第二型曲线积分论文
数学专业毕业论文-第二型曲线积分与曲面积分的计算方法

师范大学本科毕业论文题目:第二型曲线积分与曲面积分的计算方法专业:数学与应用数学系班:数学与信息科学系2006级数本2班毕业年份:姓名:学号:指导教师:职称:教授目录本科毕业论文任务书 (1)本科毕业论文开题报告 (3)本科毕业论文登记表 (5)毕业论文论文正文文稿 (7)本科毕业论文答辩记录 (15)西北师范大学本科毕业论文(设计)任务书注:1. 任务书由指导教师填写、经教研室主任及系主管教学副主任审批后,在第七学期末之前下达给学生..2. 文献查阅指引,应是对查阅内容和查阅方法的指引,即查阅什么和怎样查阅.渭南师范学院本科毕业论文(设计)开题报告注:开题报告是在导师的指导下,由学生填写。
李第二型曲线积分与曲面积分的计算方法李明松(渭南师范学院 数学与信息科学系2006级数本2班)摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目.关键词: 曲面积分;曲线积分1 引 言第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义.2 第二型曲线积分例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-⎰,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线o (0,0) 的弧.方法一:利用格林公式法L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的.解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L ,()()()()()()11sin cos sin cos xxLL xxL I e y b x y dx e y ax dye y b x y dx e y ax dy=-++---++-⎰⎰记为12I I I =- ,则由格林公式得:()1cos cos x xD DQ P I dxdy e y a e y b dxdy x y ⎛⎫∂∂⎡⎤=-=---- ⎪⎣⎦∂∂⎝⎭⎰⎰⎰⎰()()22Db a dxdy a b a π=-=-⎰⎰其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0因而:()222I bx dx a b =-=-⎰ ,从而()22231222222I I I a b a a b a b a πππ⎛⎫=-=-+=+- ⎪⎝⎭方法二:应用积分与路径无关化为参数的定积分法求解(1) 若 P Q y x∂∂=∂∂(与路径无关的条件), 则 ()()()()1111000,01,,,A x y x y B x y x y Pdx Qdy P x y dx Q x y dy +=+⎰⎰⎰(2) ()(),x t y t φϕ==()()()()()()()()'',,AB Pdx Qdy P t t t Q t t t dt βαφϕφφϕϕ⎡⎤+=+⎣⎦⎰⎰ α是起点 β是终点解: ()()()sin cos x x LI e y b x y dx e y ax dy =-++-⎰()sin cos x x LLe ydx e ydy b x y dx axdy =+-++⎰⎰记为12I I I =- ,对于1I ,积分与路径无关,所以()()0,02,0sin cos sin 0xx x a eydx e ydy e y+==⎰对于2I ,取L 的参数方程sin sin x a a ty a t=+⎧⎨=⎩,t 从0到π,得()()22223230223sin sin cos sincos cos 11222Lb x y dx axdy a b t a b t t a b t a t a t dt a b a a πππ++=---++=--+⎰⎰从而 23222I a b a ππ⎛⎫=+- ⎪⎝⎭对于空间第二曲线一般的解题过程为:LPdx Qdy Rdz ++⎰若L 闭合,P,Q,R 对各元偏导数连续Ldydz dzdx dxdyPdx Qdy Rdz x y z P Q R∑∂∂∂++=∂∂∂⎰⎰⎰若L 非闭,其参数方程为()()()()()()()()()()()()()()(),,',,',,'P x t y t z t x t Q x t y t z t y t R x t y t z t z t dtβα⎡⎤++⎣⎦⎰其中: ()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩α,β分别为L 的起点,终点参数值.