2014年九年级第一次月考数学试卷(定稿)
浙教版九年级上册数学第一次月考试卷含答案

浙教版九年级上册数学第一次月考试题一、单选题1.如果函数()23231kk y k x kx -+=-++是关于x 的二次函数,那么k 的值是()A .1或2B .0或3C .3D .02.顶点为()6,0-,开口向下,形状与函数212y x =的图象相同的抛物线所对应的函数是()A .21(6)2y x =-B .21(6)2y x =+C .21(6)2y x =--D .21(6)2y x =-+3.一位保险推销员对人们说:“人有可能得病,也有可能不得病,因此,得病与不得病的概率各占50%”他的说法()A .正确B .不正确C .有时正确,有时不正确D .应由气候等条件确定4.如图,抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在()3,0-和()2,0-之间,其部分图象如图所示,则下列结论:()2140b ac ->;()22a b =;()3点17,2y ⎛⎫- ⎪⎝⎭、23,2y ⎛⎫- ⎪⎝⎭、35,4y ⎛⎫ ⎪⎝⎭是该抛物线上的点,则123y y y <<;()4320b c +<;()()5t at b a b +≤-(t 为任意实数).其中正确结论的个数是()A .2B .3C .4D .55.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A .13B .14C .16D .1126.若二次函数22y x =的图象经过点P (1,a ),则a 的值为()A .12B .1C .2D .47.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x 8.下列哪些事件是必然事件的个数有()()1哈尔滨冬天会下雪()2中秋节(农历十月十五日)的晚上一定能看到月亮()3秋天的树叶一定是黄色的()4抛十次硬币五次正面,五次反面.A .1个B .2个C .3个D .4个9.明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是()A .12B .13C .14D .1810.二次函数22(3)5y x =--+图象的开口方向、对称轴和顶点坐标分别为()A .开口向下,对称轴为3x =-,顶点坐标为()3,5B .开口向下,对称轴为3x =,顶点坐标为()3,5C .开口向上,对称轴为3x =-,顶点坐标为()3,5-D .开口向上,对称轴为3x =,顶点坐标为()3,5--二、填空题11.抛物线2y x x m =-+,若其顶点在x 轴上,则m =________.12.已知()221m m y m x x -=-+-是关于x 的二次函数,则m =________.13.同时抛两枚1元硬币,出现两个正面的概率为14,其中“14”含义为___.14.二次函数21212y x x =+-的最小值为________.15.二次函数在x =32时,有最小值14-,且函数的图象经过点(0,2),则此函数的解析式为_______.16.已知抛物线的顶点在()1,2-,且过点()2,3,则抛物线的解析式为__.17.如图是抛物线()210y ax bx c a =++≠图象的一部分,抛物线的顶点坐标()1,3A ,与x 轴的一个交点()4,0B ,直线()20y mx n m =+≠与抛物线交于A ,B 两点,下列结论:①20a b -=;②0abc >;③方程23ax bx c ++=有两个相等的实数根;④抛物线与x 轴的另一个交点是()1,0-;⑤当14x <<时,有21y y <,其中正确的序号是________.18.若二次函数223y x x =--配方后为2()y x h k =-+,则h k +=__.19.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别为()1,0x 、()2,0x ,且12x x <,图象上有一点()00,M x y 在x 轴下方,在下列四个算式中判定正确的是________.①()()01020a x x x x --<;②0a >;③240b ac -≥;④102x x x <<.20.已知二次函数2()1y x m =---,当1x >时,y 随x 的增大而减小,则m 的取值范围是________.三、解答题21.已知开口向下的抛物线225y ax x a =++-经过点()0,3-.()1确定此抛物线的解析式;() 2当x 取何值时,y 有最大值,并求出这个最大值.22.请你设计一个摸球游戏,要求:()1袋子中要有黄球、绿球和红球三种球.()2摸到球的概率;P (摸到红球)14=;P (摸到黄球)23=;并求出摸到绿球的概率有多大?23.二次函数2y ax bx c =++的图象过()3,0A -,()1,0B ,()0,3C ,点D 在函数图象上,点C ,D 是二次函数图象上的一对对称点,一次函数图象过点B ,D ,求:()1一次函数和二次函数的解析式;() 2写出使一次函数值大于二次函数值的x 的取值范围.24.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球实验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.()1估计从袋中任意摸出一个球,恰好是红球的概率是多少?() 2请你估计袋中红球接近多少个?25.某商场有A 、B 两种商品,A 商品每件售价25元,B 商品每件售价30元,B 商品每件的成本是20元.