Lau效应的部分相干光理论的解释

Lau效应的部分相干光理论的解释
Lau效应的部分相干光理论的解释

3、光行差效应的解释

3、光行差效应的解释 (1) 光行差效应提出 1725年,英国天文学家布莱德雷发现了恒星的"光行差"现象,以意外的方式证实了罗麦的理论。刚开始时,他无法解释这一现象,直到1728年,他在坐船时受到风向与船航向的相对关系的启发,认识到光的传播速度与地球公转共同引起了"光行差"的现象。他用地球公转的速度与光速的比例估算出了太阳光到达地球需要8分13秒。这个数值较罗麦法测定的要精确一些。菜德雷测定值证明了罗麦有关光速有限性的说法。光速的测定,成了十七世纪以来所展开的关于光的本性的争论的重要依据。但是,由于受当时实验环境的局限,科学家们只能以天文方法测定光在真空中的传播速度,还不能解决光受传播介质影响的问题,所以关于这一问题的争论始终悬而未决。 在地球上用望远镜观测遥远的任意一颗恒星,发现在地球轨道的不同位置上,我们用以观察的望远镜方向在一年内有周期性的变化。 v 图 假如星光射来的方向固定,如图1所示,则当地球在位置a 时,望远镜需朝下偏一个角度α’; 当地球在位置b 时,望远镜需朝上偏一个角度α。如果a 、b 位置使星光与望远镜方向组成的平面都与地球轨道平面垂直,则α=α’。在一般位置上,α角的大小要变化。这在观测上表现为一颗恒星一年内在天球上画出一个很小的椭圆形轨迹,这就是光行差现象。 如图2所示,设恒星发出的光以速度c 垂直与地球的轨道平面,则望远镜必须倾斜一个α角,以保证进入望远镜筒口的光经过t ?时间后到达筒底,被我们的眼睛看到,而不至于被筒壁挡掉。从图上可以看出:

c v t c t v tg =??= α,在实际观测中,这个最大的α角约等于10-4弧度,刚好等于地球绕太阳的轨道运动速度除以光速。 2、实验结果 科学家们认为“以太”和绝对空间参考系是对应的,光相对“以太”的速度是恒定的c 。所以人们不得不接受这样的图画:太阳系就是对应于以太静止的参考系,地球在这个以太海洋中以30公里/秒的速度运动,完全没有带动以太。 光行差现象首先由于1727年报道的。 如图:[布喇德雷光行差现象](1728) a)地球相对与该恒星静止。 b)地球相对与该恒星与恒速率运动。 C)太阳相对于以太是静止的 布喇德雷对天龙座γ星进行了一年的观测得到的结论是:以太相对于恒星静止。或者说:以太完全不被地球所拖拽。 麦克尔逊—莫雷实验各次结果 观测者 年份 l δ计算 δ观测(上限) 比值

塞曼效应

1-3 塞曼效应 实验目的和要求: 了解塞曼效应的重要意义和原理;学习调节光路,学习使用高分辨气压扫描式法布里- 珀罗标准具(F-P)和光谱测量技术;观测和研究Hg 放电灯的546.1nm 光谱线在外磁场作用下的塞曼分裂现象和谱线的超精细结构;根据实验结果研究原子能级结构,获得有关分裂能级的参量。 教学内容: 1.计算Hg 灯546.1nm 光谱线在磁场作用下分裂的各子谱线的条数、偏振方向、波数变化,和相对强度,作出能级分裂图和光谱分裂示意图。 2.调节光路的准直和共轴,调节F-P 标准具的平行度;观察F-P 标准具产生的等倾干涉圆 环随F-P 内空气折射率的变化;通过气压扫描,用光电倍增管扫描测量546.1nm 光谱 线的强度随气压的变化,要求达到高分辨率,观测到超精细结构。 3.加垂直观测方向的磁场,观察F-P 后干涉圆环的分裂、分裂环的相对强度和偏振状态;用气压扫描测量546.1nm 谱线分裂出的9 条光谱,测量不同偏振状态下的光谱。4.分析塞曼分裂谱,计算各分裂子谱线的波数差和相对强度,并与理论值作比较,求荷质比;从塞曼分裂谱中分析得到原子能级的J 量子数和g 因子。 实验过程中可能涉及的问题(有的问题可用于检查学生的预习情况,有的可放在实验室说明牌上作提示,有的可在实验过程中予以引导,有的可安排为报告中要回答的问题,有的可作为进一步探索的问题。不同的学生可有不同的要求。) 塞曼效应是如何产生的?原子在外磁场下的能级分裂由哪些因素决定?根据你的理 论计算,在1T 磁场的作用下,Hg546.1nm光谱线分裂成几条谱线?分裂谱线的偏振态为什么不同?分裂谱线的相对强度是多少?分裂谱线的波数差为多少cm-1? 本实验通过什么方法分辨测量这么窄的光谱分裂?F-P 的自由光谱范围如何定义,在实验中有什么作用?用气压扫描式F-P 标准具实现高分辨光谱测量的实验条件有哪些(光路,平行度,准直,光电倍增管前加小孔光阑… )?随着F-P 内气压即空气折射率的变化,为什么可以观测到分 裂谱线重复出现?如何把实验测量结果中光强随气压的变化,标定转化为,光强随谱线波数的变化?此种标定的前提条件是什么?如何尽量减少相邻谱线的互相影响?如果谱线的裂距和强度与理论计算有偏差,可能是什么原因造成的? 实验装置说明: 1.光源及磁场:Hg 灯与电源(注意Hg 灯上高压的安全),电磁铁与电源(注意电磁铁发热效应,Hg 灯为何需置于磁场中心?) 2.光谱测量:透镜、偏振片和干涉滤光片(各起什么作用?);气压扫描式F-P 标准具、成像透镜和带小孔光阑的光电倍增管(各起什么作用,如何调节,观察到的光学 现象?) 3.控制和数据采集:气压扫描控制器(注意在升压状态下测量), 光电倍增管电源系统(注意屏蔽背景光后加高压使用),计算机数据采集(实验测量的是什么物理量?) 实验的主要内容和问题: 1.Hg 灯置于电磁铁中央,在垂直磁场方向观测光谱(平行磁场方向的塞曼分裂光谱会有什么不同?测量方案上有何不同?) 2.调节整体光路,使Hg 灯像、等倾干涉圆环的中心、以及观测点的中心达到准直、共心、共轴。(为什么有这些要求?如何逐步调节并判断?)