例2 计算空间曲线积分I=()()()y z dx z x dy x y dz -+-+-⎰,其中曲线L为圆柱面222x y a +=与平面1x za h+=的交线()0,0a h >>,从X 轴正向看,曲线是逆时针方向.方法一:化为参数的定积分计算,对于这种封闭的曲线要充分利用[]0,2π上三角函数的正交性.解: 令 cos ,sin x a t y a t ==, 则()cos 111cos x a t z h h h t a a ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭于是I=()()()(){}()sin 1cos sin 1cos cos cos cos sin sin 2a t h t a t h t a t a t a t a t h t dt a a h π--⋅-+--⋅+-⋅⎡⎤⎡⎤⎣⎦⎣⎦=-+⎰方法二:解 :2dydzdzdx dxdyI dydz dzdx dxdy x y z y zz xx y∑∑∂∂∂==-++∂∂∂---⎰⎰⎰⎰ {}()21,1,1,0,1212xyD D h h dxdy dxdy a h a a a π⎧⎫⎛⎫=-⋅=-+=-+⎨⎬ ⎪⎩⎭⎝⎭⎰⎰⎰⎰3 第二型曲面积分例 3 计算曲面积分()2z x dydz zdxdy +-∑⎰⎰,其中∑为旋转抛物面()2212z x y =+ 介于平面z=0及z=1之间的部分的下侧.方法一:利用两类曲面积分的联系()cos cos cos Pdydz Qdzdx Rdxdy P Q R ds αβγ++=++⎰⎰⎰⎰ ()1其中cos ,cos ,cos αβγ是有向曲面∑上点(x ,y ,z )处的法向量的方向余弦. 解: {},,1n x y =-,{}cos ,cos ,cos n αβγ=⎧⎫= ()()22z x dydz zdxdy z x z ds ∑∑⎡⎤+-=+-⎢⎢⎣⎰⎰⎰⎰222∑∑==()2221Dx x y ++=()22212D x x y dxdy ⎡⎤=++⎢⎥⎣⎦⎰⎰22220cos 82r d rdr πθθπ⎡⎤=+=⎢⎥⎣⎦⎰⎰方法二:分面投影法如果∑由(),z z x y =给出,则()(),,,,,xyD R x y z dxdy R x y z x y dxdy =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()2如果∑由(),x x y z =给出,则()(),,,,,yzD P x y z dydz P x y z y z dydz =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()3 如果∑由(),y y z x =给出,则()(),.,,,zxD Q x y z dzdx Q x y z x z dzdx =±⎡⎤⎣⎦∑⎰⎰⎰⎰ ()4 等式右端的符号这样规定:如果积分曲面∑是由方程()()()(),,,,x x z y y y x z z z x y ===所给出的曲面上(前,右)侧,应取“+”,否则取“-”. 解:()()22z x dydz zdxdy z x dydz zdxdy ∑∑∑+-=+-⎰⎰⎰⎰⎰⎰()()()222z x dydz z x dydz z x dydz∑∑∑=+=+++⎰⎰⎰⎰⎰⎰后前((22yzyzD D z dydz z dydz =--⎰⎰⎰⎰20244yzD dy π===⎰()2212xyD zdxdy x y dxdy ∑=-+⎰⎰⎰⎰22300142d r dr πθπ=-=-⎰⎰所以()28z x dydz zdxdy π∑+-=⎰⎰方法三 :合一投影法前面我们看到,按分面投影发计算曲面积分时,对不同类型的积分项必须将曲面用不同的方程表示,然后转化为不同坐标面上的二重积分,这种方式形式上虽然简单但计算比较繁琐.事实上,如果∑的方程(),z z x y =, (),xy x y D ∈,(xy D 是∑在xoy 面上的投影区域),函数,,P Q R 在∑上连续时,则单位法向量为 n e ={}cos ,cos ,cos αβγZ ⎧⎫-=± 由于投影元素 cos dydz ds α=, cos dzdx ds β=,cos dxdy ds γ=,于是得到cos cos cos cos cos cos cos cos cos cos cos cos x y dydz ds ds dxdy Z dxdy dzdx ds ds dxdy Z dxdyαααγγγβββγγγ====-====-所以()()()()()()()(){}()(),,,,,,,,,,,,,,,,,xyxyx y D x y D P x y z dydz Q x y z dzdx R x y z dxdyP x y z x y Z x y Q x y z x y Z x y R x y z x y dxdy P Z Q Z R dxdy∑++⎡⎤=±⋅-+-+⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=±⋅-+⋅-+⎣⎦⎰⎰⎰⎰⎰⎰ 等式右端的符号这样确定:如果∑是由方程所给出的曲面上侧,取“+”,否则取“-”. 