根据市场调查“若按上述售价销售,该商场每天可以销售B 商品100件,若销售单价每上涨1元,B 商品每天的销售量就减少5件.()1请写出B 商品每天的销售利润y (元)与销售单价()x 元之间的函数关系?() 2当销售单价为多少元时,B 商品每天的销售利润最大,最大利润是多少?26.某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落OP=米,喷出的水流的最高点A距水平面的高度是4米,离柱子下(如图所示).若已知3OP的距离为1米.()1求这条抛物线的解析式;()2若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?参考答案1.D2.D3.B4.C5.A6.C7.A8.A9.C10.B11.1412.-113.当实验很多次时,平均每抛4次出现1次“两个正面”14.-315.y =x 2﹣3x +216.25103y x x =-+17.③⑤18.-319.①20.1m ≤21.(1)223y x x =-+-(2)52-22.11223.()12123y x x =--+,21y x =-+;()22x <-或1x >24.()10.75;()215个25.(1)y =−5x2+350x−5000;(2)当销售单价为35元时,B 商品每天的销售利润最大,最大利润是1125元.26.(1)2(1)4y x =--+;(2)不计其它因素,水池的半径至少3米,才能使喷出的水流不至于落在池外.。
人教版九年级上册数学第一次月考试卷及答案

人教版九年级上册数学第一次月考试题一、单选题1.关于x 的方程ax 2﹣3x +2=0是一元二次方程,则a 满足的条件是( )A .a >0B .a ≠0C .a =1D .a ≥02.方程()20x x +=的根是( )A .2x =B .0x =C .120,2x x ==D .120,2x x ==- 3.用配方法解方程2610x x +-=时,原方程可变形为( )A .2(3)10x -=B .2(3)10x +=C .2(3)8x +=D .2(3)8x -= 4.抛物线y =x 2−2x +5的对称轴是( )A .直线x =2B .直线x =−1C .直线x =−2D .直线x =1 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =-- 6.已知点A (﹣2,a ),B (12,b ),C (52,c )都在二次函数y=﹣x 2+2x+3的图象上,那么a 、b 、c 的大小是( )A .a <b <cB .b <c <aC .a <c <bD .c <b <a 7.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+与反比例函数c y x=在同一平面直角坐标系中的大致图象为( )A .B .C .D . 8.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠59.用配方法解方程x 2﹣6x ﹣7=0,下列配方正确的是( )A .(x ﹣3)2=16B .(x +3)2=16C .(x ﹣3)2=7D .(x ﹣3)2=2 10.若二次函数2()1y x m =--.当x ≤ 3时,y 随x 的增大而减小,则m 的取值范围是( ) A .m = 3B .m >3C .m ≥ 3D .m ≤ 3二、填空题11.若抛物线2(2)32y a x x =-+-有最大值,则a 的取值范围是______________. 12.抛物线22(1)8y x =-+的顶点坐标是 ______________.13.二次函数228y x mx =++的图象顶点在x 轴上,则m 的值是_______________. 14.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为2125y x =-,当水面离桥拱顶的高度DO 为4m 时,这时水面宽度AB 为______________.15.若二次函数2y ax bx c(a 0)=++<的图像经过(2,0),且其对称轴为直线x=-1,则当函数值y>0成立时,x 的取值范围是________.16.如图,菱形ABCD 的三个顶点在二次函数232(0)2y ax ax a =-+<的图象上,点A 、B 分别是该抛物线的顶点和抛物线与y 轴的交点,则点D 的坐标为____________.三、解答题17.解方程:2--=.x x231018.某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年投入资金2880万元,则从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?19.如图,已知二次函数的顶点为(2,1-),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.20.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为1m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:在图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m )之间的函数关系式是221y x x =-++.