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出ADB Ð及BDC Ð的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴90ADB Ð=°,∵20BAC =°∠,∴20BDC BAC Ð=Ð=°,∴9020110ADC ADB BDC Ð=Ð+Ð=°+°=°,故选:B .4.A【分析】根据某商品经过连续两次降价,销售单价由原来200元降到160元,平均每次降价的百分率为x ,可以列出相应的方程,本题得以解决.【详解】解:由题意可得,200(1-x )2=160,故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.5.D【分析】连接AC ,根据圆内接四边形对角互补得到ABE ADC Ð=Ð,根据 AD AD =得到ABD ACD Ð=Ð结合角平分线得到ABE ABD Ð=Ð,即可得到:ADC ACD Ð=Ð,从而得到AC AD =,结合勾股定理即可得到答案;【详解】解:连接AC ,∵四边形ABCD 内接于O e ,∴180ADC ABC Ð+Ð=°,∵180ABE ABC Ð+Ð=°,∴ABE ADC Ð=Ð,∵ AD AD =,∴ABD ACD Ð=Ð,∵BA 平分DBE Ð,∴ABE ABD Ð=Ð,∴ADC ACD Ð=Ð,∴AC AD =,∵AE CB ^,6AD =,4CE =,∴6AC =∴AE ==故选:D .【点睛】本题考查勾股定理及圆内接四边形对角互补,同弧所对的圆周角相等,等角对等边等知识,掌握这些知识是解题的关键.6.120,3x x ==【详解】解:x (x -3)=0 ,解得:x 1=0,x 2=3.故答案为:x 1=0,x 2=3.7.()216x -=【分析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】移项得:x 2﹣2x =5,配方得:x 2﹣2x +1=5+1,即(x ﹣1)2=6.故答案为(x ﹣1)2=6.【点睛】本题考查了用配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.2230x x --=(答案不唯一)【分析】本题主要考查一元二次方程的根与系数的关系,根据一元二次方程的根与系数的关系可得出122b x x a +=-=,123c x x a ×==-,令1a =,则2b =-,3c =-则可得出一个符合条件的一个一元二次方程.【详解】解:∵一元二次方程的两个根为1-,3,∴122b x x a+=-=,123c x x a ×==-,令1a =,则2b =-,3c =-∴符合条件的一个一元二次方程为:2230x x --=,故答案为:2230x x --=.9.30°.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠C=∠BAC =60°,根据圆周角定理得:∠D=∠C=60°,∵AD 为直径,∴∠ABD=90°,∴∠BAD=30°∴∠CAD=∠BAC-∠BAD=90°-60°=30°∴∠CBD=∠CAD=30°.故答案为:30°10.118°【分析】本题考查了圆周角定理和圆内接四边形性质的应用,能正确作辅助线是解此题的关键.作圆周角ADB Ð,根据圆周角定理求出D Ð的度数,根据圆内接四边形性质求出C Ð即可.【详解】解:如图作圆周角ADB Ð,使D 在优弧上,124AOB Ð=°Q ,1622D AOB \Ð=Ð=°,A Q 、D 、B 、C 四点共圆,180ACB D \Ð+Ð=°,118ACB \Ð=°,故答案为:118°.11.0【分析】根据一元二次方程根与系数的关系求得1212,x x x x +的值,代入代数式即可求解.【详解】解:解:∵1x 、2x 是一元二次方程2210x x +-=的两个实数根,∴122x x +=-,121x x =-.∴12122x x x x +-()2210=--´-=,故答案为:0.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=¹的两根,12b x x a +=-,12c x x a=.12.【分析】本题考查了垂径定理,等腰直角三角形的性质和圆周角定理.解题的关键是熟练掌握以上知识点,根据圆周角定理得245BOC A Ð=Ð=°,由于圆O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以CE ==然后利用2CD CE =进行计算.【详解】解:∵22.5A Ð=°,∴245BOC A Ð=Ð=°,∵圆O 的直径AB 垂直于弦CD ,∴CE DE =,则OCE △为等腰直角三角形,∵OC∴CE ==∴2CD CE ==.故答案为:13.11x =,25x =【分析】本题考查一元二次方程的解的概念,将第二个方程中的()2x -看成一个整体,则由第一个方程的解可知,21x -=-或3,从而可得出答案.【详解】解:∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴方程()2(2)20a x b x c -+-+=的解为21x -=-或3,解得:11x =,25x =,故答案为:11x =,25x =.14.45°或135°.【分析】本题考查了圆周角定理,圆内接四边形的性质,勾股定理逆定理,先由勾股定理逆定理求出90AOB Ð=°,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,则145BC A Ð=°,然后根据圆内接四边形的性质可求出2135BC A Ð=°,掌握知识点的应用是解题的关键.【详解】解:∵1OA OB ==,AB =,∴222OA OB AB +=,∴90AOB Ð=°,如图,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,∴145BC A Ð=°,∵四边形12AC BC 是圆内接四边形,∴12180BC A BC A Ð+Ð=°,∴2135BC A Ð=°,故答案为:45°或135°.15.84【分析】本题主要考查线段的垂直平分线的性质,多边形内角和定理,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.连接BO ,并延长BO 到P ,根据线段的垂直平分线的性质得AO OB OC ==,90BDO BEO Ð=Ð=°,根据四边形的内角和为360°得180DOE ABC +=°∠∠,根据外角的性质得AOP A ABO COP C OBC Ð=Ð+ÐÐ=Ð+Ð,,相加可得结论.【详解】解:连接BO ,并延长BO 到P ,∵线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,∴AO OB OC ==,90BDO BEO Ð=Ð=°,∴180DOE ABC +=°∠∠,∵1180DOE +=°∠∠,∴142ABC Ð=Ð=°,∵AO OB OC ==,∴A ABO Ð=Ð,OBC C Ð=Ð,∵AOP A ABO Ð=Ð+Ð,COP C OBC Ð=Ð+Ð,∴24284AOC AOP COP A ABC C Ð=Ð+Ð=Ð+Ð+Ð=´°=°;故答案为:84.16.(1)11x =21x =(2)112x =,22x =.【分析】本题考查了解一元二次方程.(1)根据配方法解一元二次方程;(2)先移项,然后根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2316x x -=,2361x x -=,2123x x -=,24213x x -+=,()2413x -=,1x -=11x =21x =(2)解:2(21)63x x -=-,()()2213210x x ---=,()()212130x x ---=,∴210x -=或240x -=,∴112x =,22x =.17.