当∑可用显示方程(),y y z x =或(),x x y z =表示时,只需注意到此时∑的法向 量为{},1,x x y y y ---或{}1,,y z x x --,可得相应公式. 上述方法将上式中的三种类型积分转化为同一坐标面上的二重积分,故名为合一投影法.解:()2212z x y =+,∑在xoy 面上的投影区域:xy D =(){}22,4x y x y +≤,又∑的下侧,x z x =,故由上式可得:()()()()()2222222222222200114212cos 82xy xy D D z x dydz zdxdy x y x x x y dxdyx x y dxdyr d r rdr πθθπ∑⎧⎫⎡⎤+-=-++--+⎨⎬⎢⎥⎣⎦⎩⎭⎡⎤=-++⎢⎥⎣⎦⎡⎤=+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰方法四:高斯公式,,P Q R Pdydz Qdzdx Rdxdy dv x y z ∑Ω⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰解:曲面不是封闭曲面,不能直接利用高斯公式,应补面12z =∑的上侧,则用高斯公式()1200zx dydz zdxdy dv Ω++-==∑∑⎰⎰⎰⎰⎰所以 ()()122z x dydz zdxdy z x dydz zdxdy +-=-+-∑∑⎰⎰⎰⎰又()112028xyD zx dydz zdxdy zdxdy dxdy π+-=--=-∑∑⎰⎰⎰⎰⎰⎰所以 ()28z x dydz zdxdy π∑+-=⎰⎰4 小结从以上对试题的分析,发现不同年份的命题,多次考到相同的知识点,并且吻合于通用教材教学中的难点重点,虽然考试题目千变万化,但教材的内容相对稳定,因此只有吃透教材,抓住重点难点,克服盲点复习,达到以静制动.过本文的分析,希望对大家有一定的指导作用. (指导教师:吕国亮)参考文献[1] 华东师大数学系. 数学分析(下)[M],第三版. 高等教育出版社,2001,224-231. [2] 刘玉琏,傅沛仁等.数学分析讲义(下)[M],第四版. 高等教育出版社,2003, 375-388. [3] 林源渠,方企勤. 数学分析解题指南[M]. 北京大学出版社,2001,338-362. [4] 陈文灯. 数学复习指南[M]. 世界图书出版社,2000,276-287.[5] 田勇.硕士研究生入学考试历年真题解析[M]. 机械工业出版社,2002,175-188. [6] 华中科技大学数学系.考研特别快车—数学[M].华中科技大学出版社,2001. 204-212. [7] 孙一生. 第二型曲线与曲面积分计算的基本方法与技巧[J].《哈尔滨师范大学自然科学学报》,1989,5(2):106-112.[8] 陈少元. 第二型曲线积分计算方法与技巧[J]. 科技信息(学术版),2007(1):12-15.The Second Type Cruve Total And Song Computing Technology That Area Divide IntoLI Ming-song(Class 2 Grade 2006, Department of Mathematic and Information Science, Weinan Teachers University)Abstract :This text is it turn to make total mark law parameter to utilize mainly,Green formula,total mark answer the second type cure exercise question of integration with method that route have nothing to do;Unilize song connection that area assign,divide into the surface projection law,unify the projection law,gausses of formmula answer the second type song topic that area divide.Key words:The area of the song is divided;The total mark of curve。
