总传热系数的测定 附最全思考题
实验四传热系数测定实验

实验四 传热系数测定实验1.实验目的(1)观察水蒸汽在水平管外壁上的冷凝现象;(2)测定空气-水蒸汽在套管换热器中的总传热系数;(3)测定空气在圆形直管内强制对流时的传热膜系数及其与雷诺数Re 的关系。
2.基本原理在套管换热器中,环隙通以水蒸汽,内管管内通以空气,水蒸汽冷凝放热以加热空气,在传热过程达到稳定后,有如下热量衡算关系式(忽略热损失):()()mW i i m i i p t t S t S K t t C V Q -=∆=-=αρ12由此可得总传热系数mi P i t S t t C V K ∆-=)(12ρ空气在管内的对流传热系数(传热膜系数) m w i P i t t S t t C V )()(12--=ρα上式中 Q :传热速率,w ;V :空气体积流量(以进口状态计),m 3/s ; ρ: 空气密度(以进口状态计),kg/m 3; C P :空气平均比热,J/(kg ·℃);K i :以内管内表面积计的总传热系数,W/(m 2·℃); αi : 空气对内管内壁的对流传热系数,W/(m 2·℃); t 1、t 2 :空气进、出口温度,℃; S i :内管内壁传热面积,m 2;Δt m :水蒸气与空气间的对数平均温度差,℃;2121ln)()(t T t T t T t T t m -----=∆ T :蒸汽温度(取进、出口温度相同),℃。
(t w -t )m :空气与内管内壁间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=- t w1、t w2 :内管内壁上进、出口温度,℃。
当内管材料导热性能很好,且管壁很薄时,可认为内管内外壁温度相同,即测得的外壁温度视为内壁温度。
流体在圆形直管内作强制湍流(流体流动的雷诺数Re >10000)时,对流传热系数αi与雷诺数Re 的关系可近似写成 ni A Re =α式中A 和n 为常数。
综合传热系数的测定实验

实验1综合传热系数的测定实验一、实验目的1.了解间壁式传热元件的结构。
2.了解观察水蒸气在水平管外壁上的冷凝现象,并判断冷凝类型。
3.通过对内管是光滑管的空气—水蒸气简单套管换热器的实验研究,掌握空气在圆形光滑直管中强制对流传热系数的测定的实验方法,加深对其概念和影响因素的理解。
确定关联式Nu=Are m Pr0.4中常数A、m的值。
4.掌握传热系数测定的实验数据处理方法。
5.掌握孔板流量计的使用。
6.掌握DC-3A微音气泵的使用。
二、实验内容及基本原理(一)实验内容1.观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型。
2.测定不同流速下简单套管换热器的对流传热系数α。
3.对实验数据通过Excel进行处理,求关联式Nu=A·Re m Pr0.4中常数A、m的值;并绘制曲线。
4.实验原始记录光滑管记录:5.实验数据处理与分析数据处理光滑管:实验结果列表和作图:(二)实验原理1.准数方程空气在圆形直管中作湍流流动的给热准数方程:),,,dlGr f Nu Pr (Re 1= (1-1) 式中l —为管长,m ; d —为管径,m ;强制对流时,G r 可忽略;对气体而言,原子数相同(如单原子、双原子…)的气体Pr 为一常数,当50>dl 其影响亦可忽略,故上式可写为:(Re)f N u = (1-2) 一般可写成m u A N Re = (1-3)其中A 为常数,λαd Nu =,μρdu =Re 。
2.准数方程中各参数的测定和计算(1)α值的计算:空气传热膜系数α可以通过测定总传热系数(K )进行测取。
K 与α有下列关系:2111αλδα++=s K (1-4) 因管壁很薄,可将圆壁看成平壁。
这里因是空气,故不计污垢热阻,上式中sλδ为黄铜管壁热传导的热阻,壁厚0.001米,黄铜导热系数λs =377(W/m·k), 故δ/λs =2.7×10-6;1/α2为蒸气冷凝膜的热阻,α2=2×104,故1/α2=5×10-5,空气传热膜系数α在100上下,热阻1/α=1×10-2,对比之下,上述两项热阻均可忽略,即K ≈α。
总传热系数的测定.doc(实验)

总传热系数测定实验一、实验目的1. 观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; 2. 测定饱和水蒸气在圆形管外壁上的冷凝给热系数;二、基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下公式:V ρC P (t 2-t 1)=K A m t ∆其中:V :空气体积流量,m 3/sA :内管的外壁的传热面积,m 2 ρ:空气密度,kg/m 3C P :空气平均比热,J/(kg ℃)t 1、t 2:空气进、出口温度,℃T 1、T 2:蒸汽进、出口温度,℃m t ∆:对数平均温差,℃ 12211221ln)()(t T t T t T t T t m -----=∆若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 以及水蒸气温度T 1、T 2,即可计算实测的水蒸气(平均)冷凝给热系数。
