算法分析与设计基础答案11章

合集下载

算法设计与分析基础习题参考答案

算法设计与分析基础习题参考答案

习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d 能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度.a.删除数组的第i个元素(1<=i<=n)b.删除有序数组的第i个元素(依然有序)hints:a. Replace the ith element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array’s element(e.g., 0 for an array of positive numbers ) to mark the ith position is empty.(“lazy deletion”)习题2.11欧几里得算法的时间复杂度欧几里得算法, 又称辗转相除法, 用于求两个自然数的最大公约数. 算法的思想很简单, 基于下面的数论等式gcd(a, b) = gcd(b, a mod b)其中gcd(a, b)表示a和b的最大公约数, mod是模运算, 即求a除以b的余数. 算法如下:输入: 两个整数a, b输出: a和b的最大公约数function gcd(a, b:integer):integer;if b=0 return a;else return gcd(b, a mod b);end function欧几里得算法是最古老而经典的算法, 理解和掌握这一算法并不难, 但要分析它的时间复杂度却并不容易. 我们先不考虑模运算本身的时间复杂度(算术运算的时间复杂度在Knuth的TAOCP中有详细的讨论), 我们只考虑这样的问题: 欧几里得算法在最坏情况下所需的模运算次数和输入的a 和b 的大小有怎样的关系?我们不妨设a>b>=1(若a<b 我们只需多做一次模运算, 若b=0或a=b 模运算的次数分别为0和1), 构造数列{un}: u0=a, u1=b, uk=uk-2 mod uk-1(k>=2), 显然, 若算法需要n 次模运算, 则有un=gcd(a, b), un+1=0. 我们比较数列{un}和菲波那契数列{Fn}, F0=1<=un, F1=1<=un-1, 又因为由uk mod uk+1=uk+2, 可得uk>=uk+1+uk+2, 由数学归纳法容易得到uk>=Fn-k, 于是得到a=u0>=Fn, b=u0>=Fn-1. 也就是说如果欧几里得算法需要做n 次模运算, 则b 必定不小于Fn-1. 换句话说, 若 b<Fn-1, 则算法所需模运算的次数必定小于n. 根据菲波那契数列的性质, 有Fn-1>(1.618)n/sqrt(5), 即b>(1.618)n/sqrt(5), 所以模运算的次数为O(lgb)---以b 为底数 = O(lg(2)b)---以2为底数,输入规模也可以看作是b 的bit 位数。

《算法分析与设计》(李春葆版)课后选择题答案与解析

《算法分析与设计》(李春葆版)课后选择题答案与解析

《算法及其分析》课后选择题答案及详解第1 章——概论1.下列关于算法的说法中正确的有()。

Ⅰ.求解某一类问题的算法是唯一的Ⅱ.算法必须在有限步操作之后停止Ⅲ.算法的每一步操作必须是明确的,不能有歧义或含义模糊Ⅳ.算法执行后一定产生确定的结果A.1个B.2个C.3个D.4个2.T(n)表示当输入规模为n时的算法效率,以下算法效率最优的是()。

A.T(n)=T(n-1)+1,T(1)=1B.T(n)=2nC.T(n)= T(n/2)+1,T(1)=1D.T(n)=3nlog2n答案解析:1.答:由于算法具有有穷性、确定性和输出性,因而Ⅱ、Ⅲ、Ⅳ正确,而解决某一类问题的算法不一定是唯一的。

答案为C。

2.答:选项A的时间复杂度为O(n)。

选项B的时间复杂度为O(n)。

选项C 的时间复杂度为O(log2n)。

选项D的时间复杂度为O(nlog2n)。

答案为C。

第3 章─分治法1.分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。

这要求原问题和子问题()。

A.问题规模相同,问题性质相同B.问题规模相同,问题性质不同C.问题规模不同,问题性质相同D.问题规模不同,问题性质不同2.在寻找n个元素中第k小元素问题中,如快速排序算法思想,运用分治算法对n个元素进行划分,如何选择划分基准?下面()答案解释最合理。

A.随机选择一个元素作为划分基准B.取子序列的第一个元素作为划分基准C.用中位数的中位数方法寻找划分基准D.以上皆可行。

但不同方法,算法复杂度上界可能不同3.对于下列二分查找算法,以下正确的是()。

A.intbinarySearch(inta[],intn,int x){intlow=0,high=n-1;while(low<=high){intmid=(low+high)/2;if(x==a[mid])returnmid;if(x>a[mid])low=mid;elsehigh=mid;}return –1;}B.intbinarySearch(inta[],intn,int x) { intlow=0,high=n-1;while(low+1!=high){intmid=(low+high)/2;if(x>=a[mid])low=mid;elsehigh=mid;}if(x==a[low])returnlow;elsereturn –1;}C.intbinarySearch(inta[],intn,intx) { intlow=0,high=n-1;while(low<high-1){intmid=(low+high)/2;if(x<a[mid])high=mid;elselow=mid;}if(x==a[low])returnlow;elsereturn –1;}D.intbinarySearch(inta[],intn,int x) {if(n>0&&x>=a[0]){intlow= 0,high=n-1;while(low<high){intmid=(low+high+1)/2;if(x<a[mid])high=mid-1;elselow=mid;}if(x==a[low])returnlow;}return –1;}答案解析:1.答:C。