(1)见解析;(2)它的另一个根为-1.【分析】(1)求判别式b 2-4ac =k 2+8>0即可证明;(2)利用根与系数的关系即可求解.【详解】(1) ∵a =1 ,b =k ,c =-2 ,∴b 2-4ac =k 2+8 ,∵不论k 取何实数,k 2≥0 ,∴k 2+8>0即b 2-4ac >0 ,∴不论k 取何实数,该方程总有两个不相等的实数根;(2) ∵a =1 ,c =-2, x 1=2,∴ x 1g x 2=-2,2x 2=-2,∴ x 2=-1,∴另一个根为-1.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握一元二次方程的根存在性的判别方法及一元二次方程的根与系数的关系是解题的关键.18.见详解【分析】本题主要考查了直径所对的圆周角等于90度,矩形的判定,勾股定理,根据直径所对的圆周角等于90度,可得出90D B Ð=Ð=°,根据勾股定理可得出2222AB BC CD AD +=+,再由AD BC =即可得出AB CD =.进而可得出四边形ABCD 是平行四边形,结合90D Ð=°即可证明.【详解】证明:∵AC 为O e 的直径,∴90D B Ð=Ð=°,在Rt ABC △中,222AB BC AC +=,在Rt ADC V 中,222CD AD AC +=,∴2222AB BC CD AD +=+,由∵AD BC =,∴AB CD =,∴四边形ABCD 是平行四边形,又∴90D Ð=°,∴四边形ABCD 是矩形.19.(1)36,124,2x x ==-(2)25(3)C【分析】(1)先把2,8p q =-=-,代入24p q -,可得2436p q -=,再代入原方程,再利用因式分解法,即可求解;(2)根据一元二次方程根与系数的关系,即可求解;(3)根据一元二次方程根与系数的关系,再利用完全平方公式的变形,即可求解.【详解】(1)解:∵2,8p q =-=-,∴()()22424836p q -=--´-=,∴方程为228=0x x --,∴()()420x x -+= ,解得:124,2x x ==-;(2)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∵123,2x x ==-,∴()()32,32p q -=+-=´- ,∴1,6p q ==- ,∴()22414625p q -=-´-=;(3)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∴()()()222222221212112212112212444242p q p q x x x x x x x x x x x x x x x x -=--=+-×=+×+-×=-×+=-.故选:C【点睛】本题主要考查了解一元二次方程和一元二次方程根与系数的关系,熟练掌握一元二次方程的解法和一元二次方程根与系数的关系是解题的关键.20.这种商品的售价应定为50元或60元.【分析】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出方程.设这种商品的售价应定为x 元,利用销售总利润等于每件利润乘以销售数量,即可得出关于x 的一元二次方程,解方程即可得到答案.【详解】解:设这种商品的售价应定为x 元,根据题意列方程得:50(40)2005020005x x éù-æö--=ç÷êúèøëû 整理得:2x 110x 30000-+=解得:150x =,260x =,答:这种商品的售价应定为50元或60元.21.见详解【分析】本题主要考查了作图,画圆,作线段垂直平分线,连接AB ,作AB 的垂直平分线CD ,以点A 为圆心线段a 为半径画弧交CD 于点O ,再以点O 为圆心线段AO 为半径作圆即为所求.【详解】解:如下图:O e 即为所求:22.(1)12OF CD =,证明见详解(2)【分析】(1)连接AO 并延长交O e 于点G ,连接BG ,证明OF 是ABG V 的中位线,则有12OF BG =,再根据同弧所对的圆周角相等可得AGB ECB Ð=Ð,直径所对的圆周角是直角可得90ABG Ð=°,则有90BAG AGB Ð+Ð=°,根据AC BD ^,90ECB EBC Ð+Ð=°,从而可得BAG EBC Ð=Ð,BG CD =,继而可得12OF CD =;(2)先证明AG BC ^,由等腰三角形三线合一的性质得出142BH HC BC ===,再由勾股定理求出AH ,再证明AHC BHG ∽V V ,由相似三角形的判定以及性质即可得出答案.【详解】(1)解:12OF CD =,证明如下:连接AO 并延长交O e 于点G ,连接BG ,∵OF AB ^,∴AF BF =,∵AO GO =,∴OF 是ABG V 的中位线,∴12OF BG =,∵AG 是O e 的直径,∴90ABG Ð=°,∴90BAG AGB Ð+Ð=°,∵AC BD ^,∴90CEB Ð=°,∴90ECB EBC Ð+Ð=°,∵ AB AB =,∴AGB ECB Ð=Ð,∴BAG EBC Ð=Ð,∴BG CD =,∴12OF CD =;(2)∵AB AC =,∴ACB ABC Ð=Ð,∵ACB AGB Ð=Ð,∴ABC AGB Ð=Ð,∵90ABC CBG AGB GBC Ð+Ð=Ð+Ð=°∴AG BC ^,∵AB AC =,8BC =,∴142BH HC BC ===,∴8AH ===,∵ACB HGB Ð=Ð,AHC BHG Ð=Ð,∴AHC BHG ∽V V ,AH BH,84=,∴BG =∴CD BG ==.【点睛】本题主要考查了直径所对的圆周角是90°,同弧所对的圆周角相等,三角形中位线的判定以及性质,等腰三角形的性质,相似三角形的判定以及性质,勾股定理等知识, 掌握这些性质以及判定是解题的关键.。
2023-2024学年重庆市九年级(上)月考数学试卷(10月份)(含解析)

2023-2024学年重庆市九年级(上)月考数学试卷(10月份)一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣3的相反数是( )A.﹣B.3C.﹣3D.2.(4分)下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是( )A.B.C.D.3.(4分)在Rt△ABC中,∠C=90°,AC=5,则sin B的值为( )A.B.C.D.4.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间5.(4分)若点A(﹣2,y1)、B(2,y2)、C(5,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 6.(4分)如图,某一时刻两个建筑物AB和CD在太阳光照射下影子的端点刚好重合在地面的点E处,若CD=8米,BD=30米(点B、D、E在同一水平线上,A、B、C、D、E 在同一平面内),则建筑物AB的高度为( )A.8米B.16米C.24米D.32米7.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有4个正方形,第②个图案中有9个正方形,….按此规律排列下去,则第8个图案中正方形的个数为( )A.64B.72C.81D.1008.(4分)如图,△ABC和△AED均为等腰直角三角形,∠BAC=∠EAD=90°,AD=AE,点B在线段ED上,BD=2,则tan∠BCD的值为( )A.B.C.D.39.