光行差新解释

光行差新解释 传统的光行差的解释与光速不变原理显然是矛盾的,也就是说相对论对光行差现象没有作出合理的解释。在传统的光行差解释中,光速是可以合成的,与普通的速度并没有本质的区别,而光速不变是爱因斯坦创立相对论的基石,没有了个基石,则相对论这座大厦就会坍塌。迈莫实验显然是光速不变的例子,光行差显然是光速可变的例子,光速到底可不可变?科学处于两难选择的处境中,科学界违背科学精神,采取了含糊其辞的做法,分区对待,表面上仍坚守光速不变的信条,在遇到诸如光行差这类光速不变所难以解释的现象时,却偷偷摸摸地采用和无奈地容忍光速可变来解释。 笔者认真解析了光行差现象,化解了光速可变与不变看似不可调和的矛盾,合理解释了光行差现象。要合理解释光行差现象,必须恢复以太,没有以太就不能合理解释光行差现象。笔者对光行差新解释的主要精神来自于第8章《光速的变与不变》,新解释只是该章精神的具体应用。 笔者认为,光行差是光在传播中,由于其介质---以太的密度变化而发生折射所产生的现象。 在“光速变与不变”中,我们阐述了以太密度随同引力强度同步变化的思想。以太阳为例,离太阳越远,太阳的引力强度越小,太阳产生的以太密度变得越稀。反之,离太阳越近,太阳的引力强度越大,太阳产生的以太密度变得越稠。也就是说,从孤立的天体系统的角度来考察,以太密度是逐渐变化的。把系统孤立隔离起来,不考虑系统外其它因素的影响,只考虑所考察系统的自身作用,这在科学研究中是常用的和行之有效的方法。 下面我们来考察太阳对遥远星光光行差的影响。 一光子从地球发射到无穷远处,根据能量转化与守恒定律,势能增加,光速就要减小,假如地球处的光速(d C )为299792458/m s ,光到达无穷远处时的光速(w C )为: 2222r r d w r w GM GM C C R R -=- 式中,r M :太阳质量(301.98910kg ?);r R :日地距离(111.49610m ?);w R :太 阳到无穷远处(星)的距离(w R →∞),也就是说 2r w GM R 项可作“0”处理。 将相关数据代入式中,解之得: 299792455.04193/w C m s = 值得注意的是,在(内在)光速越来越慢的同时,太阳以太变得越来越稀薄,光速在逐渐变稀薄的以太中逐渐加快,以保持以太光速不变。 假如过程相反,光从无穷远处射向太阳,内在光速逐渐加快,当光到达地球处时,其速度为299792458/m s ,反推过去,无穷远处的光速一定是299792455.04193/m s 。这里只考虑了太阳的作用,不考虑地球和其它天体的作用。在光速逐渐加快的过程中,以太密度相应变得越来越稠密,折射率变得越来越大,以保持以太光速不变。 可以看出,以太密度变化率与光速变化率是同步对等的。 光从无穷远处一路走来,一路发生折射。 怎样计算总的折射率呢?我们知道,折射是光从一媒介进入另一媒介时,传播方向发

2017粤教版高中物理选修2223《光子康普顿效应及其解释》一课三练

第二节光子 第三节康普顿效应及其解释 lo能量子 (1)_________________ 定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的 ________________________________ O即:能量的辐射或者吸收只能是 _______________________________________ O这个不可再分的最小能量值叫做_______ ? ⑵能量子大小为hv,其中、,是谐振子的振动频率,h称为 ____ 常量。h = (3)能量的量子化 在微观世界中微观粒子的能量是_________ 的,或者说微观粒子的能量是______ 的。这种现象叫能量的量子化. 2。__________________________________ 光的能量是不连续的,而是的,每一份叫做一个光子,一个 光子的能量为_______ ?这就是爱因斯坦的光子说。 3.要使物体内部的电子脱离离子的束缚而逸出表面,必须要对内部电子做一 定的功,这个功称为_______ o在光电效应中,金属中的电子吸收一个光子获得 的能量是hv,这些能量的一部分用来克服金属的______ ,剩下的表现为逸出的光

电子的___________ ,公式表示为___________________ , 4o康普顿效应 (1)用X射线照射物体时,散射出来的X射线的波长会______ ,这种现象称 为康普顿效应。 (2)光电效应表明光子具有 ______ 康普顿效应表明光子还具有_______ , 两种效应深入地揭示了光的_______ 性的一面. (3)光子的动量p= ___________ 、在康普顿效应中,由于入射光子与物体中电子的碰撞,光子的动量_____ ,因此波长______ ? 【概念规律练】 知识点一能量子 lo已知某种单色光的波长为I在真空中光速为c,普朗克常量为h,则电磁波辐射的能量子£的值为() Ao h错误!B、错误! C、错误! D.以上均不正确 2?神光"II”装置是我国规模最大,国际上为数不多的高功率固体激光系统,利用它可获得能量为2 400J、波长X.为0、35 pm的紫外激光,已知普朗克常量h=6、63X10-34J-S,则该紫外激光所含光子数为() A.2、1X1021个Bo 4、2X1021个