(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内? 21. 兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB 与水平桥面的夹角是31°,拉索AB 的长为152米,主塔处桥面距地面7.9米(CD 的长),试求出主塔BD 的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)22.甲、乙两名学生在同一小区居住,一天早晨,甲、乙两人同时从家出发去同一所学校上学.甲骑自行车匀速行驶.乙步行到公交站恰好乘上一辆公交车,公交车沿公路匀速行驶,公交车的速度分别是甲骑自行车速度和乙步行速度的2倍和5倍,下车后跑步赶到学校,两人同时到达学校(上、下车时间忽略不计).两人各自距家的路程y (m )与所用的时间x (min )之间的函数图象如图所示.(1)a= ,b= .(2)当乙学生乘公交车时,求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (3)如果乙学生到学校与甲学生相差1分钟,直接写出他跑步的速度.23.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示. (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.如图,在等腰三角形ABC中,∠ACB=90°,AC=BC=2cm,点M(不与A、B重合),从点A出发沿AB的速度向终点B运动.在运动过程中,过点M作MN⊥AB,交射线BC于点N,以线段MN为直角边作等腰直角三角形MNQ,且∠MNQ=90°(点B、Q 位于MN两侧).设△MNQ与△ABC重叠部分图形面积为S(cm2),点M的运动时间为t (s).(1)用含t的代数式表示线段MN的长,MN= .(2)当点N与点C重合时,t= .(3)求S与t之间的函数关系式.25.如图,已知抛物线y=ax2+32x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.(1)A点的坐标是;B点坐标是;(2)直线BC的解析式是:;(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC 的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.参考答案1.B2.D3.B4.D5.D6.C7.B8.C9.A10.C11.2a >12.(1, 8)13.8±14.2015.42x -<<16.(2, 32). 17.1x =2x = . 18.该地投入异地安置资金的年平均增长率为50%.19.(1)2(2)1y x =--;(2)3ABC S =△.20.(1)最大高度是2米;(21时,才能使喷出的水流都落在水池内.21.主塔BD 的高约为86.9米.22.(1)400,2400;(2)4001600y x =-;(3)乙跑步的速度为100 m/min 或150 m/min .23.(1)y =−x +40(10≤x ≤16);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.24.(1);(2)1;(3)2221(01)27384(11)24344(2)4t t S x t t t x ⎧<<⎪⎪⎪=-+-≤<⎨⎪⎪-+≤<⎪⎩. 25.(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)存在点P ,使△PBC 的面积最大,最大面积是16 ;(4)(8-,0),(4, 0),(5+0),(5,0).。
九年级数学上册第一次月考试卷(含答案)

更
a b c 0, a b c 2 , 所 以 a c 1 , 所 以 a 1 c ,因为 c<0,所以 a 1 ,所以②③④正确.
考点:二次函数图象的性质. 11.-3. 【解析】 2 试题分析:根据一元二次方程的定义得到 m-3≠0 且 m -7=2,然 后解不等式和方程即可得到满足条件的 m 的值. 2 试题解析:根据题意得 m-3≠0 且 m -7=2, 所以 m=-3. 考点:一元二次方程的定义. 12.
九年级上册第一次月考试卷
满分 100 分,时间 60 分钟
一、选择题(每题 3 分,共 24 分)
1.已知关于 x 的一元二次方程 x 2 x a 0 有两个相等的实数根,则 a 的值是(
2
)
A.4
2
B.-4
C.1
D.-1
3 2
2.如果 x x 1 0 ,那么代数式 x 2 x 7 的值是( A、6 B、8 C、-6 D、-8
∠PAD+∠BAP=90°, x2 x 1 , 所 以 ∴∠APB=∠PAD, 3 2 3 2 2 2 2 2 x 2 x 7 x x x 7 x ( x x ) x 7 x x又∵∠B=∠DEA=90°, 7 1 7 6 ∴△ABP∽△DEA,
22.某工厂生产的某种产品按质量分为 10 个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所 示(其中 x 为正整数,且 1≤x≤10):
为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为 x 的产品时,当天的利润为 y 万元. (1)求 y 关于 x 的函数关系式; (2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.