(4分)如图,在正方形ABCD中,E为BC上一点,DF⊥AE于点F,连接BF,若DF=2AF,则∠ABF一定等于( )A.B.90°﹣3αC.D.45°﹣α10.(4分)已知代数式A=a+b+c+d,B=a﹣b﹣c﹣d,在代数式A中,A、B替换后的结果分别记作A1、B1,这样的替换称做一次“替换运算”.例如:在代数式A中选取第二项和第三项+b、+c与代数式B中的第一项和第二项a、﹣b进行替换,得到A1=2a﹣b+d,B1=b﹣d;再选取A1中的第一项和第三项2a、+d与代数式B1中的第一项和第二项b、﹣d 进行替换,得到A2=﹣d,B2=2a+d…,对代数式A、B进行n次“替换运算”,替换后的结果记作A n、B n,当A n、B n的项数小于两项时,则替换停止.下列说法:①存在“替换运算”,使得A1+B1=2a+b;②当A n=0时,n的最小值为1;③所有的A1共有36种不同的运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:sin30°+||= .12.(4分)已知点(4,﹣2)、(1,n)都在同一反比例函数图象上,则n的值为 .13.(4分)已知一个不透明的盒子里装有4个球,其中2个红球,2个黄球,不放回,然后再从剩下的球中随机摸出一个球 .14.(4分)已知m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,则代数式10m﹣4m2﹣2023的值为 .15.(4分)如图,点A是反比例函数y=(k<0,x<0)图象上的一点,点D为x轴正半轴上一点且DO=2BO,连接AD交y轴于点C,则k的值为 .16.(4分)若关于x的一元一次不等式组有且仅有5个整数解,且关于y的分式方程,则所有满足条件的整数a的值之和是 .17.(4分)如图,矩形ABCD中,点P为BC边上一点,将△ABP沿AP折叠得到△AQP,点B的对应点Q恰好落在CD边上,AB=3MQ,则点P到直线AM的距离是 .18.(4分)一个四位正整数m,如果m满足各个数位上的数字均不为0,千位数字与个位数字相等,则称m为“对称数”.将m的千位数字与百位数字对调.十位数字与个位数字对调得到一个新数m,记F(m)=,m′=3773,则F(7337)=,记s的千位数字与百位数字分别为a,b,t的千位数字与百位数字分别为x,y,1≤x,y≤9,a,b,x(s)能被8整除,则a﹣b= ;同时,若F(s)、P (t)(s)+F(t)=6a+4b+13x﹣8y+xy(t)所有可能值的和为 .三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x﹣y)2﹣x(x﹣3y);(2).20.(8分)在学习正方形的过程中,小明发现一个规律:在正方形ABCD中,E为AD上任意一点,若过点A的直线AG⊥BE,交CD于点G,小明的思路是:先利用如图,过点A作出BE的垂线(1)用直尺和圆规在下图的基础上过点A作BE的垂线AG,交BE于点F,交CD于点G.(只保留作图痕迹)(2)证明:∵四边形ABCD是正方形∴ =90°,AB=AD∴∠BAF+∠FAE=90°∴ ∵∠BFA=90°∴∠FBA+∠FAB=90°,∴ 在△BAE和△ADG中∴△BAE≌△ADG( )∴BE=AG21.(10分)北京时间8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,得分采用百分制,得分越高(得分用x表示,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,88,70,55,74,88,93,90,74,63,68,82;八年级被抽取的学生测试得分中C等级包含的所有数据为:72,77,78,75;七年级、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级7789b根据以上信息,解答下列问题:(1)上述图表中:a= ,b= ,c= ;(2)根据以上数据,你认为该校七年级、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?22.(10分)重百商场有A、B两款电器.已知每台A款电器的售价是每台B款电器售价的倍,顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.(1)求每台B款电器的售价为多少元?(2)经统计,商场每月卖出A款电器100台,每台A款电器的利润为100元.为了尽快减少库存,每台A款电器的售价每降低10元,那么平均每月可多售出20台.重百商场要想每月销售A款电器的利润达到10800元23.(10分)如图1,在平行四边形ABCD中,∠A=30°,AD=4,点E为AD中点,沿折线A→B→A方向运动,当动点P返回到A点时停止运动.动点Q以每秒1个单位长度的速度从点C出发,到达点B时停止运动.P、Q两点同时出发,设运动时间为x秒1,△BDQ的面积为y2.(1)请直接写出y1、y2关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y1、y2的函数图象,并写出函数y1的一条性质;(3)根据图象直接写出当y1≥y2时,x的取值范围为 .24.(10分)周末,小明和小红相约爬山到山顶点C处观景(山脚处的点A、B在同一水平线上).小明在A点处测得山顶点C的仰角为30°,沿AC爬山到达山顶C.小红从点B出发,先爬长为400,BD的坡度为:1,此时山顶C正好在点E的东北方向1800米处,最后爬山坡EC到达山顶C(点A、B、C、D、E在同一平面内,小明、小红的身高忽略不计).(参考数据:≈1.414,≈1.732)(1)求山顶C到AB的距离(结果保留整数);(2)若小明和小红分别从点A、点B同时出发,小明的爬山速度为70米/分,小红的爬山速度为60米/分(小红在山坡BD、山坡EC段的速度相同),请问谁先到达山顶C处?请通过计算说明理由.25.(10分)在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点A,点E为线段AB的中点.直线l2经过点E,且与x轴交于点,与y轴交于点D.(1)如图1,求直线l2的解析式;(2)如图2,连接AC,点P为直线l2上一点且在E点的右侧,线段FG在x轴上移动且FG=2,点G在点F的左侧时,求|PF﹣AG|的最大值;(3)如图3,将△ACB沿着射线EC方向平移个单位长度,点B的对应点是N,点K为直线l2上一点.在平面直角坐标系中是否存在点H,使以M、N、K、H四点构成的四边形是以MN为边的菱形,若存在;若不存在,请说明理由.26.(10分)在△ABC中,过点B作BD⊥AC于点D,∠BAC=2∠ACB.(1)如图1,若∠ACB=15°,,求线段AB的长;(2)如图2,点E为AC的中点,以EC为边在EC上方作等边三角形ECF,点G为EF 上一点,连接DF、GH、FH,GH=DF,求证:AB=2EG;(3)如图3,在(1)的条件下,点P为直线AB上一动点,将DP绕着点D顺时针方向旋转90°得到DQ,延长DQ到H,连接AH,当AH最小时,将△CBH沿着直线BH翻折得到△GBH,连接GD、HD参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=4.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】直接根据直角三角形中锐角三角函数的定义解答即可.【解答】解:∵Rt△ABC中,∠C=90°,AC=5,∴sin B=.故选:D.【点评】此题比较简单,考查的是锐角三角函数的定义,关键是根据直角三角形中锐角三角函数的定义解答.4.【分析】将原式计算后再进行估算即可.