地球概论复习汇总

地球概论复习 题型:名词解释、判断题、选择题、简答题 知识点 第一:地平视差 天体的视差: 天文上在测定太阳系内较近的天体的距离时, 通常采用地球半径作为基 线。 从天体到基线两端的连线所夹的角, 即地球半径对该天体所张的角, 叫做天体的 视差。当天体位于地平时,其视差最大;这个最大的视差值叫做天体的地平视差。第二:月貌(月球地表结构)

月海:月面上比较阴暗的部分,由反射率比较低的基性岩组成。 月陆:月面上比较明亮的部分是高地,有比较厚的月尘覆盖,反射率高。 环形山:四周凸起中部低凹的环形隆起叫做环形山。现在也叫月坑。 辐射纹:从大环形山向四周辅散的明亮线条。可以穿过山脉、月海延伸数千米。月谷:暗线是深陷的裂谷,有如地球上的沟谷叫做月谷。 第三:潮汐(天文潮汐) 潮汐:地表上由于天体间的引力作用而形成的有规律的海平面涨落现象。 太阴潮:由月球引起的潮汐;太阳潮:有太阳引起的潮汐。太阴潮》太阳潮

潮差:高潮和低潮的水位差。潮差最大时的潮汐叫大潮;潮差最小时的潮汐叫小潮。潮汐隆起:在地球正反垂点的周围形成两个水位特高的区域称为”潮汐隆起” 引潮力: 地球上任意一点所受的引力与地球平均引力之差, 正反垂点最大其他地方逐 渐减小。引潮力的大小与天体距离的三次方成反比。 海洋潮汐的规律性和复杂性: 规律性:①每太阴日两次高潮两次低潮; ②每朔望月两次大潮和小潮; 复杂性:①赤道潮与回归潮;

②二分潮与二至潮; ③近地潮与远地潮; ※ 赤道潮:假定月球的赤纬为零,则两个垂点在赤道上,全球各地在一个太阴日 内都有相等的两次高潮和低潮,潮汐高度由赤道向两极递减,南北对称。这样的潮汐称为赤道潮(分点潮) ※ 日潮不等:由于月球的赤纬不为零,它的两个垂点分布于南北两半球,以致同一纬度 ( 除赤道外 ) 的

真空光速不变性原理的解释

真空光速不变性原理的解释 问题导引:为什么光速c刚好是299792458m/s? 史蒂文·温伯格曾经说过:“我对基础物理学的进步的想法是,能带领我们更接近一种能够以自然的和统一的方式解释所有物理现象的简单理论.”英国科学哲学家波普尔主张,任何科学理论都是试探性的、暂时的、猜测的,它们是不能够被证明的,但是可以被证伪的.按照霍金的理解就是:如果理论只是假设意义上讲,任何物理理论总是临时性的,你永远不可能讲它证明…….一个好的的理论的特征:它能够给出许多原则上可以被观测所否定或所证伪的语言. (一)爱因斯坦对于光速不变性原理的解释爱因斯坦在给达文波特的信中说:“在我本人的思想发展中,迈克尔孙的结果并没有引起很大的反响.”爱因斯坦认为:真空中光的传播定律必须由一个能与相对性原理一致的较为复杂的原则取代;这是因为相对性原理自然而简单并且在人们的思想中具有很大的说服力;但是,理论物理学的发展说明了我们不该遵循这一途径.他认为新的理论应该与电动力学的理论协调起来.于是,他较深入的分析了时间和空间的物理概念,让人们看到相对性原理和光的传播定律(真空中光速恒定定律)没有丝毫的抵触之处.这样他完成了他的狭义相对论,光也就有了新的参考原则.爱因斯坦在他的《狭义与广义相对论浅说》中说:“在物理学中几乎没有比真空中光的传播定律更简单的定律了.学校里的每个儿童都知道,或者相信他知道,光在真空中沿直线以速度千米每秒传播.无论如何我们非常精确地知道,这个速度对于所有各色光线都是一样的.因为如果不是这样,则当一颗恒星为其邻近的黑暗星体所掩食时,其各色光线的最小发射值就不会同时被看到.荷兰天文学家德西特根据对双星的观察,也以相似的理由指出,光的传播速度不能依赖于发光物体的运动速度.”爱因斯坦在1952年第十五版本的《狭义和广义相对论浅说》中仍然如是说,“我们可以假定关于光(在真空中)的速度c是恒定的,这一简单的定律已有充分的理由为学校里的儿童所确信.谁会想到这个简单的定律竟会使思想周密的物理学家陷入智力上的极大困难呢?” 二十世纪末,在天文和微观的实验中都发现了一些现象,光速不变原理的经典解释遇到困难,关于此问题的理论探讨也很活跃,我国科学家在这个问题上也一直进行着摸索,物理学可以使用假设,并在假设的基础上建立理论,然而用实验检验其非假设成果的正确性,进而间接验证假设的正确性.之所以这样做,是因为在假设时代,该现象还得不到合理的解释,这说明假设的现象比当时物理能解释的东西更基本.因此,如能在以后对假设作出科学的解释,就是对物理学的重大突破. 自从相对论发表以来,对它的争议就没有停止过.但相对论以其