三、实验装置与流程实验装置如下图水蒸气~空气换热流程图来自蒸汽发生器的水蒸气进入玻璃套管换热器,与来自风机的风进行热交换,冷凝水经疏水器排入地沟。
冷空气经孔板(转子)流量计进入套管换热器内管(紫铜管),热交换后排出装置外。
2.设备与仪表规格(1)紫铜管规格:直径φ21×2.8mm,长度L=1000mm(2)外套玻璃管规格:直径φ100×5mm,长度L=1000mm(3)压力表规格:0~0.1MPa四、实验步骤与注意事项1.打开总电源空气开关,打开仪表及巡检仪电源开关,给仪表上电。
2.打开仪表台上的风机电源开关,让风机工作,同时打开冷流体入口阀门,让套管换热器里冲有一定量的空气。
3.打开冷凝水出口阀,注意只开一定的开度,开的太大会让换热桶里的蒸汽跑掉,关的太小会使换热玻璃管里的蒸汽压力集聚而产生玻璃管炸裂。
4.在做实验前,应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。
关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝水排除阀。
实验二 总传热系数的测定

实验二 总传热系数的测定一、实验目的1、 了解换热器的结构2、 掌握测定传热系数K 的方法3、 学会换热器的操作方法,提高研究和解决传热实际问题的能力 二、实验原理列管式换热器是工业生产中广泛使用的一种间壁式换热设备,通常由壳体、管束、隔板、挡板等主要部件组成。
冷、热流体借助于换热器中的管束进行热量交换而完成加热或冷却任务。
衡量一个换热器性能好坏的标准是换热器的传热系数K 值。
对于没有相变的液—液换热系统由热量衡算可得: 损Q Q Q c h += 若实验装置保温良好,则Q 损可忽略衡算可得: Q Q Q c h == ()出进T .-=T c W Q ph h h ()进出t t C W pc C c -=.Q 由传热速率方程式知:Q=KS m t ∆式中 'm t m t t ∆=∆∆ϕ()()进出出进进出出进t T t T n t t T t m -----=∆I T '()R P f t ,=∆ϕ P=进进进出t t t --TR=进出进出-t t T -Tt ∆ϕ可由P,R 两因数根据安得伍德(Underwood )和鲍曼(Bowman)提出的图算法查取,本实验装置为1壳程2管程。
式中: h Q ——热流体的传热速率〔W 〕 c Q ——冷流体的传热速率〔W 〕 损Q ——热损失速率〔W 〕Q ——换热器的传热速率〔W 〕h W ——热流体质量流量〔Kg/s 〕(h W =h h V ρ.) c W ——冷流体质量流量〔Kg/s 〕ph C ——热流体的平均恒压热容〔J/kg 。
C 0〕pc C ——冷流体的平均恒压热容〔J/kg 。
C 0〕 进T ——热流体进口温度〔C 0〕出T ——热流体出口温度〔C 0〕进t ——冷流体进口温度〔C 0〕 出t ——冷流体出口温度〔C 0〕K ——换热器的总传热系数〔W/.2m C 0〕 S ——换热器传热面积〔.2m 〕(S =dl n π)m t ∆——冷、热流体的对数平均传热温差〔C 0〕P 、R ——因数〔无因次〕'm t ∆——按逆流流动形式计算的对数平均传热温差〔C 0〕三.实验装置如上图所示,整套装置主要由气泵、空气稳压罐、电加热器和列管式换热器组成,并配有温度控制仪,测温计,压差计及液体、气体流量计等测量仪表。
《化工原理》实验思考题题目及答案

、进行测试系统地排气工作时,是否应关闭系统地出口阀门?为什么?
答:在进行测试系统地排气时,不应关闭系统地出口阀门,因为出口阀门是排气地通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体.文档收集自网络,仅用于个人学习
答:不是地,θΔμ(), θ是代表过滤速率,它随着过滤地进行,它是一个逐渐减少地过程,虽然Δ增大一倍,表面上是时间减少一倍,单过滤速率减少,所以过滤得到相同地滤液,所需地时间不是原来地一半,比一半要多.文档收集自网络,仅用于个人学习
实验七、蒸汽—空气总传热系数地测定
、在测定传热系数时,按现试验流程,用管内冷凝液测定传热速率与用管外冷却水测定传热速率哪种方法更准确?为什么?如果改变流程,是蒸汽走环隙,冷却水走管内,用哪种方法更准确?答:文档收集自网络,仅用于个人学习
流体流动阻力实验
一、在本实验中必须保证高位水槽中始终有溢流,其原因是:
、只有这样才能保证有充足地供水量.