【解答】解:原式=+3,∵49<54<64,∴7<<3,∴10<+3<11,即原式的值在10和11之间,故选:C.【点评】本题考查二次根式的运算及无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.5.【分析】先根据k>0判断出反比例函数图象所在的象限,再由各点横坐标的大小判断出各点所在的象限,进而可得出结论.【解答】解:∵反比例函数,∴此函数图象的两个分支分别位于一、三象限.∵﹣2<8<2<5,∴点A(﹣5,y1)位于第三象限,B(2,y7),C(﹣5,y3)位于第一象限,∴y6>y3>y1.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:由题意得,△CDE∽△ABE,∴,∴,∴AB=24米,答:建筑物AB的高度为24米,故选:C.【点评】本题考查了相似三角形的应用,熟练掌握相似三角形的判定和性质定理是解题的关键.7.【分析】根据图形的变化规律得出第n个图形中有(4n+1)个正方形即可.【解答】解:由题知,第①个图案中有1+3=6=22个正方形,第②个图案中有5+3+5=3=32个正方形,第③个图案中有6+3+5+5=16=42个正方形,…,第n个图案中有(n+3)2个正方形,∴第⑧个图案中正方形的个数为94=81,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有(n+1)2个正方形是解题的关键.8.【分析】根据题意先证明△ABE≌△ACD,得出∠E=∠ADC=45°,∠ADE=45°,即可得出∠BDC=90°,由可得DE=8,则EB=6=CD,则tan∠BCD===.【解答】解:∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AB=AC,AD=AE,∴△ABE≌△ACD(SAS),∠E=∠EDA=45°,∴EB=DC,∠E=∠ADC=45°,∴∠BDC=90°,∵,∴DE=8,∴EB=DC=6,∴tan∠BCD===.故选:A.【点评】本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,解直角三角形,熟练掌握以上性质是解题关键.9.【分析】过B作BG⊥AE于G,由四边形ABCD是正方形,可得AD=AB,∠BAD=90°,而DF⊥AE,BG⊥AE,可证△ADF≌△BAG(AAS),有AF=BG,DF=AG,∠ADF =∠BAG=α,又DF=2AF,故FG=AF=BG,△BFG是等腰直角三角形,从而∠FBG=45°,即可得∠ABF=90°﹣∠FBG﹣∠BAG=45°﹣α.【解答】解:过B作BG⊥AE于G,如图:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵DF⊥AE,BG⊥AE,∴∠AFD=90°=∠AGB,∠ADF=90°﹣∠DAE=∠BAG,在△ADF和△BAG中,,∴△ADF≌△BAG(AAS),∴AF=BG,DF=AG,∵DF=2AF,∴AG=2AF,∴FG=AF=BG,∴△BFG是等腰直角三角形,∴∠FBG=45°,∴∠ABF=90°﹣∠FBG﹣∠BAG=90°﹣45°﹣α=45°﹣α,故选:D.【点评】本题考查正方形性质及全等三角形判定与性质,解题的关键是作辅助线,构造全等三角形解决问题.10.【分析】根据新定义分别对①②③验证即可.【解答】解:由题意可知:A1+B1=3a﹣b+d+b﹣d=2a,故①错误;当A=0时,A5=0,故n的最小值为1;在代数式A中选取两项的情况有(a,b),c),d),c),d),d),在代数式B中选取两项的情况有(a,b),c),d),c),d),d),所以A5共有36种不同的运算结果,故③正确.故答案选:C.【点评】本题考查整式的加减运算以及新定义下的运算,理解题意是解决问题的关键.二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】利用特殊锐角的三角函数值及绝对值的性质计算即可.【解答】解:原式=+﹣=,故答案为:.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.12.【分析】将A坐标代入反比例解析式求出k的值,确定出反比例解析式,将B坐标代入反比例解析式即可求出n的值.【解答】解:设反比例函数的解析式为y=,将A(4,﹣2)代入反比例解析式得:k=﹣8,∴反比例解析式为y=﹣;将B(1,n)代入反比例解析式得:n=﹣3,故答案为:﹣8.【点评】本题考查了反比例函数图象上的坐标特征,图象上的点的坐标适合解析式.13.【分析】画树状图得出所有等可能的结果数以及摸出的两个球恰好是一个红球和一个黄球的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有12种等可能的结果,其中摸出的两个球恰好是一个红球和一个黄球的结果有8种,∴摸出的两个球恰好是一个红球和一个黄球的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】根据m是关于x的一元二次方程2x2﹣5x﹣2023=0的一个根,可以得到2m2﹣5m的值,然后将所求式子变形,再将2m2﹣5m的值代入计算即可.【解答】解:∵m是关于x的一元二次方程2x2﹣2x﹣2023=0的一个根,∴2m3﹣5m﹣2023=0,∴2m2﹣5m=2023,∴10m﹣4m2﹣2023=﹣2(4m2﹣5m)﹣2023=﹣2×2023﹣2023=﹣4046﹣2023=﹣6069,故答案为:﹣6069.【点评】本题考查一元二次方程的解,解答本题的关键是明确方程的解一定使得原方程成立.15.【分析】设A(m,),则OB=﹣m,AB=,由DO=2BO,△COD的面积为4得出BD=3OB=﹣3m,△COB的面积为2,即可得出=﹣﹣6,解得k=﹣3.【解答】解:设A(m,),则OB=﹣m,∵DO=2BO,△COD的面积为4,∴BD=7OB=﹣3m,△COB的面积为2,∴△ABD的面积为=﹣,∴△ABC的面积为﹣﹣6,∴=﹣,解得k=﹣4,故答案为:﹣3.【点评】本题考查了反比例函数的比例系数k的几何意义,反比例函数图象上点的坐标特征,得到关于k的方程是解题的关键.16.【分析】先解不等式组,根据有且仅有5个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式≥x﹣1,得:x≥﹣3,解不等式3x﹣8<a﹣4,得:x<,∵该不等式组有且仅有5个整数解,∴该不等式组的整数解为:﹣2,﹣2,0,6,则1<≤2,解得:4<a≤12,解分式方程,得:y=且≠5,∵该分式方程有非负整数解,且4<a≤12,则a=8或a=10,即满足条件的所有整数a的值之和为18.故答案为:18.【点评】本题考查了分式方程的解,一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法和解分式方程得方法是解题的关键.17.【分析】过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,过点P作PG⊥AM于G,设MQ=x,BP=y,则AB=CD=3MQ=3x,CP=6﹣x,由折叠的性质得AQ=AB=3x,PQ=PB=y,∠BAP=∠QAP,先证EQ=AQ=3x,再证△EQM∽△ADM 得MD=2,则MF=2,证Rt△AFM和Rt△ADM全等得AF=AD=6,则FQ=3x﹣6,在Rt△MFQ中由勾股定理求出x=MQ=2.5,进而得AB=CD=3x=7.5,CQ=3,在Rt△PCQ中由勾股定理求出y=PB=,在Rt△ABP中由勾股定理可求出AP=,然后证△APG为等腰直角三角形,最后在Rt△APM中由勾股定理求出PG即可.