天文百科知识之部分专业术语解释

天文百科知识之部分专业术语解释 编辑:零度星系 时间:2012年1月17日- 2月15日 说明:1.本文按感觉(随机)排序,以此带来不便,请大家谅解。 2.由于本文为个人编辑未经审核,因此难免会出现字词编辑错误,若发现文中出现错误,请与本人联系。 一、部分关键专业术语 1.光行差:光的有限速率和地球沿着绕太阳的轨道运动引起的恒星位置的视位移。在一年内,恒星似乎围绕它的平均位置走出一个小椭圆。这个现象在1729年由詹姆斯·布拉德雷(James Bradley)发现,并被他用来测量光的速率。 2.吸收星云:太空中的冷气体尘埃云,只因为它阻挡更远恒星的光而能被发现。 3.近日点进动:水星绕太阳的轨道并非每次遵循相同的路径,而是依次有微小的位移。每次的轨道都是以太阳为一个焦点的椭圆。在每个轨道上水星最接近太

阳的地方(近日点),椭圆向旁边位移一个很小的量。近日点的这种进动是由阿尔伯特·爱因斯坦的广义相对论预言的,但不能用艾萨克·牛顿(Isaac Newton)的引力理论来解释。 4.弱人择原理:物理学和宇宙学的所有量的观测值,不是同等可能的;它们偏爱那些英应该存在使碳基生命得以进化的地域以及宇宙应该足够年老以便做到这点等等条件所限定的数值。 5.强人择原理:宇宙必须具备允许生命在其某个历时阶段得以在其中发展的那些性质。 6.阿波罗小行星群:轨道的近日点都在地球轨道之内而远日点都在地球轨道之外的一群小行星,所以它们太阳运动时穿过地球轨道。它们的名称来源于1932年走到离地球不到0.07个天文单位时被发现的第1862号小行星阿波罗。阿波罗本身的线大小约1.4公里。这样一个天体如果与地球相撞,将会造成大范围的破坏。 7.巴纳德星:已知自行最大的恒星,由美国天文学家巴纳德(E.E,Barnard)于1916年发现。巴纳德星运动极快,仅仅180年就在天空相对于背景恒星扫过半度距离(从地球上看的月亮角直径)。巴纳德星离我们1.8秒差距(约6光年),是离太阳系第4颗最近的已

塞曼效应72764

塞曼效应 一 实验目的 1.通过观察塞曼效应现象,了解塞曼效应是由于电子的轨道磁矩与自旋磁矩共同受到外磁场作用而产生的。证实了原子具有磁矩和空间取向量子化的现象,进一步认识原子的内部结构。并把实验结果和理论进行比较。 2.掌握法布里—珀罗标准具的原理和使用,了解使用CCD 及多媒体计算机进行实验图象测量的方法。 19世纪伟大的物理学家法拉第研究电磁场对光的影响,发现了磁场能改变偏振光的偏振方向。1896年荷兰物理学家塞曼(Pieter Zeeman )根据法拉第的想法,探测磁场对谱线的影响,发现钠双线在磁场中的分裂。 洛仑兹根据跟据经典电子论解释了分裂为三条的正常塞曼效应。由于研究这个效应,塞曼和洛仑兹共同获得了1902年的诺贝尔物理学奖。他们这一重要研究成就,有力的支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有了更多的了解。至今塞曼效应仍是研究原子能级结构的重要方法之一。 二 实验原理 当发光的光源置于足够强的外磁场中时,由于磁场的作用,使每条光谱线分裂成波长很靠近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。 正常塞曼效应谱线分裂为三条,而且两边的两条与中间的频率差正好等于mc eB π4/,可用经典理论给予很好的 解释。但实际上大多数谱线的分裂多于三条,谱线的裂矩是mc eB π4/的简单分数倍,称反常塞曼效应, 它不能用经典理论解释,只有量子理论才能得到满意的解释。 1. 原子的总磁矩与总动量距的关系 塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果。在忽略核磁矩的情况下,原子中电子的轨道磁矩L μ和自旋磁矩S μ合成原子的总磁矩μ,与电子的轨道角动量L P ,自旋 角动量 S P 合成总角动量J P 之间的关系,可用矢量图1来计算。 已知: L μ=L P m e )2/( L P π2h = )1(+L L (1) S S P m e )/(=μ s S P π 2h = )1(+S S (2) 式中L ,S 分别表示轨道量子数和自旋量子数,e ,m 分别为电子的电荷和质量。 由于L μ和L P 的比值不同于S μ和S P 的比值,因此,原子的总磁矩μ不在总角动量J P 的延长线上, 因此 μ 绕 J P 的延长线旋进。μ 只在 J P 方向上分量J μ对外的平均效果不为零,在进行矢量迭加运算后, 得到有效 J μ为:

2019_2020学年高中物理课时分层作业6康普顿效应及其解释(含解析)粤教版

课时分层作业(六) (时间:45分钟分值:100分) [基础达标练] 一、选择题(本题共8小题,每小题6分) 1.(多选)下列说法正确的是 ( ) A.概率波就是机械波 B.物质波是一种概率波 C.概率波和机械波的本质是一样的,都能发生干涉和衍射现象 D.在光的双缝干涉实验中,若有一个光子,则无法确定这个光子落在哪个点上 BD [机械波是振动在介质中的传播,而概率波是粒子所到达区域的机率大小可以通过波动的规律来确定,故其本质不同,A、C错,B对;由于光是一种概率波,光子落在哪个点上不能确定,D对.] 2.(多选)关于光的波粒二象性的理解正确的是( ) A.大量光子的行为往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 AD [波粒二象性是光的根本属性,光在传播时波动性显著,光与物质相互作用时粒子性显著,频率高的光粒子性显著,频率低的光波动性显著,B、C错误.] 3.(多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上.假设现在只让一个光子能通过单缝,那么该光子( ) A.一定落在中央亮纹处 B.可能落在亮纹处 C.可能落在暗纹处 D.落在中央亮纹处的可能性最大 BCD [根据光的概率波的概念,对于一个光子通过单缝落在何处,是不可确定的,但概率最大的是落在中央亮纹处,可达95%以上.当然也可能落在其他亮纹处,还可能落在暗纹处,只不过落在暗处的概率很小而已,故B、C、D正确.] 4.如图,当弧光灯发出的光经一狭缝后,在锌板上形成明暗相间的条纹,同时与锌板相连的验电器的铝箔有张角,则该实验( )

相对论问答录之二_赵峥

相对论问答录之二 赵峥 问题一、相对论诞生前夜,物理界对相对 性原理有什么争论? 麦克斯韦电磁理论出现之后,一些人对相对性原理产生了怀疑。这是因为在电磁理论中,真空中的电磁波速度是一个常数c。当时已经认识到光波就是电磁波,这就是说,麦克斯韦理论要求真空中的光速是一个常数。相对性原理要求所有物理规律在一切惯性系中都相同,电磁理论当然也不例外。这就要求所有惯性系中的光速都是同一个常数c。这和常识似乎大有抵触。从常识看,相对于光源静止的观测者测得的速度如果是c,那么迎着光束以速度v跑来的观测者测得的光束应该是(c+v),顺着光传播方向以速度v运动的观测者测得的光速应该是(c?v)。怎么可能这三个观测者测得的光速都是同一个常数c呢?因此,以当时最卓越的电磁专家洛伦兹为代表的学者主张放弃“相对性原理”,认为光速只在相对于绝对空间静止的那种惯性系中是c,也就是说光速只相对于绝对空间是c,对于众多的相对于绝对空间作匀速直线运动的惯性系,光速就不再是c了。从上述情况可以看出,在洛伦兹的脑海中,牛顿的绝对时空观占统治地位。 当时最卓越的数学家庞加莱(他同时也进行理论物理的教学与研究)认为相对性原理应该坚持。他多次对洛伦兹的观点提出批评和建议,并在爱因斯坦建立相对论的前后,正确、严格地表述了相对性原理。洛伦兹也在庞加莱的批评下对自己的理论作了一些修补,但他仍没有跳出绝对时空观的束缚。实际上,庞加莱本人也没有真正放弃绝对时空观,他一直相信“以太”理论,承认“以太”实质上就是承认“绝对空间”的存在。 从目前的史料看,爱因斯坦在建立相对论时深受马赫的影响,他似乎对洛伦兹和庞加莱的工作知之不多。爱因斯坦多次谈到马赫对自己的影响。正是马赫“一切运动都是相对的”,根本不存在“绝对 本文内容选自赵峥教授新书《相对论百问》,由北京师范大学出版社出版。空间”和“绝对运 动”的论述,以及 马赫对“以太”是 否存在的质疑(他 认为没有任何实验证明存在“以太”),使爱因斯坦坚信“相对性原理”是必须坚持的一条根本原理,是科学的一条“真理”,而以太理论是可以放弃的。问题二、星际飞船上的宇航员会看到什么景象? 感受到哪些相对论效应? 高速飞行的星际飞船上的宇航员会看到两种景象,一种是多普勒效应造成的,另一种是光行差效应造成的。 由于多普勒效应,飞船前方的星体射来的光会发生蓝移,后方和侧面星体射来的光会发生红移。因此,宇航员觉得前方的星体颜色变蓝,后方的星体颜色变红。侧面的星体由于横向多普勒效应,也会略微变红。 光行差效应会使宇航员觉得侧面的星体向正前方聚集,后面的星体移向自己的侧面。总之,正前方好像是一个“吸引”中心,随着飞船速度的增加,所有的星体都向那里集中,后方的星体越来越少。从地球起飞,正在远离太阳系的飞船上的宇航员,会觉得太阳系不在飞船的正后方,而在侧后方,飞船越接近光速,太阳系看起来越远离正后方,随着飞船速度的增加,太阳系从自己的侧面向侧前方移动。当飞船的速度非常接近光速时,他将看到太阳系处于自己的侧前方,飞船的后方已经没有任何星体了。飞船正在逃离太阳系,而在宇航员看来,太阳系不位于飞船的后方,而位于侧前方,这是多么奇妙的情景啊! 图1显示当宇宙飞船向北极星飞去时宇航员看到的景象。当飞船速度远小于光速时,宇航员看到的天象与地面上的人看到的相同,北极星位于正前方,北斗、仙后等星座围绕着它,南天的星座都看不到。当速度达到光速的一半时,飞行员前方的景象大大变化了,北极星周围的星座都在向中央趋近,挤到虚线范围以内,原来出现在飞船后面的天蝎座和天狼星(大犬座α星)也都进入前方的视野。当 DOI:10.13405/https://www.360docs.net/doc/1517006146.html,ki.xdwz.2010.05.003