曲线积分和曲面积分论文 (2)

曲线积分和曲面积分论文引言曲线积分和曲面积分是微积分中重要的概念,具有广泛的应用领域。
本论文旨在介绍曲线积分和曲面积分的概念和计算方法,并讨论在实际应用中的一些应用情况。
曲线积分在微积分中,曲线积分用于计算沿一条曲线的函数的积分。
曲线积分有两种类型:第一类是沿曲线的弧长对函数进行积分,称为第一类曲线积分,第二类是对曲线上的函数在曲线元素上积分,称为第二类曲线积分。
第一类曲线积分第一类曲线积分表示为:$$ \\int_C f(x, y) ds $$其中,f(f,f)是曲线上的函数,ff表示沿曲线元素的弧长。
计算第一类曲线积分的方法通常包括参数化曲线和坐标变换两种。
例如,计算函数f(f,f)=f2+f2在曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 上的第一类曲线积分。
首先,通过参数化得到曲线的弧长元素:$$ ds = \\sqrt{\\left(\\frac{dx}{dt}\\right)^2 +\\left(\\frac{dy}{dt}\\right)^2} dt $$代入曲线方程得到:$$ ds = \\sqrt{\\left(-\\sin(t)\\right)^2 +\\left(\\cos(t)\\right)^2} dt = dt $$然后,将函数和弧长元素代入积分得到:$$ \\int_C f(x, y) ds = \\int_0^{2\\pi} (1) dt = 2\\pi $$第二类曲线积分第二类曲线积分表示为:$$ \\int_C \\mathbf{F} \\cdot d\\mathbf{r} $$其中,$\\mathbf{F}$ 是曲线上的向量函数,$d\\mathbf{r}$ 表示曲线元素。
计算第二类曲线积分的方法通常包括参数化曲线和曲线方程两种。
例如,计算向量函数 $\\mathbf{F}(x, y) = (x, y)$ 沿曲线 $C: x = \\cos(t), y = \\sin(t), 0 \\leq t \\leq 2\\pi$ 的第二类曲线积分。
曲线积分和曲面积分论文

曲线积分和曲面积分论文引言曲线积分和曲面积分是微积分中重要的概念,用于计算曲线上和曲面上的物理量。
在数学、物理、工程等领域都有广泛的应用。
本文将介绍曲线积分和曲面积分的定义、性质和计算方法,并通过简单的例子加深理解。
曲线积分定义曲线积分是指沿曲线上的函数的积分。
设曲线C为向量函数r(t)在区间[a, b]上的路径,则曲线积分的定义为:∫C f·dr = ∫[a,b] f(r(t))·r'(t)dt其中,f为定义在C上的向量函数,r(t)为描述曲线C的向量函数,r’(t)为r(t)的导数。
性质•曲线积分的值与参数化无关,即参数化不同,但曲线积分的值相同。
•曲线积分满足线性性质,即∫(af + bg)·dr = a∫f·dr + b∫g·dr,其中a和b为常数。
•曲线积分可以通过路径分割来计算,即把曲线C分割成若干小段,然后对每一小段进行积分求和。
•曲线积分可以分为第一类曲线积分和第二类曲线积分。
计算方法计算曲线积分的方法有两种:参数化法和曲线长度法。
参数化法参数化法通过选择合适的参数化方程来计算曲线积分。
具体步骤如下: 1. 选择合适的参数化方程r(t)。
常见的参数化方程有极坐标参数化、直角坐标参数化等。
2. 计算r(t)的导数r’(t)。
3. 将函数f(r(t))·r’(t)dt代入曲线积分的定义中,计算定积分。
曲线长度法曲线长度法通过计算曲线的长度和曲线上函数的积分来计算曲线积分。
具体步骤如下: 1. 计算曲线C的长度L。
2. 将函数f(r)·T(s)ds代入曲线积分的定义中,其中s为曲线长度参数,T(s)为曲线的切向量。
3. 对s的范围进行积分,即∫[0,L] f(r)·T(s)ds。
例子计算曲线积分∫C (2x+3y)·dr,其中C为圆x^2 + y^2 = 1。
选择圆的参数化方程为:x = cos(t)y = sin(t)计算r’(t)得到:r'(t) = (-sin(t), cos(t))将函数f(r(t))·r’(t)dt代入曲线积分的定义,得到:∫C (2x+3y)·dr = ∫[0,2π] (2cos(t)+3sin(t))·(-si n(t), cos(t))dt= ∫[0,2π] (-2sin(t)cos(t)-3sin(t)sin (t))dt= ∫[0,2π] (-2sin(t)cos(t)-3/2sin(2t)) dt= -π因此,曲线积分∫C (2x+3y)·dr的值为-π。
二元函数的积分中值定理的探究