、只有这样才能保证位压头地恒定.
、只要如此,就可以保证流体流动地连续性.
二、本实验中首先排除管路系统中地空气,是因为:
、空气地存在,使管路中地水成为不连续地水.
、测压管中存有空气,使空气数据不准确.
、离心泵地特性曲线是否与连接地管路系统有关?
答:离心泵地特性曲线与管路无关.当离心泵安装在特定地管路系统中工作时,实际地工作压头和流量不仅与离心泵本身地性能有关,还与管路地特性有关.文档收集自网络,仅用于个人学习
、离心泵流量增大时,压力表与真空表地数值如何变化?为什么?
不同换热器的操作及传热系数的测定思考题

1. 引言换热器作为化工设备中常见的一种,其操作和传热系数的测定对于实际生产具有重要意义。
换热器的种类繁多,不同的操作方式和结构特点对于传热性能有着直接影响。
本文将针对不同换热器的操作以及传热系数的测定进行深入探讨,旨在帮助读者更全面地理解换热器的工作原理及其实际应用价值。
2. 不同换热器的操作2.1 管壳式换热器管壳式换热器是常见的一种换热设备,其操作方式较为灵活多样。
在实际应用中,可以根据不同的介质流动情况和传热需求,采用单相流、多相流或者混合流的操作方式。
管壳式换热器还可以通过改变进出口介质的温度和流速来实现不同的传热效果,从而满足工艺生产的需要。
2.2 板式换热器板式换热器的操作相对简单,通常采用平行流或逆流的方式进行传热。
其特点是传热效率高、占地面积小,适用于要求高效率换热的场合。
在实际操作中,可以通过控制板片的数量和间距来调节传热效果,以满足不同工艺条件下的换热需求。
2.3 螺旋板式换热器螺旋板式换热器是一种结构复杂、传热效果良好的换热设备。
其操作方式多样,可以根据具体的介质性质和工艺要求来选择不同的传热方案。
螺旋板式换热器还可以通过调节螺旋板的角度和间距来改变流体的流动路径,从而实现更高效的传热效果。
3. 传热系数的测定3.1 热工学方法传热系数是反映换热器传热性能的重要参数,其测定方法多种多样。
其中,热工学方法是比较常用的一种,通过测量流体的温度、压力和流速等参数,结合换热器的结构特点和换热介质的性质,可以较为准确地计算出传热系数的数值。
3.2 实验方法除了热工学方法外,实验方法也是传热系数测定常用的手段之一。
在实际操作中,可以利用换热器试验台或者实验室设备,通过控制流体的温度、压力和流速等参数,结合换热器的结构特点和试验介质的性质,进行传热系数的实际测定。
4. 个人观点和理解通过对不同换热器的操作和传热系数测定方法的探讨,我对换热器的工作原理和实际应用有了更深入的理解。
在实际生产中,根据工艺条件和介质特性选择合适的换热器操作方式和传热系数测定方法,可以更好地发挥换热器的效果,提高生产效率和产品质量。
传热学部分思考题

教材上的思考题第8章??思考题?1.试说明热传导(导热)、热对流和热辐射三种热量传递基本方式之间的联系与区别。
? 区别:它们的传热机理不同。
导热是由于分子、原子和电子等微观粒子的热运动而产生的热量传递现象,其本质是介质的微观粒子行为。
热对流是由于流体的宏观运动,致使不同温度的流体相对位移而产生的热量传递现象,其本质是微观粒子或微团的行为。
辐射是由于物体内部微观粒子的热运动而使物体向外发射辐射能的现象,其本质是电磁波,不需要直接接触并涉及能量形式的转换。
?联系:经常同时发生。
?2.试说明热对流与对流换热之间的联系与区别。
?热对流是由于流体的宏观运动,致使不同温度的流体相对位移而产生的热量传递现象。
对流换热是流体与固体表面之间由热对流和导热两种传热方式共同作用导致的传热结果。
3. 从传热的角度出发,采暖散热器和冷风机应放在什么高度最合适???答:采暖器和冷风机主要通过对流传热的方式使周围空气变热和变冷,使人生活在合适的温度范围中,空气对流实在密度差的推动下流动,如采暖器放得太高,房间里上部空气被加热,但无法产生自然对流使下部空气也变热,这样人仍然生活在冷空气中。
为使房间下部空气变热,使人感到舒适,应将采暖器放在下面,同样的道理,冷风机应放在略比人高的地方,天热时,人才能完全生活在冷空气中4.在晴朗无风的夜晚,草地会披上一身白霜,可是气象台的天气报告却说清晨最低温度为2℃。
试解释这种现象。