算法设计与分析智慧树知到课后章节答案2023年下山东交通学院

算法设计与分析智慧树知到课后章节答案2023年下山东交通学院

算法设计与分析智慧树知到课后章节答案2023年下山东交通学院山东交通学院第一章测试1.解决一个问题通常有多种方法。

若说一个算法“有效”是指( )A:这个算法能在一定的时间和空间资源限制内将问题解决B:这个算法能在人的反应时间内将问题解决C:这个算法比其他已知算法都更快地将问题解决D:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)答案:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)2.农夫带着狼、羊、白菜从河的左岸到河的右岸,农夫每次只能带一样东西过河,而且,没有农夫看管,狼会吃羊,羊会吃白菜。

请问农夫能不能过去?()A:不一定B:不能过去 C:能过去答案:能过去3.下述()不是是算法的描述方式。

A:自然语言 B:E-R图 C:程序设计语言 D:伪代码答案:E-R图4.有一个国家只有6元和7元两种纸币,如果你是央行行长,你会设置()为自动取款机的取款最低限额。

A:40 B:29 C:30 D:42答案:305.算法是一系列解决问题的明确指令。

()A:对 B:错答案:对6.程序=数据结构+算法()A:对 B:错答案:对7.同一个问题可以用不同的算法解决,同一个算法也可以解决不同的问题。

()A:错 B:对答案:对8.算法中的每一条指令不需有确切的含义,对于相同的输入不一定得到相同的输出。

( )A:错 B:对答案:错9.可以用同样的方法证明算法的正确性与错误性 ( )A:错 B:对答案:错10.求解2个数的最大公约数至少有3种方法。

( )A:对 B:错答案:错11.没有好的算法,就编不出好的程序。

()A:对 B:错答案:对12.算法与程序没有关系。

( )A:错 B:对答案:错13.我将来不进行软件开发,所以学习算法没什么用。

( )A:错 B:对答案:错14.gcd(m,n)=gcd(n,m m od n)并不是对每一对正整数(m,n)都成立。

算法设计与分析-课后习题集答案

算法设计与分析-课后习题集答案
10.(1)当 时, ,所以,可选 , 。对于 , ,所以, 。
(2)当 时, ,所以,可选 , 。对于 , ,所以, 。
(3)由(1)、(2)可知,取 , , ,当 时,有 ,所以 。
11. (1)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(2)当 时, ,所以 , 。可选 , 。对于 , ,即 。
(3)因为 , 。当 时, , 。所以,可选 , ,对于 , ,即 。
第二章
2-17.证明:设 ,则 。
当 时, 。所以, 。
第五章
5-4.SolutionType DandC1(int left,int right)
{while(!Small(left,right)&&left<right)
{int m=Divide(left,right);
所以n-1<=m<=n (n-1)/2;
O(n)<=m<=O(n2);
克鲁斯卡尔对边数较少的带权图有较高的效率,而 ,此图边数较多,接近完全图,故选用普里姆算法。
10.
T仍是新图的最小代价生成树。
证明:假设T不是新图的最小代价生成树,T’是新图的最小代价生成树,那么cost(T’)<cost(T)。有cost(T’)-c(n-1)<cost(t)-c(n-1),即在原图中存在一颗生成树,其代价小于T的代价,这与题设中T是原图的最小代价生成树矛盾。所以假设不成立。证毕。
13.template <class T>
select (T&x,int k)
{
if(m>n) swap(m,n);
if(m+n<k||k<=0) {cout<<"Out Of Bounds"; return false;}

2020智慧树知到《算法分析与设计》章节测试完整答案

2020智慧树知到《算法分析与设计》章节测试完整答案

2020智慧树知到《算法分析与设计》章节测试完整答案智慧树知到《算法分析与设计》章节测试答案第一章1、给定一个实例,如果一个算法能得到正确解答,称这个算法解答了该问题。

答案: 错2、一个问题的同一实例可以有不同的表示形式答案: 对3、同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。

答案: 对4、问题的两个要素是输入和实例。

答案: 错5、算法与程序的区别是()A:输入B:输出C:确定性D:有穷性答案: 有穷性6、解决问题的基本步骤是()。

(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A:(3)(1)(4)(5)(2)B:(3)(4)(1)(5)(2)C:(3)(1)(5)(4)(2)D:(1)(2)(3)(4)(5)答案: (3)(1)(5)(4)(2)7、下面说法关于算法与问题的说法错误的是()。

