实验十二 压电陶瓷压电性能测定

合集下载

压电陶瓷性能实验报告

压电陶瓷性能实验报告

一、实验目的1. 了解压电陶瓷的基本性能、结构、用途、制备方法。

2. 掌握压电陶瓷常见的表征方法及检测手段。

3. 通过实验,掌握压电陶瓷的性能测试方法,并对实验数据进行处理和分析。

二、实验原理压电陶瓷是一种具有压电效应的陶瓷材料,当受到外力作用时,会在其表面产生电荷;反之,当施加电场时,压电陶瓷会产生形变。

压电陶瓷的性能主要包括压电系数、介电常数、损耗角正切、机械品质因数等。

三、实验材料与仪器1. 实验材料:压电陶瓷样品2. 实验仪器:(1)电容测微仪(2)机械标定仪(3)直流电源(4)扫描隧道显微镜(5)谐振法测定仪(6)准静态法测定仪四、实验步骤1. 样品准备:将压电陶瓷样品清洗干净,并用无水乙醇进行脱脂处理。

2. 压电陶瓷性能测试:(1)电容测微仪测试:将压电陶瓷样品固定在电容测微仪上,通过改变直流电压,观察样品的轴向变形和弯曲变形。

(2)谐振法测定:将压电陶瓷样品固定在谐振法测定仪上,测量样品的频率响应曲线和压电耦合系数。

(3)准静态法测定:将压电陶瓷样品固定在准静态法测定仪上,测量样品的压电常数d33。

3. 数据处理与分析:将实验数据输入计算机,进行数据处理和分析,得出压电陶瓷的性能参数。

五、实验结果与分析1. 电容测微仪测试结果:通过电容测微仪测试,得出压电陶瓷样品的轴向变形和弯曲变形与电压的关系曲线。

根据曲线,计算出样品的压电系数。

2. 谐振法测定结果:通过谐振法测定,得出压电陶瓷样品的频率响应曲线和压电耦合系数。

根据曲线,计算出样品的介电常数和损耗角正切。

3. 准静态法测定结果:通过准静态法测定,得出压电陶瓷样品的压电常数d33。

根据测定结果,分析样品的压电性能。

六、实验结论1. 压电陶瓷样品具有良好的压电性能,满足实验要求。

2. 实验过程中,通过电容测微仪、谐振法测定和准静态法测定,分别获得了压电陶瓷样品的轴向变形、弯曲变形、频率响应曲线、压电耦合系数、介电常数、损耗角正切和压电常数等性能参数。

压电陶瓷测量原理

压电陶瓷测量原理

枸杞子和大枣泡水有什么功效
在平时的生活中很多人在喝水的时候都会放上几颗红枣和
枸杞,尤其是女性朋友,这样不仅可以使得水更加的清香,而且红枣和枸杞对于女性可是一个好东西,枸杞性温,红枣补血,两者结合是再好不过了,所以女性朋友在平时可以多喝一些,那么枸杞子和大枣泡水有什么功效呢?
它的确拥有两者任何一种单用来泡水的功效的两倍多。

枸杞红枣茶是一款非常简单有效的养生美肤茶,尤其适合经常熬夜的朋友饮用。

它对淡化黑眼圈,红润面色有很好的效果,还能很好的改善手脚冰凉的状况。

养肝明目、润肺滋阴、补肾益精、健脾益胃:脾胃虚弱、腹泻、对倦怠无力的人、保肝、益发、补血、头晕耳鸣、视力减退、增加食欲、失眠、气血不足、脾胃虚寒、畏寒怕冷、胃肠消化不良(促进消化)、口干舌燥、便秘和止泻(双重功效)、对熬夜的人(会有好气色)、使皮肤白嫩,有光泽,有口臭的人、不易生痘痘、痤疮、疮疖,对情绪有很好的功效、还能抗衰老、延年益寿等等。

以上就是关于枸杞子和大枣泡水的一个功效的介绍,如果长期喝枸杞红枣水的话,是可以达到上面的功效的,不过需要提醒
大家的是,千万不要以为对身体好久没有节制的饮用,这样不仅没功效,还很容易会出现上火的症状。

压电陶瓷电特性测试与分析

压电陶瓷电特性测试与分析

摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。

通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。

关键词:压电陶瓷;等效电路模型;电特性;可靠性0 引言压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。