【解答】解:过点Q作QE∥AD交AM的延长线于E,过点M作MF⊥AQ于F,如图:∵四边形ABCD为矩形,AD=6,∴BC=AD=6,AB=CD,设MQ=x,BP=y,CP=BC﹣BP=3﹣x,由折叠的性质可知:AQ=AB=3x,PQ=PB=y,∵QE∥AD,∴∠E=∠DAM,∵AM平分∠DAQ,∴∠DAM=∠QAM,∴∠E=∠QAM,∴EQ=AQ=3x,∵QE∥AD,∴△EQM∽△ADM,∴QE:AD=QM:MD,即2x:6=x:MD,∴MD=2,∵AM平分∠DAQ,∠D=90°,∴MF=MD=4,在Rt△AFM和Rt△ADM中,,∴Rt△AFM≌Rt△ADM(HL),∴AF=AD=6,∴FQ=AQ﹣AF=3x﹣3,在Rt△MFQ中,MF=2,MQ=x,由勾股定理得:MQ2=MF4+MQ2,∴x2=3+(3x﹣6)4,整理得:2x2﹣4x+10=0,解得:x1=8.5,x2=8(不合题意,舍去),∴MQ=2.5,∴AB=CD=6x=7.5,∴CQ=CD﹣DM﹣MQ=6.5﹣2﹣2.5=3,在Rt△PCQ中,CQ=8,PQ=y,由勾股定理得:PQ2=CQ2+CP2,∴y2=9+(3﹣y)2,解得:y=,∴PB=y=,在Rt△ABP中,PB=,由勾股定理得:AP==,∵∠BAP=∠QAP,∠DAM=∠QAM,∴∠BAP+∠DAM=∠QAP+∠QAM,∵∠BAD=90°,∴∠BAP+∠DAM=∠QAP+∠QAM=45°,即∠MAP=45°,∵PG⊥AM,∴△APG为等腰直角三角形,∴PG=AG,在Rt△APM中,PG=AG,由勾股定理得:PG2+AG4=AP2,∴PG=•AP=×=.故答案为:.【点评】此题主要考查了矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,勾股定理的应用,熟练掌握矩形的性质,图形的折叠变换及性质,全等三角形的判定和性质,相似三角形的判定及性质,角平分线的性质,灵活运用勾股定理构造方程是解决问题的关键.18.【分析】根据对称数定义表示出s=1001a+110b,s′=1001b+110a,得到F(s)==11(a﹣b),根据F(s)能被8整除,1≤b<a≤9,得到a﹣b=8;同理得F(t)==11(x﹣y),根据条件得到1la﹣11b+11x﹣11y=6a+4b+13x﹣8y+xy,由a﹣b=8,1≤b<a<9得到a=9,b=1,得到2x+3y+xy=30,根据x,y均为整数,分别列举出x,y的值代入F(t)求和即可.【解答】解:∵s的千位数字与百位数字分别为a,b,∴s=100la+110b,s′=1001b+110a,∴F(s)==11(a﹣b),∵F(s)能被8整除,且1≤b<a≤8,∴a﹣b=8;同理得F(t)==11(x﹣y),∵F(s)+F(t)=6a+6b+13x﹣8y+xy,∴1la﹣11b+3lx﹣1ly=6a+8b+13x﹣8y+xy,∵a﹣b=8,4≤b<a≤9,∴a=9,b=4,∴2x+3y+xy=30,即y=,∵x,y均为整数,当x=1时,y==,符合题意;当x=2时,y===,当x=3时,y==,符合题意;当x=7时,y===;当x=5时,y==,不符合题意;当x=5时,y==,符合题意;当x=7时,y==,不符合题意;当x=8时,y===,当x=5时,y==,不符合题意;∴F(t)所有可能值的和为﹣66+(﹣11)+44+88=55,故答案为:8;55.【点评】本题考查了新定义,因式分解的应用,数的整除性,关键是正确理解新定义,利用代数式的值进行相关分类讨论,把新知识转化为熟悉的知识进行解答.三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)根据单项式乘多项式的方法进行解题即可;(2)利用平方差公式和分式的混合运算进行解题即可.【解答】解:(1)原式=x2﹣2xy+y8﹣(x2﹣3xy)=x7﹣2xy+y2﹣x7+3xy=xy+y2;(2)原式=÷()=÷()=×=m+5.【点评】本题考查分式的混合运算、单项式乘多项式和完全平方公式,熟练掌握相关的知识点是解题的关键.20.【分析】(1)根据过一点作已知直线的垂线的方法作图即可;(2)根据正方形的性质得到∠EAB=∠GDA=90°,AB=AD,利用余角的性质得到∠FBA=∠EAF,利用ASA证明△BAE≌△ADG,即可得到结论.【解答】解:(1)如图,AG即为所求;(2)证明:∵四边形ABCD是正方形,∴∠EAB=∠GDA=90°,AB=AD,∴∠BAF+∠FAE=90°,∵AG⊥BE,∴∠BFA=90°,∴∠FBA+∠FAB=90°,∴∠FBA=∠EAF,在△BAE和△ADG中,,∴△BAE≌△ADG(ASA),∴BE=AG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,余角的性质,尺规作图,解题的关键是掌握全等三角形的判定和性质.21.【分析】(1)根据众数的定义确定七年级的众数a;根据中位数的定义确定八年级的中位数b;根据八年级C组所占百分比确定C的值;(2)根据平均数或中位数或众数的意义回答即可;(3)将样本中七年级得分再C组的比例乘以900,将样本中八年级得分再C组的比例乘以800,再相加即可.【解答】解:(1)∵被抽取的学生测试得分的所有数据中,88出现3次是出现次数最多的数据,∴a=88;∵C组占比为:=25%,∴c=25;∵八年级被抽取的学生测试得分A组有:20×15%=5(个),B组有:20×(100%﹣15%﹣25%﹣30%﹣10%)=4(个),∴八年级被抽取的学生测试得分的中位数是第10,第11个数据是C组的77,∴b==77.8.故答案为:88,77.5;(2)答案不唯一,比如:七年级更高.理由:因为七,八年级成绩的平均数相同,所以七年级的学生对事件的关注与了解程度更高;(3)∵七年级处于C组的有4个数据,占比,八处于C组的占比25%,∴估计该校这两个年级的学生测试得分在C组的人数一共有20%×900+25%×800=380(人),答:估计该校这两个年级的学生测试得分在C组的人数一共有380人.【点评】本题考查频数分布直方图,扇形统计图,平均数,中位数,众数,用样本估计总体,能从统计图中获取信息,理解相关概念的大于是解题的关键.22.【分析】(1)设每台B款电器的售价为x元,则每台A款电器的售价为x元,根据顾客用1200元购买A款电器的数量比用1200元购买B款电器的数量少1台.列出分式方程,解方程即可;(2)设每台A款电器应降价m元,根据每月销售A款电器的利润达到10800元,列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)设每台B款电器的售价为x元,则每台A款电器的售价为,由题意得:=﹣1,解得:x=240,经检验,x=240是原方程的解,答:每台B款电器的售价为240元;(2)设每台A款电器应降价m元,由题意得:(100﹣m)(100+×20)=10800,整理得:m4﹣50m+400=0,解得:m1=40,m7=10(不符合题意,舍去),答:每台A款电器应降价40元.【点评】本题考查了一元二次方程的应用以及分式方程的应用,找准等量关系,正确列出分式方程和一元二次方程是解题的关键.23.【分析】(1)直接确定三角形的底和高求解即可;(2)y1,y2都是一次函数,只需描两个点即可画出图象,再观察y1的图象,可以从增减性写出函数的一条性质;(3)先从图象上确定交点的横坐标,再利用y1≥y2确定y2在y1下面的范围即可.【解答】解:(1)过点E作EF⊥AB于点F,过点D作DH⊥CB,∵∠A=30°,AD=4,∴EF=AE=1,∵四边形ABCD是平行四边形,∴∠C=∠A=30°,AB=CD=8,∴DH=CD=4,当7<x<4时,y1=AP•EF=;当4≤x<8时,y3=AP•EF=.当0<x<6时,y2=BQ•DH=.