但在阴天或有风的夜晚(其它条件不变),草地却不会披上白霜,为什么?答:深秋草已枯萎,其热导率很小,草与地面可近似认为绝热。
草接受空气的对流传热量,又以辐射的方式向天空传递热量,其热阻串联情况见右图。
所以,草表面温度t gr 介于大气温度t f 和天空温度t sk 接近,t gr 较低,披上“白霜”。
如有风,hc 增加,对流传热热阻R 1减小,使t gr 向t f 靠近,即t gr 升高,无霜。
阴天,天空有云层,由于云层的遮热作用,使草对天空的辐射热阻R 2增加,t gr 向t f 靠近,无霜(或阴天,草直接对云层辐射,由于天空温度低可低达-40℃),而云层温度较高可达10℃左右,即t sk 在阴天较高,t gr 上升,不会结霜)。
2020年传热学第四版课后思考题答案(杨世铭-陶文铨)]
![2020年传热学第四版课后思考题答案(杨世铭-陶文铨)]](https://img.taocdn.com/s3/m/337c6d7859eef8c75fbfb381.png)
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T-辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聊城大学实验报告
课题名称:化工原理实验
实验名称:总传热系数的测定
姓名:元险成绩:
学号:1989 班级:
实验日期:2011-9-18
实验内容:测定套管换热器中水—水物系在常用流速范围内的总传热系数K,分析强化传热效果的途径。
总传热系数的测定
一、实验目的
1.了解换热器的结构,掌握换热器的操作方法。
2.掌握换热器总传热系数K 的测定方法。
3.了解流体的流量和流向不同对总传热系数的影响
二、基本原理
在工业生产中,要完成加热或冷却任务,一般是通过换热器来实现的,即换热器必须在单位时间内完成传送一定的热量以满足工艺要求。
换热器性能指标之一是传热系数K 。
通过对这一指标的实际测定,可对换热器操作、选用、及改进提供依据。
传热系数K 值的测定可根据热量恒算式及传热速率方程式联立求解。
传热速率方程式:
Q =kS ∆t m (1)
通过换热器所传递的热量可由热量恒算式计算,即
Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1)+Q 损 (2)
若实验设备保温良好,Q 损可忽略不计,所以
Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1) (3)
式中,Q 为单位时间的传热量,W ;K 为总传热系数,W/(m 2·℃);∆t m 为传热对数平均温度差,℃;S 为传热面积(这里基于外表面积),m 2;W h ,W c 为热、冷流体的质量流量,kg/s ;C ph ,C pc 为热、冷流体的平均定压比热,J/(kg ·℃);T 1,T 2为热流体的进出口温度,℃;t 1,t 2为冷流体的进出口温度,℃。
∆tm 为换热器两端温度差的对数平均值,即
12
1
2ln t t t t t m ∆∆∆-∆=∆
(4) 当212≤∆∆t t 时,可以用算术平均温度差(2
12t t ∆+∆)代替对数平均温度差。
由上式所计算出口的传热系数K 为测量值K 测。
传热系数的计算值K 计可用下式进行计算:
∑+++=S i R K λδαα11
10计
(5)
式中,α0为换热器管外侧流体对流传热系数,W/(m 2·℃);αi 为换热器管内侧流体对流传热系数,W/(m 2·℃);δ为管壁厚度,m ;λ——管壁的导热系数,W/(m 2·℃);R S 为污垢热阻,m 2·℃/W 。
当管壁和垢层的热阻可以忽略不计时,上式可简化成:
i
i i K αααααα+=+=00011
1计
(6)
三、实验装置及流程
1.实验流程
本实验装置为一套管换热器,采用冷水—热水系统,流程如图所示。
冷水经转子流量计计量后进入换热器的冷水流道,进行热交换后排入地沟。
热水槽中的水被加热到预定温度后,由管道泵送至流量计计量,再进入换热器的热水流道,进行热交换后返回热水槽循环使用。
在冷热水进、出口处都分别装有铜电阻测量温度。
实验装置设有逆流和并流两种流程,通过换向阀门改变冷水的流向,进而测得两流体逆流或并流流动时的总传热系数。