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

高中物理第二章波粒二象性第三节康普顿效应及其解释教学案粤教版选修3_5

第三节康普顿效应及其解释 对应学生用书页码 1.用X射线照射物体时,一部分散射出来的X射线的波长会变长,这个现象称为康普顿效应。 2.按照经典电磁理论,散射前后光的频率不变,因而散射光的波长与入射光的波长相等,不应该出现波长变长的散射光。 3.光子不仅具有能量,其表达式为ε=hν,还具有动量,其表达式为p=h λ 。 4.一个光子与静止的电子(电子的速度相对光速而言可以忽略不计)发生弹性碰撞,光子把部分能量转移给了电子,能量由hν减小为hν′,因此频率减小,波长增大,同时光子还使电子获得一定的动量。 5.X射线的光子与晶体中的电子碰撞时要遵守能量守恒定律和动量守恒定律。 对应学生用书页码 1. 用X射线照射物体时,散射出来的X射线的波长会变长的现象称为康普顿效应。 2.康普顿效应的经典解释 单色电磁波作用于比波长尺寸小的带电粒子上时,引起受迫振动,向各方向辐射同频率的电磁波。 经典理论解释频率不变的一般散射可以,但对康普顿效应不能作出合理解释。 3.康普顿效应的光子理论解释 X射线为一些ε=hν的光子,与自由电子发生完全弹性碰撞,电子获得一部分能量,

散射的光子能量减少,频率减小,波长变长。 (1)光的散射是光在介质中与物质微粒的相互作用,使光的传播方向发生改变的现象。 (2)散射光中也有与入射光有相同波长的射线,这是由于光子与原子碰撞,原子质量很大,光子碰撞后,能量不变,故散射光频率不变。 科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子。假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中( ) A.能量守恒,动量守恒,且λ=λ′ B.能量不守恒,动量不守恒,且λ=λ′ C.能量守恒,动量守恒,且λ<λ′ D.能量守恒,动量守恒,且λ>λ′ 解析:能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界。 光子与电子碰撞时遵循这两个守恒定律。光子与电子碰撞前光子的能量ε=hν=h c λ ,当 光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量ε′=hν′=h c λ′ ,由ε>ε′,可知λ<λ′,选项C正确。 答案:C 对应学生用书页码 [例1] 频率为ν 光子将偏离原来的运动方向,这种现象称为光的散射。散射后的光子( ) A.虽改变原来的运动方向,但频率保持不变 B.光子将从电子处获得能量,因而频率将增大 C.散射后的光子运动方向将与电子运动方向在一条直线上,但方向相反 D.由于电子受到碰撞,散射后的光子频率低于入射光的频率 [解析] 能量守恒和动量守恒是自然界的普遍规律,不仅适用于宏观世界也适用于微观世界。由于碰撞后光子偏离原来的运动方向,根据动量守恒可得散射后光子运动方向与电子运动方向一定不在同一直线上,选项C错。碰撞过程中光子把一部分能量转移给了电子,光子能量减小,由光子能量公式ε=hν可知,光子频率减小,故选项A、B错D对。 [答案] D

名词解释

2012年考的名词解释 拱线东移: 光行差 2013年考的名词解释 食限 周年视差 太阳潮 白夜 交点西移 名词解释(by myself) 第一章 ●天球;以地心为球心半径为任意的假想球体,表示天体视运动的辅助工具(整球和圆球, 分地心天球和日心天球) ●天穹:地平以上的半个天球(半球和扁球) ●天球周日运动:天体自东向西以一天为周期在天球上运动(是一种视运动) ●太阳周年运动:太阳自西向东以一年为周期在众星间巡天一周 ●黄道:地球公转的轨道平面无限扩大,同天球相割而成的天球大圆。(太阳周年运动的 视行路线) ●天赤道:地球赤道平面的无限扩大,同天球相割而成的天球大圆 ●地平圈:通过地心并且垂直于当地铅垂线的平面的无限扩大,同天球相割而成的天球大 圆 ●岁差(交点退行):地球自转轴的进动引起春分点位移的现象。 第二章 ●绝对星等:在标准距离(10秒差距)下恒星的亮度 ●太阳常数:地面上单位面积每分钟所接受的太阳热量(8.16J/(cm^2*min)) ●太阳大气:因高温电离成等离子体(书中指可以直接观测的外部层次) ●太阳风:由于日冕高速膨胀,行星际空间不断得到从太阳喷发出来的高速粒子流 ●黑子:出现在太阳明亮光盘上的暗色斑点 ●太阳活动周期:黑子盛衰的11年周期(盛:峰年;衰:谷年) ●光斑:光球上明亮的斑点 ●耀斑(色球爆发):太阳大气极小区域内发生的爆发性能量释放现象 ●日珥:色球不断喷射的火焰状物质 ●磁暴:高能粒子流到达地球附近扰乱地球磁场的现象 ●太阳温度:分为有效温度和辐射温度 ●有效温度:根据太阳辐射热量推算的温度