目录摘要 (I)关键词 (I)Abstract (II)Key words (II)前言 (1)1预备知识 (1)1.1相关定理 (1)2 多元函数积分中值定理的各种形式 (2)2.1 曲线积分中值定理的推广 (2)2.1.1第一型曲线积分中值定理 (2)2.1.2第二型曲线积分中值定理 (4)2.2二重积分中值定理的探究及推广 (5)2.3曲面积分中值定理的探究及推广 (7)2.3.1第一型曲面积分中值定理 (7)2.3.2第二型曲面积分中值定理 (7)结论 (9)参考文献 (10)致谢 (11)摘要:积分中值定理是数学分析的重要定理,我们主要讨论了二元函数的曲线、重积分、曲面的各种形式中值定理,而且还给出了这些定理的证明过程,最后总结出各类积分中值定理的形式.关键词:积分中值定理;第二中值定理;曲线积分中值定理;二重积分中值定理;曲面积分中值定理Study on mean-value theorems for Riemann-Stieltjes integrals offunctions of two variablesAbstract: Mean-value theorems for integrals are one of theorems in mathematical analysis. In this paper mean-value theorem for Riemann-Stieltjes integrals of functions of two variables are discussed. We obtain all kinds of mean-value theorems for integrals which include curvilinear, multiple and surface integrals. Finally, the proofs of mean-value theorems are given.Key word s: mean-value theorem integral; second mean-value theorems; curvilinear integral; multiple integrals; surface integrals二元函数的积分中值定理的探究前言积分中值定理是微积分中的一个重要定理,主要包含一元函数及多元函数的积分中值定理,它在数学分析中占有很重要的地位.但是许多文献,对于多元函数的曲线积分、曲面积分、重积分的中值定理的探究相对较少或相对浅略.基于这个理由,我们将借鉴一元函数的第一、第二积分中值定理的研究方法及思想,在文献[1-6]的基础上,主要讨论二元函数的积分中值定理在曲线、曲面、重积分情形上是否成立,通过研究该课题,进一步完善积分中值定理的相关理论.1预备知识1.1相关定理定理1[5]假设M 和m 分别为函数()f x 在区间[,]a b 上的最大值和最小值,且()f x 在区间[,]a b 上可积,则有()()()bam b a f x dx M b a -≤≤-⎰ ()a b <成立. 定理2[5](一元函数的介值性定理 ) 设函数()f x 在闭区间[,]a b 上连续.并且函数()f a 与()f b 函数不相等.如果μ是介于()f a 和()f b 之间的任何实数()()f a f b μ<<或()()f a f b μ>>,则至少存在一点0x ,使得0()f x μ=成立,其中0(,)x a b ∈. 定理3[5](二元函数的介值性定理)设函数f 在区域2D R ⊂上连续,若12,P P 为D 中任意两点,且12()()f P f P <,则对任何满足不等式12()()f P f P μ<<的实数μ,必存在点0p D ∈,使得0()f P μ=.定理4]3[(定积分中值定理)如果函数()f x 在闭区间[,]a b 上连续,则在区间[,]a b 上至少存在一个点ξ,使下式()()()baf x dx f b a ξ=-⎰()a b ξ≤≤成立.定理5]3[(推广的第一积分中值定理)如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰ ()a b ξ≤≤成立. 定理6]3[(积分第二中值定理)如果函数()f x 在闭区间[,]a b 上可积,而()g x 在区间(,)a b 上单调,则在[,]a b 上至少存在一点ξ,使下式成立()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰定义1[6]设平面光滑曲线L :(),(),[,]x x t y y t t αβ==∈,两端点为((),())A x y αα和((),())B x y ββ.若()x t 在[,]αβ上不变号,称曲线L 关于坐标x 是无反向的. 