人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案九年级第二学期数学第一次月考试卷时间:120分钟。
总分:120分。
姓名:一、选择题(本大题共8小题,每小题3分,共24分)1.绝对值是6的有理数是()A。
±6.B。
6.C。
-6.D。
162.计算a^2a^4的结果是()A。
a^5.B。
a^6.C。
2a^6.D。
a^83.半径为6的圆的内接正六边形的边长是()A。
2.B。
4.C。
6.D。
84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A。
2π。
B。
3π。
C。
2/3π。
D。
1+2/3π5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种.如图是该校学生乘车、骑车、步行上学人数的扇形统计图。
乘车的人数是()A。
180.B。
270.C。
150.D。
2006.函数y=(x-2)/x的自变量X的取值范围是()A。
x>2.B。
x<2.C。
x≥2.D。
x≤27.如右图,是一个下底小而上口大的圆台形,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,内对应的水高度为h,则h与t的函数图象只可能是()A。
一次函数。
B。
二次函数。
C。
三次函数。
D。
反比例函数8.如图所示的正方体的展开图是()二、填空题(本大题共7小题,每小题3分,共21分.)9.若分式(2x)/(x+2)的值为零,则x=_____。
10.已知反比例函数y=k/x的图象经过点(3,-4),则这个函数的解析式为y=______。
11.已知两圆内切,圆心距d=2,一个圆的半径r=3,那么另一个圆的半径为______。
(用科学记数法表示20 的结果是______(保留两位有效数字))12.二次函数y=x^2的图象向右平移1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是:(______。
0)。
13.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是______。
九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。
九年级数学月考试卷(含答案)

九年级第一次月考数学试卷1一、选择题(每小题4分,共40分) 1.下列运算正确的是( ).A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+D .()2121a a --=--2.二次根式中,x 的取值范围是( )A .x=3B . x≥3C . x >3D .一切实数 3.若点 P (a ,a -3)在第四象限,则a 的取值范围是 ( ). A .-3<a <0 B .0<a <3 C .a >3 D .a <04.二次函数y=﹣(x+2)2﹣3的顶点坐标为( )A .(﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)5.芜湖市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是 ( ). A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x += 6.下列方程没有实数根的是( )A .x 2+4x=10B .3x 2+8x ﹣3=0C .x 2﹣2x+3=0 D .(x ﹣2)(x ﹣3)=12 7.方程(x ﹣1)(x+2)=2(x+2)的根是( ) A .1,﹣2 B . 3,﹣2 C . 0,﹣2 D .18.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( ) A .5 B .7 C .8 D .109.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C . 20D .2110.已知k 为实数,且方程223x x k --=恰有4个实数根,则k 的范围是A .任意实数B .0k >C .04k <<D .不存在 二、填空题(每题5分,共20分)11.关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足 12.汽车刹车后行驶的距离s (单位:米)与行驶的时间t (单位:秒)的函数关系式是s=15t﹣6t 2,那么汽车刹车后 秒停下来。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2014年九年级下第一次数学月考试卷
九年级下学期第一次数学月考卷考生注意:1本考试试卷共三道大题,满分120分。
附加题20分不计入总分,考试时量120分钟。
2、本试卷的作答一律答在答题卡上,选择题用2B铅笔按涂写要求将你认为正确的选项涂黑,非选择题用黑色墨水签字笔作答,作答不能超出黑色矩形边框,直接在试题卷上作答无效。
[一、选择题(本大题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7 X0n(n是正整数),则n的值为().A. 5 B . 62. 下列运算正确的是()A . 3x3-5X3=- 2xC. (,) 2= x6护9C. 7D. 8B. 6x3吃x 2= 3xD.—3 (2x —4)=—6x—123. 实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5, 4, 3, 5, 5, 2, 5, 3, 4, 1,则这组数据的中位数,众数分别为()A. 4, 5B. 5, 4C. 4, 4D. 5, 54. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别A . 16B . 17C .5. 河堤横断面如图所示,堤高为S1、S2,则S1+S2的值为(迎水坡AB的坡比为1:二,则AB的长为(A. 12 B . 4 米C. 5 ;米D. 6 ;米6.A、下列命题中,真命题是(位似图形一定是相似图形B、等腰梯形既是轴对称图形又是中心对称图形C、四条边相等的四边形是正方形D、垂直于同一直线的两条直线互相垂直7.如图,?ABCD的顶点A、B、D在。
O上,顶点C在。