它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。

与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。

利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。

通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。

为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。

我国对生态环境的保护也是相当重视的。

因此,近年来对无铅压电陶瓷进行了重点发展和开发。

但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。

因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。

本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。

1 测量参数和实验方法依据目前我国现有的关于压电陶瓷材料的测试标准主要有以下:GB/T 3389-2008 压电陶瓷材料性能测试方法GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法GB/T 16304-1996 压电陶瓷电场应变特性测试方法GB 11387-89 压电陶瓷材料静态弯曲强度试验方法GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)GB 11312-89 压电陶瓷材料和压电晶体声表面波性能测试方法GB 11310-89 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试压电陶瓷蜂鸣片由一块两面印刷有电极的压电陶瓷板和一块金属板(黄铜或不锈钢等)组成。

压电陶瓷压力与应电压曲线测试分析

压电陶瓷压力与应电压曲线测试分析
4、通过改变输入信号的频率和振幅,重复上述实验过程,得到一系列实验 数据;
5、根据实验数据,计算压电陶瓷片的压电常数等参数。
参考内容二
引言
压电陶瓷是一种具有特殊电学性质的陶瓷材料,具有广泛的应用前景,如超 声波探测、医学成像、传感测量等领域。为了更好地发挥压电陶瓷的特性,本次 演示将对压电陶瓷的特性进行详细分析,并通过实验测试探究其性能表现。
实验测试
为了验证压电陶瓷的特性,我们设计了一系列实验测试。首先,我们选取了 一种常见的压电陶瓷材料,按照一定比例制备成试样。接着,我们对试样进行了 静电力学测试,以评估其压电性能。实验过程中,我们将试样置于应变模式下, 通过调节电压,观察试样的形变情况。同时,我们用万用表测量了试样的电阻值, 以评估其绝缘性能。
背景
压电陶瓷是一种可产生压电效应的陶瓷材料。压电效应是指材料在受到机械 应力作用时,会产生电荷,形成电场;或者在电场作用下,会产生机械形变。压 电陶瓷的这种特性使得它成为一种重要的电子材料,可用于各种能量转换和传感 应用。
特性分析
1、特点
压电陶瓷具有许多特点,如高灵敏度、高分辨率、低噪声等。这些特点使得 压电陶瓷在许多领域中具有独特的应用优势。此外,压电陶瓷的响应时间快、温 度稳定性好,可适用于各种复杂环境。
3、通过对比不同温度下的测试结果,发现温度对压电陶瓷材料的压电性能 也有一定影响,高温条件下材料的压电性能会有所提高。
4、在相同压力下,材料的应电压会随着温度的升高而降低,这可能是由于 高温下材料的热膨胀系数发生变化所致。
参考内容
引言
压电陶瓷片是一种具有压电特性的无机非金属材料,具有优异的机电耦合性 能和频率稳定性。压电陶瓷片的压电特性是指其在受到机械应力时会产生电场, 反之,在电场作用下会产生机械形变。这种特性被广泛应用于超声波换能器、振 动传感器、音频设备等众多领域。本次演示将介绍一种测试与分析压电陶瓷片压 电特性的方法,以期为相关领域的研究与应用提供参考。

压电陶瓷测量原理

压电陶瓷测量原理

压电陶瓷及其测量原理近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。

由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。

同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。

(一)压电陶瓷得主要性能及参数(1)压电效应与压电陶瓷在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。

这两种正、逆压电效应统称为压电效应。

晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。

在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。

(2)压电陶瓷得主要参数1、介质损耗介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。

在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。

介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时)2、机械品质因数机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。

机械品质因数越大,能量得损耗越小。

产生能量损耗得原因在于材料得内部摩擦。

机械品质因数得定义为:机械品质因数可根据等效电路计算而得式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。