A:如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。

B:算法是一种计算方法,对问题的每个实例计算都能得到正确答案。

C:同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。

D:证明算法不正确,需要证明对任意实例算法都不能正确处理。

答案: 证明算法不正确,需要证明对任意实例算法都不能正确处理。

8、下面关于程序和算法的说法正确的是()。

A:算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。

B:程序是算法用某种程序设计语言的具体实现。

C:程序总是在有穷步的运算后终止。

D:算法是一个过程,计算机每次求解是针对问题的一个实例求解。

答案: 算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。

,程序是算法用某种程序设计语言的具体实现。

,算法是一个过程,计算机每次求解是针对问题的一个实例求解。

9、最大独立集问题和()问题等价。

A: 最大团B:最小顶点覆盖C:区间调度问题D:稳定匹配问题答案: 最大团,最小顶点覆盖10、给定两张喜欢列表,稳定匹配问题的输出是( ) 。

算法分析与设计习题答案

算法分析与设计习题答案

算法分析与设计习题答案《算法分析与设计》期末复习题及答案⼀、简要回答下列问题:1.算法重要特性是什么?2.算法分析的⽬的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述⼆分检索(折半查找)算法的基本过程。

7.背包问题的⽬标函数和贪⼼算法最优化量度相同吗?8.采⽤回溯法求解的问题,其解如何表⽰?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么⽤分治法设计的算法⼀般有递归调⽤?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。

14.⼆分检索算法最多的⽐较次数?15.快速排序算法最坏情况下需要多少次⽐较运算?16.贪⼼算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束⼀般指什么?18.阐述归并排序的分治思路。

19.快速排序的基本思想是什么。

20.什么是直接递归和间接递归?消除递归⼀般要⽤到什么数据结构?21.什么是哈密顿环问题?22.⽤回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。

参考答案:1. 确定性、可实现性、输⼊、输出、有穷性2. 分析算法占⽤计算机资源的情况,对算法做出⽐较和评价,设计出额更好的算法。

3. 算法的时间复杂性与问题的规模相关,是问题⼤⼩n的函数。

4.当问题的规模n趋向⽆穷⼤时,影响算法效率的重要因素是T(n)的数量级,⽽其他因素仅是使时间复杂度相差常数倍,因此可以⽤T(n)的数量级(阶)评价算法。

时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。

5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输⼊实例下的算法所耗时间。

最坏情况下的时间复杂性取的输⼊实例中最⼤的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输⼊实例的处理时间与各⾃概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6. 设输⼊是⼀个按⾮降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x⽐较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]回溯法的搜索特点是什么7. 不相同。

算法与数据结构课后答案9-11章

算法与数据结构课后答案9-11章

算法与数据结构课后答案9-11章第9章集合一、基础知识题9.1 若对长度均为n 的有序的顺序表和无序的顺序表分别进行顺序查找,试在下列三种情况下分别讨论二者在等概率情况下平均查找长度是否相同?(1)查找不成功,即表中没有和关键字K 相等的记录;(2)查找成功,且表中只有一个和关键字K 相等的记录;(3)查找成功,且表中有多个和关键字K 相等的记录,要求计算有多少个和关键字K 相等的记录。

【解答】(1)平均查找长度不相同。

前者在n+1个位置均可能失败,后者失败时的查找长度都是n+1。

(2)平均查找长度相同。

在n 个位置上均可能成功。

(3)平均查找长度不相同。

前者在某个位置上(1<=i<=n)查找成功时,和关键字K 相等的记录是连续的,而后者要查找完顺序表的全部记录。

9.2 在查找和排序算法中,监视哨的作用是什么?【解答】监视哨的作用是免去查找过程中每次都要检测整个表是否查找完毕,提高了查找效率。

9.3 用分块查找法,有2000项的表分成多少块最理想?每块的理想长度是多少?若每块长度为25 ,平均查找长度是多少?【解答】分成45块,每块的理想长度为45(最后一块长20)。

若每块长25,则平均查找长度为ASL=(80+1)/2+(25+1)/2=53.5(顺序查找确定块),或ASL=19(折半查找确定块)。

9.4 用不同的输入顺序输入n 个关键字,可能构造出的二叉排序树具有多少种不同形态? 【解答】 9.5 证明若二叉排序树中的一个结点存在两个孩子,则它的中序后继结点没有左孩子,中序前驱结点没有右孩子。

【证明】根据中序遍历的定义,该结点的中序后继是其右子树上按中序遍历的第一个结点,即右子树上值最小的结点:叶子结点或仅有右子树的结点,没有左孩子;而其中序前驱是其左子树上按中序遍历的最后个结点,即左子树上值最大的结点:叶子结点或仅有左子树的结点,没有右孩子。