O的直径BE 上,/ ADC=54,连接AE,则/ AEB的度数为(8.36°B46°C、27°“a是实数,a>0 ”这一事件是必然事件B、不可能事件D、A、C、不确定事件-随机事件D 63°9. 2013年中国好声音”全国巡演重庆站在奥体中心举行•童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后, 童童搭乘邻居刘叔叔的车顺利到家. 其中x表示童童从家出发后所用时间,y表示童童离家的距离. 下图能反映y与x的函数关系式的大致图象是((第9题图)10、要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间A、①②B、①③C、②③12、下列几何体中,同一个几何体的正视图与俯视图不同的是D、①②③A B C D第U卷(非选择题共84分)、填空题:(本大题共8小题,共24分,只要求填写最后结果,每小题填对得3 分).3 313已知实数a ,b满足a+ b = 2,a—b = 5,则(a+ b)•(a-b)的值是__________ 14. 如图6,Rt△ ABC勺斜边AB=16, Rt△ ABC绕点O顺时针旋转后得到RUAB H C H,则RUABC'的斜边AB上的中线CD的长度为__________________ .15. 在一只不透明的口袋中放入红球6个,黑球2个,黄球n个.这些球除颜色1不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为1,则3 放入口袋中的黄球总数n= ____________ .16. 某药品经过两次降价,每瓶零售价由168元降为128元,一直两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得______________________________17. 已知反比例函数y=-在第一象限的图象如x图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO= AB,贝U &AOB= _____________ .18. 如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm, 则屏幕上图形的高度为____________ cm.19. 如图,在平面直角坐标系中,Rt △ OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,73 ),点C 的坐标为(1,0),点P 为斜边OB 上的一动点,则 2 FA + PC 的最小值为 ____ . 20. 如图,在等腰直角 厶ABC 中,.ACB =90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且.DOE =90。
2014年九年级中考第一次模拟数学试题及答案
2014年中考网上阅卷适应性测试数 学 试 题(满分:150分 测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分。
每题所给的四个选项,只有一个符合题意,请将正确答案的序号填涂在答题卡的相应的表格中)1.︱-12︱等于A . 2B .-2C . 12D .-122.9的立方根是A .3B .39C .3±D .39±3.下列各图中,不是中心对称图形的是A .B .C .D . 4.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是A .a >bB . a >-bC .-a >bD .-a <-b5.函数1y x =+x 的取值范围是A .x ≥-1B .x ≤-1C . x >-1D .x <-1 6.已知,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin A 的值为A . 34B . 43C . 35D . 457.在数轴上表示5±的两点以及它们之间的所有整数点中,任意取一点P ,则P 点表示的数大于3的概率是A .41B .92C .51D .1128.如图,在平面直角坐标系中,⊙M 和y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是A .(-4,2)B .(-4.5,2)C .(-5,2)D .(-5.5,2)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.地球上的海洋面积大约为361000000千米2,将361000000这个数用科学记数法表示为 .ab(第4题)QP OMy10.计算:( 2- 3 ) (2+ 3 )= .11.分解因式:22242y xy x +-= .12.宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表所示:年龄组13岁14岁 15岁 16岁 参赛人数 5191214则全体参赛选手年龄的中位数是 岁.13.已知y 是x 的反比例函数,且当x =3时,y =8,那么当x =4时, y = . 14.如图,该图形经过折叠可以围成一个正方体,折好以后,和“静”字相对的字是 .15.已知⊙O 的半径为5厘米,若⊙O ′和⊙O 外切时,圆心距为7厘米,则⊙O ′和⊙O 内切时,圆心距为 厘米.16.如图,△ABC 内接于⊙O ,直径AD=2,∠ABC=30°,则CD 的长度是 . 17.如图,矩形ABCD 中,AB=3cm ,BC=4cm 。
2014-2015九年级数学第一次月考试卷
小龙人中学2014-2015学年度第一学期第一次月考试卷 (九年级数学) 一、选择题(每小题3分,共18分) 1.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ). A .a=b=c B .一根为1 C .一根为-1 D .以上都不对 2.若分式22632x x x x ---+的值为0,则x 的值为( ). A .3或-2 B .3 C .-2 D .-3或23.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3) 5.已知α是一元二次方程x 2﹣x ﹣1=0较大的根,则下面对α的估计正确的是( ) A .0<α<1 B . 1<α<1.5 C . 1.5<α<2 D . 2<α<3 6.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题(每小题3分,共27分)7.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.8.如果x 2-10x+y 2-16y+89=0,则 x y 的值为 . 9.x 2-5│x │+4=0的所有实数根的和是________. 10.以-1为一根的一元二次方程可为_______ ______(写一个即可). 11.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________. 12.若x=﹣2是关于x 的一元二次方程x 2﹣ax+a 2=0的一个根,则a 的值为 13现有一块长80cm 、宽60cm 的矩形钢片,将它的四个角各剪去一个边长为xcm 的小正方形,做成一个底面积为1500cm 2的无盖的长方体盒子,根据题意列方程,化简可得 14.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的 三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试 验田的面积为570m 2,道路宽为 米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014学年第一学期第一次阶段性检测