压电陶瓷实验报告

压电陶瓷实验报告

压电陶瓷微位移性能测量实验报告一、实验目的:1、了解压电陶瓷的性能参数;2、了解电容测微仪的工作原理,掌握电容测微仪的标定方法;3、掌握压电陶瓷微位移测量方法;二、实验仪器:电容测微仪一台:型号JDC-2000测微台架一台:型号BCT-5C,斜度1:50直流调压器一台:电压量程(0~300V)标定平铁板一块压电陶瓷管一根三、实验原理:(一)利用测微台架标定电容测微仪在测微台架的台架上放置一金属平板,将电容测微仪探头用测微台架夹紧,使探头的端面与平板平行,见图1,移动测微台架的旋钮,分别读出测微仪移动示值和电容测微仪的示值。

这样得到一组数据即可对电容测微仪进行标定。

图1 电容侧微仪标定原理图(二)用标定后的电容测微仪测量压电陶瓷管的线性度在电容测微仪的线性区(对应机械标定仪的某个位置),通过可调直流电源按一定间隔改变直流电压(见图2),分别对压电陶瓷加压,使之分别产生轴向变形(见图3)和弯曲变形(见图4),从而得到压电陶瓷的伸长与偏转量与施加其上的电压的关系。

图2 可调高压电源图3 测压电陶瓷轴向伸缩图4测压电陶瓷侧向弯曲四、实验步骤(一)标定电容测微仪的线性度1、实验前,了解实验原理及其实验注意事项,并检查实验仪器是否齐全。

2、使用仪器前,将传感器端面与被测物(标定平铁板)表面用汽油认真清洗干净,以清洗掉杂质及灰尘微粒;而后将电源线和传感器与电缆分别连接好并拧紧。

3、将标定平铁板安放在测微台架的台架上,而后用夹具将电容传感器探头夹紧,接着上下调整探头使探头与标定平铁板距离接近测量区。

4、为便于进行数据分析,可将测微台架示值调至某一合适值,并将电容测微仪示值调零,而后进行实验;实验采用一人细调(等间距)测微台架,另一人记录的方式,为了标定线性区,测定线性误差,调值采用先等间距调至140μm,再等间距调回的方法。

(为了节约时间,调值范围为0~140μm,调值间距为5μm,共计读29个数。

)5、实验完成后,调整测微台架使探头远离标定平板到合适位置,取下标定平板(并估算找出电容测微仪的线性工作区,我们找的较为好的线性工作区是0~100μm)以进行压电陶瓷的性能及其微位移测量的实验。

压电陶瓷片压电特性的测试与分析

压电陶瓷片压电特性的测试与分析

1 概述振动在周围环境中无处不在,振动机械能不仅是一种较普遍的能源形式,而且该能源是一种清洁的能源,如果可以将这些振动形式的能量转换为电能加以收集存储供随后使用,就可以将这种取之不尽的能源用于实际的工程当中,解决一些能源问题[1]。

目前微机电技术、材料科学、微电子技术、计算机技术等各领域科技最近几年得到快速发展,使得研究对象和产品结构和部件的尺寸变得越来越小,同时需求量变得越来越大,使得精密仪器对特殊形状的压电陶瓷片需求越来越多,压电陶瓷的应用形式也越来越广[2]。

本文将在不同外界压力作用下,对压电陶瓷元件的电气参数进行测试与分析。

2 压电陶瓷性能简介目前国内外已有对压电陶瓷压电特性进行的研究,并取得了一定成果。

1880年Pierre Curie 和Jacques Curie 在实验中发现了压电效应(在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,由机械效应转化为电效应),1881年他们又通过实验验证了逆压电效应(加反向电场,陶瓷片沿极化方向缩短。

这种由于电效应转变成机械效应的现象是逆压电效应)的存在[3]。

压电陶瓷的力输出特性和其位移输出特性是分不开的,针对电陶瓷的位移输出特性,1998年,哈工大张涛等在论文中提出陶瓷是具有有限刚度的弹性体,在受到外力后要被压缩。

压电陶瓷位移输出和电压之间的关系是:随电压增大,位移输出也增大,力输出和位移输出的关系是;随位移输出的增大,力输出减小[4,5]。

压陶瓷的输出力和位移的关系曲线表明在空载的情况下压电陶瓷的输出位移为最大输出位移,在最大输出力的作用下,压电陶瓷的位移输出将为零[6]。

由于迟滞、蠕变等因素的影响,难以用一种统一的数学模型来准确的描述它[7]常见的描述有Preisach 模型[8-9]Prandtle-Ishlinskii 模型[10-11],Maxwell 模型[12] 。