∴y6关于x的函数关系式为y1=,y2关于x的函数关系式为y2=﹣2x+8(0≤x<3);(2)画出y1,y2的函数图象如下,函数y3的一条性质:当0<x<4时,y随x的增大而增大;当5≤x<8,y随x的增大而减小(答案不唯一);(3)观察图象可得:当y1≥y3时,x的取值范围是.故答案为:≤x<4.【点评】本题考查了动点的函数,包括求函数的解析式,画函数图象,根据图象写函数的性质,比较函数值的大小,正确求出函数解析式并画出图象是解题的关键.24.【分析】(1)过点D作DF⊥BA,垂足为F,延长DE交CH于点G,根据题意可得:DG ⊥CH,CH⊥BA,DF=GH,∠CEG=45°,在Rt△BDF中,根据已知易得tan B=,从而可得∠B=60°,然后利用锐角三角函数的定义求出DF,BF的长,再在Rt△CEG 中,利用锐角三角函数的定义求出CG的长,最后利用线段的和差关系进行计算,即可解答;(2)利用(1)的结论,然后在Rt△ACH中,利用含30度角的直角三角形的性质可求出AC的长,最后进行计算比较即可解答.【解答】解:(1)如图:过点D作DF⊥BA,垂足为F,由题意得:DG⊥CH,CH⊥BA,∠CEG=45°,在Rt△BDF中,tan B===,∴∠B=60°,∵BD=400米,∴DF=BD•sin60°=400×=600(米),BF=BD•cos60°=400×=200,∴DF=GH=600米,在Rt△CEG中,CE=1800米,∴CG=CE•sin45°=1800×=900,∴CH=CG+GH=600+900≈1873(米),∴山顶C到AB的距离约为1873米;(2)小红先到达山顶C,理由:在Rt△ACH中,∠A=30°)米,∴AC=2CH=(1200+1800)米,∵DE=900米,小明的爬山速度为70米/分,小红的平路速度为90米/分,∴小明到达山顶C需要的时间==≈53.5(分),小红到达山顶C需要的时间=+=+≈51.5(分),∵51.5分<53.5分,∴小红先到达山顶C.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)将点P向左平移2个单位得到点P′(1,5),连接P′A交x轴于点G,取GF=2,连接PF,此时,|PF﹣AG|最大,即可求解;(3)当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK列出方程组,即可求解.【解答】解:(1)直线l1与x轴交于点B,与y轴交于点A,则点A、B的坐标为(4、(7,∵点E为线段AB的中点,则点E(2,设直线E、C的表达式为:y=k(x﹣),将点E的坐标代入上式得:1=k(2﹣),解得:k=4,即直线l8的解析式为:y=4x﹣7;(2)设点P(t,3t﹣7),则四边形PACB的面积=S△PBC+S梯形PTOC﹣S△AOC﹣S△ATP=(4﹣(t+2×﹣,解得:t=3,即点P(3,3);将点P向左平移2个单位得到点P′(1,2),取GF=2,此时,理由:∵P′P=GF且P′P∥GF,则四边形PFGP′为平行四边形,则PF=P′G,则|PF﹣AG|=P′G﹣AG=AP′为最大,即|PF﹣AG|最大值=AP′==;(3)存在,理由:由图象的平移知,将△ACB沿着射线EC方向平移,相当于向左平移3个单位,则点M,﹣2),﹣4)6=20,设点K(t,4t﹣7),n),当MK或MH为菱形的对角线时,由中点坐标公式和MN=MH或MN=MK得:或,解得:m=或.【点评】本题是一次函数综合题,考查了待定系数法求函数解析式,二次函数图象和性质,菱形性质,图象平移等知识点,,其中(2)解题的关键是通过确定平行四边形PP′GF,得到最大值,这是一道关于一次函数综合题和压轴题,综合性强,难度较大.26.【分析】(1)在AC上截取DK=AD,连接BK,设BD=x,根据正弦、余弦的定义得到AD =DK=x,AB=BK=KC=2x,再利用等腰三角形的性质,得到AC=AD+DK+KC,由AC =2+2即可求解;(2)在EC上截取EK=EG,连接GK,取AB得中点Q,连接DQ、EQ,根据题意先证明△DEF≌△CHF(SAS),得到△EGK是等边三形,再证明△DEF≌△GKH(AAS),由点E为AC的中点,点Q是AB的中点,得到QE∥BC,进而得到QD=DE,即可得出结论;(3)点H的轨迹是一条垂直AB的直线,当H在AB上时,此时AH最小,AH=,利用S△DGH=S△CDG﹣S△CGH﹣S△CDH求解即可.【解答】(1)解:在AC上截取DK=AD,连接BK,∵∠BAC=2∠ACB,∠ACB=15°,∴∠BAC=30°,∵BD⊥AC,∴∠BDA=∠BDC=90°,∵DK=AD,∴AB=BK,∴∠BAC=∠BKD=30°,∵∠ACB=15°,∴∠KBC=∠BCA=15°,∴BK=KC,在Rt△ABD中,,,设BD=x,则,AB=BK=KC=2x,∵,∴x=1,∴AB=3;(2)证明:在EC上截取EK=EG,连接GK,连接DQ,如图,∵三角形ECF是等边三角形,∴EF=EC=FC,∠FEC=∠FCE=∠EFC=60°,∴∠FED=∠FCH=120°,在△DEF和△CHF中,,∴△DEF≌△CHF(SAS),∴DF=FH,∠1=∠CFH,∵GH=DF,∴GH=FH,∴∠FGH=∠GFH,∴∠FGH﹣∠FEC=∠GFH﹣∠EFC,∴∠EHG=∠CFH,∴∠1=∠EHG,∵EG=EK,∴△EGK是等边三角形,∴EG=GK=EK,∠FEC=∠8=∠EGK=60°,∴∠FED=∠CKG=120°,在△DEF和△GKH中,,∴△DEF≌△GKH(AAS),∴DE=GK,∴DE=EG,∵点Q是AB的中点,BD⊥AC,∴AB=2AQ=4QB=2QD,∴∠BAC=∠4,∵点E为AC的中点,点Q是AB的中点,∴QE∥BC,∴∠BCA=∠2,∵∠BAC=2∠ACB,∠4=∠DQE+∠6,∴∠DQE=∠3,∴QD=DE,∴AB=2DQ=2DE=2EG;(3)解:如图,点H的轨迹是一条垂直AB的直线,此时AH最小,, S△DGH=S△CDG﹣S△CGH﹣S△CDH==.∴S△DGH=.【点评】本题是三角形综合题,考查了全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、解直角三角形等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
重庆市九龙坡区2024-2025学年九年级上学期10月月考数学试题(含答案)

2025届初三上期第一次月考数学试题一、选择题(每题4分,共40分,请将答案填写在答题卡相应位置。
)1.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.将拋物线向下平移1个单位后所得的抛物线的解析式为( )A .B .C .D .3.若关于的一元二次方程有一个根为,则代数式的值为( )A .B .4C .10D .124.关于二次函数,下列说法正确的是( )A .图象的开口向上B .图象与轴的交点坐标为C .图象的顶点坐标是D .当时,随的增大而减小5.如图,将绕点按逆时针方向旋转36°后得到,若,则的度数是( )A .B .C .D .6.二次函数的与的部分对应值如右表,则当时,的值为( )…0123……1510767…A .15B .10C .7D .67.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆400人次,进馆人次逐月增加,到第三个月底累计进馆1456人次,若进馆人次的月平均增长率为,则可列方程为( )2(1)3y x =-+23y x =+2(1)2y x =-+2(2)3y x =-+2(1)4y x =--x 20x mx n +-=2x =2m n -4-22)1y x =-+y ()0,1()2,1-2x >y x AOB △O COD △24AOB ∠=︒AOD ∠36︒24︒12︒60︒()20y ax bx c a =++≠x y 5x =y x 1-yxA .B .C .D .8.