九年级数学试题卷
考生须知:
1.全卷共三大题,24小题,满分为120分。
2.考试时间为120分钟,本次考试采用闭卷形式,不允许使用计算器。
3.全卷答案必须做在答题卷的相应位置上,做在试卷上无效。
4.请用钢笔或圆珠笔将学校、姓名、准考证号、座位号分别填在答题卷的相应位置上。
一、选择题(本题共10小题,每小题3分,共30分.请选出各小题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.下列事件中,必然事件是( )
A. 掷一枚硬币,着地时反面向上;
B. 星期天一定是晴天;
C.打开电视机,正在播放动画片;
D.在标准大气压下,水加热到100°会沸腾. 2.二次函数2
(1)2y x =--的顶点坐标是( )
A .(-1,-2)
B .(-1,2)
C .(1,-2)
D .(1,2)
3.将抛物线132+=x y 向左平移1个单位,再向下平移3个单位,则所得抛物线为( ) A .()2132
++=x y B .()2132
-+=x y
C .()1332+-=x y
D .()1332
--=x y
4.在Rt △ABC 中,∠ACB =90°,AC =6,AB =10,以C 为圆心,BC 为半径作⊙C ,则点A 与⊙C 的位置关系是 ( )
A. 点A 在⊙C 内
B. 点A 在⊙C 上
C. 点A 在⊙C 外
D. 无法确定
5.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
A .
B .
C .
D .
6.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )
A.6
B.5
C.4
D.3
7. 根据下列表格的对应值
判断方程一元二次方程2
0ax bx c ++=(0a ≠,a 、b 、c 为常数)
一个解的范围是( ) A .3<x <3.3 B .3.3<x <3. 4 C .3.4<x <3.5 D .3.5<x <3.6 8.已知123(1,),(2,),(4,)y y y ---是抛物线2
28y x x m =--+上的点,则( )
A .123y y y <<
B .321y y y <<
C .213y y y <<
D .231y y y << 9.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )
A.
B.
C.
D.
10..如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( ) .
.
.
二、填空题(本大题有6小题,每小题4分,共24分)
11.请写出一个图象开口向上,顶点坐标是(0,-1)的二次函数的解析式
12. 在同样条件下对某种小麦种子进行发芽实验, 统计发芽种子数, 获得如下频数分布表: 估计该麦种的发芽概率是 .
13. 把二次函数223y x x =++改写成2()y a x m k =++的式: . 14. 已知⊙O 的半径是5,OP=3,则经过点P 最短的弦长是 . 15. 已知抛物线162++=mx x y 的顶点在x 轴上,则m 的值是 . 16. 如图,二次函数2y ax bx c =++的图象开口向上,图象经过
点(-1,2)和(1,0),且与y 轴相交于负半轴.给出四个结论:① 0abc <;②b 2-4ac >0;③a+b+c=0; ④1a c += 其中结论正确的是 (填序号)
2014学年第一次阶段性检测
(第16题)
九年级(上)数学答题卷
一、选择题(本题共10小题,每小题3分,共30分.请选出各小题中一个符合题意的正确选项,不选、多选、错选均不给分)
二、填空题(本大题有6小题,每小题4分,共24分)
11. . 12. . 13. .
14. . 15. . 16. .
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17.(本题6分)如图,(1)做出△ABC的外接圆,
(2)△ABC外心的坐标是__________.
18. (本题6分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.
19. (本题6分)我校要从A、B两位男生和C、D两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全区汉字听写大赛.
(1)请用树状图或列表法列举出各种可能选派的结果;
(2)求恰好选派一男一女两位同学参赛的概率.
20.(本题8分)如图,用长为12 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边长为x(m),面积为y(m2),求y关于x的函数关系式,并写出自
变量x 的取值范围;
(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?
21.(本题8分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D (如图).
(1)求证:AC=BD;
(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.
22. (本题10分)如图,已知二次函数y =ax 2+bx +c 的图象顶点是(21,-8
9
),且经过A (2,0).
(1)求二次函数的解析式;
(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;
(3)在同一坐标系中画出直线y =-x +2,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.
23. (本题10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.设当销售单价降低x (元)时,每天的销售利润y (元)
(1)求出y (元)与x (元)之间的函数关系式;
(2)求出销售单价降多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价降低应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
24.(本题12分)如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.
(1)求A、B、C、D的坐标;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E(m,n)是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.
备用图。