2.主要设备仪表规格
(1)套管换热器:内管为紫铜管,管径d o=6mm ;换热管长度l =1.075m ;
(2)测温装置:Cu50型铜电阻配以数字温度显示仪;
(3)热水发生器:f219×6mm ,材质为不锈钢;加热器功率:1kW ,由智能程序控温仪控制并显示其中温度;
(4)流量计:LZB —15转子流量计,范围:0~160L/h ;LZB —25转子流量计,范围:0~400L/h 。
总传热系数测定装置仿真界面
四、实验步骤
1.熟悉流程、管线,检查各阀门的开启位置,熟悉各阀门的作用。
2.将热水发生器水位约维持在其高度的2/3,把换向阀门组调配为逆流。
3.打开总电源开关,通过智能程序控温仪设定加热器温度,通电加热并启动管道泵,开启热水调节阀调节热水流量为定值。
4.当热水发生器温度接近设定值时开启冷水离心泵和出口阀,调节冷水阀使冷水流量为定值。
实验过程中注意开启冷水槽上水阀勿使槽内水位下降太多。
5.待冷、热水温度稳定后,记录冷、热水的进出口温度。
6.调节冷水阀,改变冷水流量,测取6个数据。
注意,每次流量改变后,须有一定的稳定时间,待有关参数都稳定后,再记录数据。
7.把换向阀门组调配为并流,调节冷水阀,改变冷水流量,待温度稳定后记录有关参数。
8.实验结束后,关闭调节阀门,关闭热水泵的电源开关并关闭冷水离心泵出口阀及离心泵,最后关闭总电源。
五、实验报告
1.整理原始数据记录表,将有关数据整理在数据处理表中。
2.列出实验结果,写出典型数据的计算过程,分析和讨论实验现象。
解:
(1)逆流
T 1=38.8℃,T 2=36.6℃,t 1=20.5℃,t 2=27.2℃
△t 1=T 1-t 2=38.8℃-27.2℃=11.6℃,△t 2=T 2-t 1=36.6℃-20.5℃=16.1℃ 2720.01.166.1121 ==∆∆t t ,℃逆85.132
1.166.11221=+=∆+∆=∆t t t m 并流
T 1=40.3℃,T 2=38.6℃,t 1=21.4℃,t 2=28.2℃
△t 1=T 1-t 1=40.3℃-21.4℃=18.9℃,△t 2=T 2-t 2=38.6℃-28.2℃=10.4℃ 282.10.41.91821 ==∆∆t t ,℃并5.6142
.410.918221=+=∆+∆=∆t t t m (2)热负荷 水q m2=120L/h=119.76kg/h ,c p2=4.183×103J/(kg ·℃),t 1逆=20.5℃,t 2逆=27.2℃,t 1并=21.4℃,t 2并=28.2℃
Q 逆=q m2c p2(t 2逆-t 1逆)=119.76/3600×4.183×103×(27.2-20.5)=932.335W Q 并=q m2c p2(t 2并-t 1并)=119.76/3600×4.183×103×(28.2-21.4)=946.250W
(3)A=2.016903×10-2m 2
℃)(逆逆逆·/6.73335
.8131016903.0235.393222m W t A Q k m =⨯⨯=∆=- ℃)(并并
并·/02.43254.611016903.0250.294622m W t A Q k m =⨯⨯=∆=
- 六、思考题
1.影响传热系数K 的因素有哪些?
答:传热系数的计算值K 计可用下式进行计算:
∑+++=S i R K λδαα11
10计
(5)
式中,α0为换热器管外侧流体对流传热系数,W/(m 2·℃);αi 为换热器管内侧流体对流传热系数,W/(m 2·℃);δ为管壁厚度,m ;λ——管壁的导热系数,W/(m 2·℃);R S 为污垢热阻,m 2·℃/W 。
2.在实验中哪些因素影响实验的稳定性?
答:换热器管外侧流体对流传热系数α0、换热器管内侧流体对流传热系数αi、管壁厚度δ、管壁的导热系数λ、污垢热阻R S。
3.根据实验结果分析如何强化传热?
答:蒸汽冷凝时的对流传热强化措施
目的:减少冷凝液膜的厚度
水平管束:减少垂直方向上管数,采用错列;
垂直板或管:开纵向沟槽,或在壁外装金属丝。
液体沸腾时的对流传热强化措施
表面粗糙化:将表面腐蚀,烧结金属粒;加表面活性剂(乙醇、丙酮等)。