初中数学思维导图-平行四边形章节-特殊的平行四边形矩形的思维导图
【典例精讲】第5讲 平行四边形和梯形-四年级上册数学精品讲义(思维导图+

第5讲平行四边形和梯形(思维导图+学问梳理+例题精讲+易错专练)一、思维导图二、学问点梳理学问点一:平行与垂直1.平行同一平面内不相交的两条直线叫做平行线。
直线a是直线b的平行线,直线a与b相互平行,记作a∥b,或者b∥a 2.垂直两条直线相交成直角,就说这两条直线相互垂直。
直线a是直线b的垂线,交点叫做垂足,记作a⊥b,或者b⊥a垂线的画法:用三角尺画已知直线的垂线比较便利,先把三角尺的一条直角边与已知直线重合,再沿着另一条直角边化一条直线,这条直线就是已知直线的垂线。
学问点二:平行四边形1.两组对边分别平行且相等的四边形叫做平行四边形。
2.常见的四边形有桌子、柜子、地砖、床、书本、打印纸等。
3.从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形高,垂足所在的边叫做平行四边形的底。
4.通过动手操作,我们发觉平行四边形简洁变形。
5.长方形和正方形是特殊的平行四边形。
学问点三:梯形1.只有一组对边平行的四边形叫做梯形。
2.两腰相等的梯形叫等腰梯形,有一个角是直角的梯形叫直角形。
3.梯形中,平行的一组对边叫做梯形的上底和下底,不平行的一组对边叫做梯形的腰。
4.一个平行四边形能分成两个完全一样的梯形。
学问点四:四边形之间的关系长方形、正方形是特殊的平行四边形。
三、例题精讲考点一:平行与垂直【典型一】关于下图,下列说法错误的是()。
A.直线a比直线c短B.直线a与直线b不平行C.直线c与直线d之间距离都相等D.直线c与直线d都垂直于直线a【分析】依据题意,直线无法测量长度;直线a与直线b不平行;平行线间的距离处处相等,因此直线c与直线d之间距离都相等;直线c与直线d都垂直于直线a,据此推断即可。
【详解】A.直线无法测量长度,所以直线a比直线c短,说法错误;B.直线a与直线b能相交,故不平行;C.直线c与直线d相互平行,所以它们之间距离都相等;D.直线c与直线d都垂直于直线a。
初中数学知识点思维导图

第八章
反比例函数
反比例函数图像与性质
1、反比例函数的定义
2、反比例函数的图像与对称性
3、反比例函数的性质
4、系数k的几何意义
5、反比例函数图像上点的坐标特征
6、待定系数法求反比例函数解析式
7、反比例函数与一次函数父点问题
反比例函数的应用
反比例函数的应用
从统计图分析数据的几种
趋势
3、扇形、条形、折线统计图及其选择
3、一次函数与一元一次方程
4、依据实际问题列一次函数关系式
一次函数的图像
1、一次函数、正比例函数的图像与性质
2、一次函数图像与系数的关系
3、一次函数图像上点的坐标特点
4、一次函数图像与几何变换
一次函数的应用
一次函数的应用与综合题
多边形与圆的初步认识
4、多边形与多边形的对角线
5、圆的认识〔圆心角、弧、弦的关系〕
1、轴对称的性质
2、轴对称--最短路径问题
3、翻折变换〔折叠问题〕
简单的轴对称图形
1、角平分线性质
2、线段垂直平分线的性质
3、等腰三角形的性质与判定
4、等边三角形的性质与判定
第八章概率初步
感受可能性
1、随机事件
2、可能性的大小
频率的稳定性
利用频率估量概率
等可能事件的概率
1、概率的意义、公式
2、几何概率
6、扇形面积的计算
第五章二元次方程组
认识二元次方程组
1、二兀一次防尘的定义、解
2、解二兀次方程
3、二元一次方程组的定义、解
求解二元次方程
1、解二兀一次方程组
2、同解方程组
二兀次方程的应用
1、鸡兔同笼
人教版八年级数学下册知识点第十八章《平行四边形》

第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。
表示:平行四边形用“□”表示。
2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。
的顺序依次排列。
点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。
平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。
如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。
∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。
初中数学思维导图

如果遇到括号先去括号,再合并同类项。 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。 单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再 把所得的积相加。 多项式与多项式相乘,先用多项式的每一项去乘另一个多项式的每一项, 再把所得的积相加。 单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被 除式里含有的字母,连同它的指数一起作为商的一个因式。 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得 的商相加。
1、两角对应相等的两个三角形是相似; 2、三边对应成比例的两个三角形相似; 3、两边对应成比例且夹角相等的两个三角形相似。 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个 点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相 似比又叫位似比。 位似图形上任意一对对应点到位似中心的距离之比等于位似比。 利用概念判断 平面上到顶点的距离等于定长的所有点组成的图形叫做圆,定点称为圆 心,定长称为半径。以点O为圆心的圆记做"⊙O",读作“圆O”。
如果点C把线段AB分成一长一短两条线段AC和BC,并且AC/AB=BC/AC,则称线 段AB被点C黄金分割,点C叫做黄金分割点,AC与AB的比叫做黄金比,即 (√5-1)/2(≈0.61803398874989...)。 各角对应相等、各边对应成比例的两个多边形叫做相似多边形。 1、相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相 似比; 2、相似多边形周长的比等于相似比,面积的比等于相似比的平方。 利用概念判断 三角对应相等、三边对应成比例的两个三角形是相似三角形。
初二数学第四章知识点初二数学第四章思维导图