函数与的图象在同一坐标系下可能是( )A .B .C .D .9.如图,中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,交于点.若,则的度数是( )(用含的代数式表示)A .B .C .D .10.抛物线的图象如上图所示,对称轴为直线.下列说法:①;②;③(为全体实数);④若图象上存在点和点,当时,满足,则的取值范围为.其中正确的个数有()()40011456x +=()24001400(1)1456x x +++=2400(1)1456x +=()24004001400(1)1456x x ++++=()20y ax bx a =+≠y ax b =+ABC △85ACB ∠=︒ABC △C EDC △B D A AC ED 、F BCD α∠=EFC ∠α3852α︒+31752α︒+31752α︒-3952α︒+()20y ax bx c a =++≠2x =-0abc >304c b -<()242a ab at at b -≥+t ()11,A x y ()22,B x y 125n x x n <<<+12y y =n 72n -<<-A .1个B .2个C .3个D .4个三、填空题(每题4分,共32分,请将答案填写在答题卡相应位置。
重庆市第七中学校 2024-2025学年九年级上学期第一次月考数学试题

重庆市第七中学校 2024-2025学年九年级上学期第一次月考数学试题一、单选题1.在2, 1.7-,0)A .2 BC .0D . 1.7-2.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成这四个图案中是中心对称图形的是( )A .B .C .D . 3.抛物线()235y x =-+的顶点坐标是( )A .(3,5-)B .(3-,5)C .(3,5)D .(3-,5-) 4.如图,50AOB ∠=︒,CD OB ∥交OA 于E ,则AEC ∠的度数为( )A .50︒B .100︒C .120︒D .130︒5.若两个相似三角形的面积之比为4:9,则它们的边长之比为( )A .4:9B .2:3C .3:2D .9:46.如图,在ABC V 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B7的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间8.观察下列图形的规律,依照此规律第6个图形中共有( )个点.A .60B .63C .66D .699.如图,正方形ABCD 中,E 为BC 边上一点,连接DE ,将DE 绕点E 逆时针旋转90︒得到EF ,连接DF 、BF ,若ADF α∠=,则EFB ∠一定等于( )A .αB .45α︒-C .903α︒-D .12α 10.有n 个依次排列的算式:第1项是2a ,第2项是221a a ++,用第2项减去第1项,所得之差记为1b ,将1b 加2记为2b ,将第2项与2b 相加作为第3项,将2b 加2记为3b ,将第3项与3b 相加作为第4项,……,以此类推.某数学兴趣小组对此展开研究,得到3个结论①529b a =+;②若第6项与第5项之差为4057,则2024=a ;③当n k =时,212342k b b b b b ak k +++++=+L ;其中正确的个数是( )A .0B .1C .2D .3二、填空题11.112cos302-⎛⎫+︒= ⎪⎝⎭. 12.将抛物线22y x =向下平移3个单位长度,得到新的抛物线的解析式是.13.某种茶叶的价格两次下降,每次下降的百分率相同,原来每袋125元,现在每袋80元,则每次下降的百分率是.14.已知一个正多边形的内角为140︒,这个多边形的条数为.15.如图,已知公路l 上A ,B 两点之间的距离为20米,点B 在C 的南偏西30°的方向上,A 在C 的南偏西60°方向上,则点C 到公路l 的距离为米.16.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于.17.若关于x 的一元一次不等式组234223x m x +≤⎧⎪+⎨<-⎪⎩的解集是2x <-,且关于y 的分式方程322m y y y-=--有非负整数解,则符合条件的所有整数m 的和为. 18.如果一个四位自然数M 各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M 为“会意数”.把四位数M 的前两位数字和后两位数字整体交换得到新的四位数M '.规定()99M M F M '-=.例如:2335M =,∵235+=,358+=,∴ 2335是“会意数”.则()3523233523351299F -==.那么“会意数”4162N =,则()F N =;已知四位自然数S abcd =是“会意数”,(4b ≤,7d ≤,且a 、b 、c 、d 均为正整数),若()F S 恰好能被8整除,则满足条件的数S 的最大值是.三、解答题19.计算:(1)(x +y )2+(2x +y )(x ﹣2y ) (2)22293()211x x x x x x -+÷--+- 20.如图,已知ABC V ,BD 平分ABC ∠.(1)用尺规完成以下基本作图:作BD 的垂直平分线交AB 于点E ,交BC 于点F ,交BD 于点G ,连接DE ,DF .(保留作图痕迹,不写作法,不下结论)(2)求证:四边形BFDE 是菱形证明:BD Q 平分ABC ∠∴①∵EF 垂直平分BD∴BE DE =,GB GD =1EDB ∴∠=∠2EDB ∠∠∴=∴②在BGF V 和DGE △中2EDB GB GDBGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BGF DGE ∴V V ≌∴③BF ED ∥Q∴四边形BFDE 是平行四边形∵④∴平行四边形BFDE 是菱形(⑤)21.为了解七、八年级学生对消防知识的掌握情况,某校对七年级和八年级学生进行了消防知识的测试,现从中各随机选出20名同学的成绩进行分析,将学生成绩分为A 、B 、C 、D 四个等级.分别是A :70x <,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤,其中,七年级学生的成绩为:66,75,76,78,79,81,82,83,84,86,86,88,88,88,91,92,94,95,96,96.八年级等级C 的学生成绩为:87,81,86,83,88,82,89.两组数据的平均数、中位数、众数、方差如下表:根据以上信息,解答下列问题:(1)填空:a =______,b =______,m =______.(2)根据以上数据,你认为在此次知识测试中,哪个年级的成绩更好?请说明理由;(一条理由即可)(3)若该校七年级有800名学生参加测试,八年级有740名学生参加测试,请估计两个年级参加测试学生中成绩优秀(大于或等于90分)的学生共有多少人?22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.如图,在Rt ABC △中,90ACB ∠=︒,3AC =,5AB =.动点P 以每秒1个单位长度的速度从点C 出发,沿折线C A B →→运动,到达B 点时停止运动.设点P 的运动时间为t 秒()08t <<,BCP V 的面积为y .(1)请直接写出y 关于t 的函数表达式,并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出当BCP V 的面积小于3时t 的值.24.