●辐射温度:根据太阳辐射光谱测定的温度 ●彗星:在偏心率很大的轨道上绕日运行的冰物质 ●视差:从天体到基线两端的连线所夹的角,即地球半径对该天体所张的角(当天体位于 地平时该张角最大,成为地平视差) ●白道:月球轨道在天球上的投影 ●同步自转:月球绕地球公转的方向和周期与它本身自转的方向和周期相同 第三章 ●极动:南北两极在地面上的移动 ●地轴进动:地轴绕黄轴的圆锥形运动 ●地转偏向力(科里奥利力):地平方向上正方向的偏转(宇宙空间上没发生偏转,是一 种视力,真实不存在) ●恒星周年视差(年视差):当日地连线垂直于星地连线是,视差位移达到最大值,此最 大值成为该恒星的周年视差 ●1秒差距:走年视差为一秒的恒星的距离 ●光行差:地球上观测者所见到的天体方向对真实方向的偏差 ●光行差位移:视方向与真方向之间的偏差(视方向是光速与地球公转速度的合方向)●中距点:地球轨道短轴的两端 ●行星合日:行星和太阳的黄经相等(两者位于地球的同一侧),即行星和太阳会合 ●大距:星地连线和日地连线的夹角达到最大值时的点 ●方照:星地连线与日地连线夹角成九十度 ●顺行:行星在恒星间自西向东运动 ●逆行:当行星在其轨道上接近地球的时候(地内:下合;地外:冲),行星在天球上的 运动转变为自东向西 ●留:行星在恒星间停滞不动 第四章 ●晨昏蒙影(晨光和昏影的合称【暮曙光】):昼夜交替的过渡时期(高空大气对太阳光的 反射和散射的结果) ●白夜:高纬度地区出现的昏影未终、晨光已始的现象(夏至日时,48.5度以上) ●太阳高度:太阳对于地平的高度角 ●物理时刻:时刻本身,表示迟早程度 ●钟表时刻:物理时刻的表达形式 ●历法:观象授时的经验总结 ●平太阳秒:全年中所有真太阳日的平均长度的86400分之一 ●历书秒:1900年1月0日1时正回归年长度的1/31556925.9747 ●原子秒:铯原子跃迁震荡9192631770周所经历的时间 ●恒星时:春分点时角 ●太阳时:太阳时角推算的时间

Zeeman效应的理论解释

Zeeman 效应的理论解释 摘要: 关于塞曼效应的解释,可以采用经典理论、半经典半量子理论和量子理 论等多种方法进行解释.但是经典理论解释不涉及能量性质问题,也就未能反映原子内部客观本质,所以此法不宜采用.半经典半量子理论和量子理论解释塞曼效应,都反映了能量是量子化的,塞曼效应是原子能级在磁场作用下分裂,引起不同能级间(按选择定则)跃迁而发射不同频率的谱线.直接反映了原子内部本质. 关键词:经典理论,半经典半量子理论,量子理论,反常塞曼效应 1.引言:原子处在恒定外磁场中,它的光谱线常常发生复杂的分裂,且谱线间的 裂距正比于磁场强度,且谱线各分量有特殊的偏振和方向特性,这就是光谱的塞曼效应.根据谱线的分裂情况又可分为以下两种:相应于单态谱线在外磁场中的分裂称为正常塞曼效应;相应于非单态谱线在外磁场中的分裂称为反常塞曼效应. 2.塞曼效应的经典理论解释到量子理论解释 下面用经典理论,半经典半量子理论和量子理论三种方法对塞曼效应进行解释,并讨论其异同及结果的含义. 2.1.塞曼效应的经典理论 在氢原子或类氢原子中,核外电子处在磁感应强度为B 的均匀静磁场中,当它处在r 轨道时,受原子核对它的作用力为2 0=-F m r ω,这里 2 2 02 +z=0-(- )=0 d z eB dx dt m dt ω

是它在r 轨道上的固有圆频率,设电子绕核运动的速率v c ,即0eB m ω 时,并且 辐射阻尼力可略去,这时电子运动状态和它沿磁场方向和垂直于磁场方向发生的辐射的频率和偏振状态可求出. 根据电子运动过程中受核作用和磁场的作用可知,电子的运动方程为 2 2 02=-+(-e )B d r dr m m r dt dt ω? (1.1) 以电子的平衡点为原点取笛卡儿坐标系,使z 轴沿B 的方向,则上式的三个分量应为 2 2 02+x-(- )=0d x eB dy dt m dt ω (1.2) 22 02 +y-(- )=0d y eB dx dt m dt ω (1.3) 22 02 +z=0d z dt ω (1.4) 对(1.2)、(1.3)两式,我们求得下列形式的解 -=i t x ae ω (1.5) -y='i t a e ω (1.6) 式中'a ,a 是任意常数,ω为待定常数,下面先求ω,现将(1.5)和(1.6)代入(1.2)和(1.3)两式得 220(-)a+(-a')=0ieB m ωωω (1.7) 220(-)a'+=0 ieB m ω ωω (1.8) 由(1.7)和(1.8)得 2222 0(-)=(-) ieB m ωωω (1.9) 所以

第三节康普顿效应及其解释(精)

第三节康普顿效应及其解释 基础知识 1.用X射线照射物体时,散射出的X射线的波长会,这个现象称为. 2.康普顿效应再次证明了爱因斯坦光子假说的,它不仅证明了光子具有能量,同时还证明了光子具有. 典型例题 λ=1埃的光子做康普顿实验.求: 例1用波长 (1)散射角?=90°的康普顿散射波长是多少? (2)分配给这个反冲电子的动能是多大? 答案:(1)1.024×10-10 m (2)291 eV 例2在康普顿散射中,入射光子波长为0.03 ?,反冲电子的速度为0.6c,求散射光子的波长及散射角. 答案:0.043? 62.3° 基础练习 1.用强度为I、波长为λ的X射线(伦琴射线)分别照射锂(z=3)和铁(z=26),若在同一散射角下测得康普顿散射的X射线波长分别为和Fe(、>λ),它们对应的强度分别为I 和I ,则 ( ) A.λLi>λFe,λLi <λFe B.λLi=λFe,λLi=λFe C.λLi=λFe,λLi >λFe D.λLi<λFe,λLi >λFe 2.已知x光子的能量为0.6 MeV,在康普顿散射后,波长变化了20%,求反冲电子的能量。 3.波长为0.708A的x射线在石蜡上受到康普顿散射,求在90°和l80°方向上所散射的x射线波长各是多少? 4.X射线散射后波长会改变,是由于X射线光子和物质中电子的结果. 能力测试 5现有(1)波长为4 000 A的可见光;(2)波长为1 A的X射线束;(3)波长为1.88×10-2 A的γ射线束与自由电子碰撞,如从与入射角成90°角的方向去观察散射辐射,问每种情况下 (a)康普顿波长改变多少? (b)该波长改变与原波长的比值为多少? 1