初二数学第四章知识点初二数学第四章思维导图一、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360。
四边形的外角和定理:四边形的外角和等于360。
推论:多边形的内角和定理:n边形的内角和等于180多边形的外角和定理:任意多边形的外角和等于360。
6、设多边形的边数为n,则多边形的对角线共有条。
从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
二、平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积S平行四边形=底边长高=ah三、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
初中数学《特殊平行四边形》单元教学设计以及思维导图

特殊平行四边形主题单元教学设计主题单元学习目标知识与技能:理解平行四边形是中心对称图形,矩形、菱形、正方形都具有这样的特征矩形、菱形、正方形作为特殊的平行四边形,不仅具有平行四边形的特征,还分别具有各自的特征,而且它们都是轴对称图形.掌握特殊平行四边形的性质和判定,并能运用有关知识进行推理证明和计算边、角、对角线及面积;通过知识的综合应用的说理,初步培养学生的逻辑思维能力.过程与方法:通过探索、归纳几类特殊四边形的特征和识别,了解它们之间的包含关系;让学生在探索知识之间的相互联系及应用的过程中,体验推理的方法和技巧,获取推理的经验;通过探索,进行观察、猜想、分析、归纳、推理,培养学生发散思维能力;同时提高学生分析问题,解决问题的能力;情感态度与价值观:通过基础题和探究题体验数学活动的逻辑性和趣味性,同时增强解题的自信心;对应课标1.理解平行四边形、矩形、菱形、正方形的概念,以及他们之间的关系2.探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。
四边相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。
正方形具有矩形和菱形的一切性质主题单元问题设计1.矩形、菱形、正方形的定义2.矩形的边、角、对角线有怎样的特征?矩形有怎样的性质?3.菱形的边、角、对角线有怎样的特征?菱形有怎样的性质?怎样的性质?5. 如何判断一个平行四边形是矩形?6. 如何判断一个四边形是矩形?7. 矩形的判定?所需教学材料和资源信息化资源PPT , 几何画板课件常规资源作图工具(直尺、三角板、圆规等)教学支撑环境多媒体教室,几何画板软件其他纸笔等学习活动设计第一课时矩形的性质活动一:说说生活中的矩形【活动步骤】1.结合图,回顾矩形定义2.举出几个生活中矩形的例子.活动二:探索矩形的一般性质(即平行四边形所有性质)【技术应用】在PPT中动态演示菱形活动4:认识菱形【活动步骤】教师点拨:1.菱形是中心对称图形么?是轴对称图形么?【技术应用】几何画板演示菱形的中心对称和轴对称性活动5:探究菱形性质1.菱形的边有什么特性?菱形的角有什么特性?菱形的对角线有什么特性?活动三:推导菱形判定定理【活动步骤】1.写出命题2.思考:证明命题的步骤3.推理得出菱形的判定定理【技术应用】使用专门制作的几何画板课件探究、演示.第三课时(课外)折叠菱形活动一:折一折剪一剪1.如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?2.组内交流活动二:展示成果1.作品展示交流.2.说明下面这问同学剪法的依据。
初中数学《平行四边形》单元教学设计以及思维导图

平行四边形适用年八年级级所需时(说明:课内共用3课时,每周5课时;课外共用3课时)间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 本主题单元是在学生已经学习了三角形相关知识、平行四边形的定义的基础上进行学习的,在教学内容中起着承上启下的作用,“承上”:定理的证明是三角形全等知识、平行线知识的再应用;“启下”:平行四边形的性质和判定定理以及探究的模式为进一步学习特殊四边形奠定了基础。
本主题单元包括两个专题:专题一:平行四边形的性质;专题二:平行四边形的判定。
平行四边形的性质定理和判定定理是两个互逆的定理,定理的证明方法都用到了三角形全等的知识。
通过合作探究,测量、计算、对折剪开、旋转、平移、推理等探索定理证明的不同思路和方法,运用定理解决较简单的问题;归纳、总结解决四边形问题的常用数学方法;进行适当的比较和讨论,渗透化归思想和数学建模思想,从而形成知识体系。
主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能。
)主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:了解、掌握平行四边形的概念、性质,掌握中心对称性质特点,熟练掌握平行四边形的判定过程与方法:通过对解决问题的反思,获得解决问题的经验,掌握解决问题的方法从边、角、对角线的关系来概括和总结性质、和判定,体验通过数学活动掌握平行四边形的四种判定方法情感和态度:通过个人参与数学活动发现解决问题的过程,通过小组合作交流,体验合作快乐对应课标(说明:学科课程标准对本单元学习的要求)1.有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
2. 教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
初二数学第四章知识点 初二数学第四章思维导图

初二数学第四章知识点初二数学第四章思维导图一、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360。
四边形的外角和定理:四边形的外角和等于360。
推论:多边形的内角和定理:n边形的内角和等于180多边形的外角和定理:任意多边形的外角和等于360。
6、设多边形的边数为n,则多边形的对角线共有条。
从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
二、平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积S平行四边形=底边长高=ah三、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。