第三届智跑重庆国际城市定向赛暨重庆(大渡口)体育旅游节于2024年4月13日至21日在重庆市大渡口区举行.如图,A 为比赛起点,比赛途经点B 在起点A 的正东方向,比赛途经点C 在点A 的北偏东60︒方向,相距1200米,且点C 在途经点B 的正北方向:途经点D 在点C 的北偏西30︒方向,相距2400米;终点E 在点D 的正西方,点E 在点B 的西北方向. 1.41≈ 1.73≈ 2.45≈)(1)求ED 的长度.(结果精确到1米)(2)小明和小李参与了该越野赛,两人从起点A 出发前往终点E ,小明选择的定向路线为A C D E ---.小李选择的定向路线为A B E --.请问小明和小李的比赛路线谁更短?并说明理由.25.已知在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++≠经过点()1,0A -、()3,0B 、()0,3C 三点,点D 和点C 关于抛物线对称轴对称,抛物线顶点为点G .(1)求该抛物线的解析式;(2)连接CG 、BG ,求GCB △的面积;(3)若点M 在抛物线上,在抛物线对称轴上是否存在一点N ,使得A 、D 、M 、N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标,若不存在,请说明理由.26.在ABC V 中,90BAC ∠=︒,AB AC =,点D 为BC 边上一动点,连接AD ,将AD 绕着D 点逆时针方向旋转90°得到DE ,连接AE .(1)如图1,AH BC ⊥,点D 恰好为CH 中点,AE 与BC 交于点G ,若4AB =,求AE 的长度;(2)如图2,DE 与AB 交于点F ,连接BE ,在BA 延长线上有一点P ,PCA EAB ∠=∠,求证:AB AP =;(3)如图3,DE 与AB 交于点F ,且AB 平分EAD ∠,点M 为线段AF 上一点,点N 为线段AD 上一点,连接DM MN ,,点K 为DM 延长线上一点,将BDK V 沿直线BK 翻折至BDK V 所在平面内得到BQK △,连接DQ ,在M ,N 运动过程中,当DM MN +取得最小值,且DKQ ∠=︒45时,请直接写出DQ BC的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市2020年九年级第一次月考数学试题B卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 用直角三角板检查半圆形的工件,下列工件合格的是()
A.B.
C.D.
2 . 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是()
A.甲获胜的可能性大B.乙获胜的可能性大
C.甲、乙获胜的可能性相等D.以上说法都不对
3 . 如图是几何体的三视图,则这个几何体是()
A.圆锥B.正方体C.圆柱D.球
4 . 某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标
系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+,则下列结论:
(1)柱子OA的高度为m;
(2)喷出的水流距柱子1m处达到最大高度;
(3)喷出的水流距水平面的最大高度是2.5m;
(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.
其中正确的有()
A.1个B.2个C.3个D.4个
5 . 下列运算正确的是()
A.B.C.D.
6 . 如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()
A.三角形三个内角和等于180°B.直角三角形的两个锐角互余
C.三角形具有稳定性D.两点之间,线段最短
7 . 已知关于的方程的解是正整数,且为整数,则的值是()
A.-2B.6C.-2或6D.-2或0或6
8 . 二次函数的图象与轴有两个交点,则的取值范围是()
A.B.且C.D.且
9 . 下列运算正确的是()
A.x3+x3=x6B.(﹣x)6÷(﹣x)2=x4
C.(a﹣b)(﹣a﹣b)=a2﹣b2D.a2+4ab+2b2=(a+2b)2
10 . 如图,△ABC和△ADE中,∠BAC=∠DAE=54°,AB=AC,AD=AE,连接BD、CE交于F,连接AF,则∠AFE 的度数是()
A.63°B.62°C.57°D.56°
11 . 老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S2甲=51、S2乙=12,由此可知()
A.甲比乙的成绩稳定B.乙比甲的成绩稳定
C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定
12 . 将二次函数y=2x2﹣1的图象向下平移3个单位后所得图象的函数解析式为()
A.y=2(x﹣3)2﹣1B.y=2(x+3)2﹣1
C.y=2x2+4D.y=2x2﹣4
二、填空题
13 . 因式分解:3x+9y=_____.
14 . 如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D
的对称点为点C,连接BC,则BC的最小值为_____.
15 . 已知等腰三角形ABC中,AB=AC,∠ABC=40°,P为直线BC上一点,PB=AB,则∠PAC=_____°.
16 . 如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.
17 . 将函数y=x2—x的图象向左平移个单位,可得到函数y=x2+5x+6的图象.
18 . 一个几何体的三视图如图所示,其中主视图和俯视图都是矩形,则它的表面积是
________.
三、解答题
19 . 北京时间3月30日18时许,四川省凉山州木里县雅春江镇立尔村发生森林火灾,导致30名救火队员牺牲,多地民众走上街头送别英雄,同时,许多社区在清明节前夕开展了“致敬英雄•文明祭奠”倡导活动.据调查,人们最喜爱的文明祭奠方式有四类(A植树祭祀,B鮮花祭祀,C公墓祭祀,D社区公祭),并绘制了如下两个不完整的统计图,请根据图中的信息解答下列问题:
(1)本次一共调查了社区群众名;
(2)补全条形统计图;并计算扇形统计图中“C公墓祭祀所对应的圆心角大小为;
(3)现有最喜爱A,B,C,D祭奠方式的群众各一人,居委会要从这四人中随机选取两人共同策划祭奠活动方案,请用列表或画树状图的方法求出恰好选取最喜爱C和D祭奠方式的两位群众的概
率.
20 . 先化简,再求值:1-÷其中a=2020,b=2019.
21 . 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=C
A.
(1)求证:四边形EFGH是平行四边形;
(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.
22 . (8分)向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.
23 . 已知反比例函数和一次函数.
(1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式;
(2)当时,两个函数的图象只有一个交点,求的值.
24 . 计算:.
25 . 如图,从A地到B地的公路需经过C地,图中AC=6千米,∠CAB=15°,∠CBA=30°. 因城市规划的需要,将在A、B两地之间修建一条笔直的公路.
(1)求改直后的公路AB的长;
(2)问公路改直后该段路程比原来缩短了多少千米?(结果保留根号)。