命题得证。

9.6 对于一个高度为h 的A VL 树,其最少结点数是多少?反之,对于一个有n 个结点的A VL 树,其最大高度是多少? 最小高度是多少?【解答】设以N h 表示深度为h 的A VL 树中含有的最少结点数。

算法分析与设计(习题答案)

算法分析与设计(习题答案)

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。

频率计数是指计算机执行程序中的某一条语句的执行次数。

多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。

指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。

2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。

3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。

4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。

5. 解:①n=11; ②n=12; ③n=982; ④n=39。

第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。

2. 解:通过分治算法的一般设计步骤进行说明。

3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f matrices and through a transformation to a product of two symmetric matrices if ∙ ¸ ∙ ¸ 1 −1 0 1 = and = 2 3 −1 2 10. a. Can one use this section’s formulas that indicate the complexity equivalence of multiplication and squaring of integers to show the complexity equivalence of multiplication and squaring of square matrices? b. Show that multiplication of two matrices of order can be reduced to squaring a matrix of order 2 11. Find a tight lower bound class for the problem of finding two closest numbers among real numbers 1 2 ..., . 12. Find a tight lower-bound class for the number placement problem (Problem 9 in Exercises 6.1).
This file contains the exercises, hints, and solutions for Chapter 11 of the book ”Introduction to the Design and Analysis of Algorithms,” 3rd edition, by A. Levitin. The problems that might be challenging for at least some students are marked by B; those that might be difficult for a majority of students are marked by I
Exercises 11.1
1. Prove that any algorithm solving the alternating-disk puzzle (Problem 14 in Exercises 3.1) must make at least ( + 1)2 moves to solve it. Is this lower bound tight? 2. Prove that the classic recursive algorithm for the Tower of Hanoi problem (Section 2.4) makes the minimum number of disk moves needed to solve the problem. 3. Find a trivial lower-bound class for each of the following problems and indicate, if you can, whether this bound is tight. a. Finding the largest element in an array b. Checking completeness of a graph represented by its adjacency matrix c. Generating all the subsets of a -element set d. Determining whether given real numbers are all distinct 4. Consider the problem of identifying a lighter fake coin among identicallooking coins with the help of a balance scale. Can we use the same information-theoretic argument as the one in the text for the number of questions in the guessing game to conclude that any algorithm for identifying the fake will need at least dlog2 e weighings in the worst case? 5. Prove that any comparison-based algorithm for finding the largest element of an -element set of numbers must make − 1 comparisons in the worst case. 6. Find a tight lower bound for sorting an array by exchanging its adjacent elements. 7. B Give an adversary argument proof that the time efficiency of any algorithm that checks connectivity of a graph with vertices is in Ω(2 ) provided the only operation allowed for an algorithm is to inquire about the presence of an edge between two vertices of the graph. Is this lower bound tight? 8. What is the minimum number of comparisons needed for a comparisonbased sorting algorithm to merge any two sorted lists of sizes and + 1 elements, respectively? Prove the validity of your answer. 1
2
Hints to Exercises 11.1
1. Is it possible to solve the puzzle by making fewer moves than the bruteforce algorithm? Why? 2. Since you know that the number of disk moves made by the classic algorithm is 2 − 1 you can simply prove (e.g., by mathematical induction) that for any algorithm solving this problem the number of disk moves () made by the algorithm is greater than or equal to 2 − 1 Alternatively, you can show that if ∗ () is the minimum needed number of disk moves then ∗ () satisfies the recurrence relation ∗ () = 2 ∗ ( − 1) + 1 for 1 and ∗ (1) = 1 whose solution is 2 − 1 3. All these questions have straightforward answers. If a trivial lower bound is tight, don’t forget to mention a specific algorithm that proves its tightness. 4. Reviewing Section 4.4, where the fake-coin problem was introduced, should help in answering the question. 5. Pay attention to comparison losers. 6. Think inversions. 7. Divide the set of vertices of an input graph into two disjoints subsets and having b2c and d2e vertices respectively and show that any algorithm will have to check for an edge between every pair of vertices ( ) where ∈ and ∈ before the graph’s connectivity can be established. 8. The question and the answer are quite similar to the case of two -element sorted lists discussed in the section. So is the proof of the lower bound. 9. Simply follow the transformation formula suggested in the section. 10. a. Check whether the formulas hold for two arbitrary square matrices. b. Use a formula similar to the one showing that multiplication of arbitrary square matrices can be reduced to multiplication of symmetric matrices. 11. What problem with a known lower bound is most similar to the one in question? After finding an appropriate reduction, do not forget to indicate an algorithm that makes the lower bound tight. 12. Use the problem reduction method.
相关文档
最新文档