塞曼效应实验讲义

塞曼效应讲义 教学方式及时间安排 讲解与实际操作,讲解35-45分钟,操作指导20分钟,学生动手操作120分钟,共200 分钟,4个学时。 一、实验的目的: 1.过观查塞曼效应现象,了解塞曼效应是由于电子的轨道磁矩与自旋磁矩共同受到外磁 场作用而产生的。证实了原子具有磁矩和空间取向量子化的现象,进一步认识原子的内部结 构。并把实验结果和理论进行比较。 2.掌握法布里—珀罗标准具的原理和使用,了解使用CCD 及多媒体计算机进行实验图 象测量的方法。 19世纪伟大的物理学家法拉第研究电磁场对光的影响,发现了磁场能改变偏振光的偏 振方向。1896年荷兰物理学家塞曼(Pieter Zeeman )根据法拉第的想法,探测磁场对谱线 的影响,发现钠双线在磁场中的分裂。 洛仑兹跟据经典电子论解释了分裂为三条的正常塞 曼效应。由于研究这个效应,塞曼和洛仑兹共同获得了1902年的诺贝尔物理学奖。他们这 一重要研究成就,有力的支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有 了更多的了解。至今塞曼效应仍是研究能级结构的重要方法之一。 一、塞曼效应的原理 当发光的光源置于足够强的外磁场中时,由于磁场的作用,使每条光谱线分裂成波长很 靠近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。 正常塞曼效应谱线分裂为三条,而且两边的两条与中间的频率差正好等于eB/4πmc ,可用经 典理论给予很好的解释。但实际上大多数谱线的分裂多于三条,谱线的裂矩是eB/4πmc 的 简单分数倍,称反常塞曼效应,它不能用经典理论解释,只有量子理论才能得到满意的解释。 1.原子的总磁矩与总动量距的关系 塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果。在 忽略核磁矩的情况下,原子中电子的轨道磁矩μL 和自旋磁矩μS 合成原子的总磁矩μ,与电子 的轨道角动量P L ,自旋角动量P S 合成总角动量P J 之间的关系,可用矢量图1来计算。 已知: μL =(e /2m )P L P L = π 2h )1(+L L (1) μS =(e/m )p s P S =π2h )1(+S S (2) 式中L, S 分别表示轨道量子数和自旋量子数,e, m 分别为电子的电荷和质量。 由于μL 和P L 的比值不同于μS 和P S 的比值,因此,原子的总磁矩μ不在总角动量P J 的延 长线上,因此μ绕P J 的延线旋进。μ只在P J 方向上分量μJ 对外的平均效果不为零,在进行矢 量迭加运算后,得到有效μJ 为: J μ=g m e 2P J (3) 其中g 为朗德因子,对于LS 耦合情况下 g=1+ )1(2)1()1()1(++++-+J J S S L L J J (4)

新课标粤教版3-5选修三2.3《康普顿效应及其解释》WORD教案2

第二章波粒二象性 第三节 康普顿效应及其解释 学案 【学习目标】 (1)了解什么是康普顿效应。 (2)知道光子是具有动量的,并了解光子动量的表达式。 (3)了解康普顿效应用光的电磁理论解释遇到的困难,了解康普顿是如何解释康普顿效应的。 【学习重点】 康普顿效应及其解释 【自主学习】 1、用X 射线照射物体时,一部分散射出来的X 射线的波长会 ,这个现象称为康普顿效应。 2、按经典电磁理论,散射前后光的频率 ,因而散射光的波长与入射光的波长 ,不应该出现波长 的散射光。 3、光子不仅具有能量,其表达式为 ,还具有 ,其表达式为 。 4、一个光子与静止的电子(电子的速度相对光速而言可以忽略不计)发生弹性碰撞,光子把部分能量转移给了电子,能量由h ν减小为h ν’,因此频率 ,波长 ,同时光子还使电子获得一定的 。 5、X 射线的光子与晶体中的电子碰撞时要遵守 定律和 定律。 【知识要点】 康普顿效应 (1)光的散射:光在介质中与物质微粒相互作用, 因而传播方向发生改变,这种现象叫做光的散射。 (2)康普顿效应 1923年康普顿在做 X 射线通过物质散射的 实验时,发现散射线中除有与入射线波长相同的 射线外,还有比入射线波长更长的射线,其波长 的改变量与散射角有关,而与入射线波长和散射 物质都无关。 例题1:频率为v 的光子,具有的能量为hv ,将这个光子打在处于静止状态的电子上,光子将偏离原来的运动方向,这种现象称为光的散射,散射后的光子( ) A 虽改变原来的运动方向,但频率保持不变; B 光子将从电子处获得能量,因而频率将增大; C 散射后的光子运动方向将与电子运动方向在一条直线上,但方向相反; D 由于电子受到碰撞,散射后的光子频率低于入射光的频率 (3)康普顿散射的实验装置与规律: 按经典电磁理论:如果入射X 光是某种波长的电磁波,散射光的波长是不会改变的!散射中出现0λλ≠的现象,称为康普顿散射。 康普顿散射曲线的特点:

相关文档
最新文档