是从现象的角度描述其位移输出特性。

因此受到位移输出复杂性的影响,其力输出特性的描述也变的相当的复杂。

材料物理-性能测试实验之压电陶瓷的压电性能测量

材料物理-性能测试实验之压电陶瓷的压电性能测量

实验一 压电陶瓷的压电性能测量一、实验目的1. 了解压电陶瓷元件的电性能参数2. 掌握压电应变常数d 33的测试原理和测试技术3. 掌握谐振法测定压电振子的频率响应曲线及压电耦合系数的测试原理的方法 二.实验原理压电陶瓷元件在极化后的初始阶段,压电性能要发生一些较明显的变化,随着极化后时间的增长,性能越来越稳定,变化量也越来越小,所以,试样应存放一定时间后再进行电性能的测试。

一般最好存放10天。

按压电方程,其压电材料的d 33常数定义为:T E E S T D d )()(333333== 此处,D 3及E 3分别为电位移和电场强度;T 3及S 3分别为应力和应变。

对于仪器的具体情况,上式可简化为:FCVF Q A F A Q d ==÷=)()(33,这时,A 为试样的受力面积;C 为与试样并联的比试样大很多(如大100倍)的大电容,以满足测量d 33常数时的恒定电场边界条件。

在仪器测量头内,一个约0.25N,频率为110Hz 的低频交变力,通过上下探头加到比较样品与被测试样上,由正压电效应产生的两个电信号经过放大、检波、相除等必要的处理后,最后把代表试样的d 33常数的大小及极性送三位半数字面板表上直接显示。

准静态法比通常的静态法精确。

静态法由于压电非线性及热释电效应,测量误差可达30%~50%。

三.仪器设备ZJ-3准静态d33测量仪(的测量头结构外观见下图。

四、实验步骤1.一般操作(1) 选档:试样电容值小于0.01μF 对应×1档,小于0.001μF 对应×0.1档。

(2) 用两根多芯电缆把测量头和仪器本体连接好。

(3) 把附件盒内的塑料片插于测量头的上下两探头之间,调节测量头顶端的手轮,使塑料片刚好压住为止。

(4) 把仪器后面板上的“d 33-力”选择开关置于“d 33”一侧。

(5) 使仪器后面板上的d 33量程选择开关,按照被测样品的d 33估计值,处于适当位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十二压电陶瓷压电性能测定
实验名称:压电陶瓷压电性能测定
实验项目性质:普通实验
所涉及课程:电子材料
计划学时:2学时
一、实验目的
1.了解压电常数的概念和意义;
2.掌握压电陶瓷压电常数的测定方法。

3.学会操作ZJ-3AN型准静态d33测量仪。

二、实验内容
1. 实验老师介绍使用压电常数测量仪测试d33的原理与步骤;
2. 测试压电陶瓷的压电常数。

三、实验(设计)仪器设备和材料清单
ZJ-3AN型准静态d33测量仪、压电陶瓷晶片等。

四、实验原理
压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有压电效应的材料。

当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。

逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。

压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。

通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。

五、实验步骤
(1)用两根多芯电缆把测量头和仪器本体连接好,接通电源。

(2)把Φ20尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为止。

(3)把仪器后面板上的“显示选择”开关置于“d33”一侧,此时面板右上方绿灯亮。

(4)把仪器后面板上的“量程选择”开关置于“×1”档。

(5)按下“快速模式”,仪器通电预热10分钟后,调节“调零”旋钮使面板表指示在“0”与“-0”之间跳动。

调零即完成,撤掉尼龙片开始测量。

(6)依次接入待测元件,表头显示d33结果及正负极性,记录。

(7)取三次测量的平均值。

六、实验报告要求
1. 实验目的;
2. 实验内容;
3. 实验设备(仪器),材料;
4. 实验原理;
5. 实验步骤;
6. 实验数据测试与记录;
7. 实验结果与分析。

七、考核型式
书面实验报告及实际操作相结合。

思考题
1. 分析影响压电常数测试结果准确性的因素?
注意事项:
1. 压电陶瓷片易碎,测试时要小心。

2. 调零一律在“快速模式”下进行,为减少测量误差,在测试过程中零点如有变化或换档时,需要重新调零。

相关文档
最新文档