若()y t 在[,]αβ上不变号,称曲线L 关于坐标y 是无反向的.2 多元函数积分中值定理的各种形式受文献[1],文献[2]的启发,本文主要对曲线积分的三种形式,二重积分及曲面积分的三种形式的中值定理进行探讨.2.1 曲线积分中值定理的推广首先对曲线积分中值定理进行探讨,在本文中只讨论曲线C :(),(),[,]x x t y y t t αβ==∈为参数方程的情形,而对于曲线C 为直角坐标形式及其它形式的积分中值定理类似地可得到. 2.1.1(第一型曲线积分中值定理)定理7 如果函数(,)f x y 在光滑有界曲线C :(),(),[,]x x t y y t t αβ==∈上连续,则在曲线C 上至少存在一点(,)ξη.使(,)(,)Cf x y ds f S ξη=⎰成立,其中Cds ⎰为曲线C 的弧长,并且Cds S =⎰.证明 因为函数(,)f x y 在光滑有界闭曲线C 上连续,所以22(,)((),())()()Cf x y ds f x t y t x t y t dt βα''=+⎰⎰记 22()((),()),()()()F t f x t y t G t x t y t ''==+由已知条件知()F t 在[,]αβ上连续,()G t 在[,]αβ上连续且非负,则根据推广的第一积分中值定理,0[,]t αβ∃∈,00(,)((),())x t y t ξη=使2222(,)((),())()()(,)()()(,)Cf x y ds f x t y t x t y t dt f x t y t dt f S ββααξηξη''''=+=+=⎰⎰⎰成立.即(,)(,)Cf x y ds f S ξη=⎰从而命题得证.在数学分析等文献中仅仅阐述了定理7,而对两个函数乘积的曲线积分中值定理未提到,下面我们将对其探究证明,并进行推广.定理8]1[如果函数(,),(,)f x y g x y 在光滑有界曲线C (),(),[,]x x t y y t t αβ==∈上连续,(,)g x y 在C 上不变号,则在曲线C 上至少存在一点(,)ξη,使(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰成立.证明 由于22(,)(,)((),())((),())()()Cf x yg x y ds f x t y t g x t y t x t y t dt βα''=+⎰⎰,由条件知,(,)g x y 在C 上不变号,则22((),())()()g x t y t x t y t ''+在[,]αβ上不变号,(,),(,)f x y g x y 又在C 上连续,由此可知22((),())((),())()()f x t y t g x t y t x t y t ''+在[,]αβ上也连续. 由定理7可知0[,]t αβ∃∈,使得00(,)((),())x t y t ξη=,有以下式子222200((),())((),())()()((),())((),())()()f x t y t g x t y t x t y t dt f x t y t g x t y t x t y t dt ββαα''''+=+⎰⎰成立. 即(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰从而命题得证.定理9如果函数(,),(,)f x y g x y 在光滑有界闭曲线(,)C A B :(),()x x t y y t ==,[,]t αβ∈上连续可积,(,)g x y 在C 上不变号,其中min (,)m f x y =,max (,)M f x y =,其中(,)x y C ∈.则在曲线(,)C A B 上至少存在一点O ,把曲线(,)C A B 分为曲线1(,)C A O 和曲线2(,)C O B ,使得12(,)(,)(,)(,)(,)(,)CC A O C O B f x y g x y ds m g x y ds M g x y ds =+⎰⎰⎰成立.证明 由定理8知(,)(,)(,)(,)CCf x yg x y ds f g x y ds ξη=⎰⎰,记(,)f k ξη=,则有m k M <<.记12(,)(,)(,)(,)(,)C A O C O B CQ k g x y ds m g x y ds M g x y ds =--⎰⎰⎰Q 是关于点(,)O x y 的函数. (1)当(,)0Cg x y ds =⎰时,显然成立.(2)当(,)0Cg x y ds >⎰,当1C C =时, 则有1(,)(,)(,)()(,)C A O CCQ k g x y ds m g x y ds k m g x y ds =-=-⎰⎰⎰;由于0k m ->,,于是有1(,)(,)(,)()(,)0C A O CCQ k g x y ds m g x y ds k m g x y ds =-=->⎰⎰⎰即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =-->⎰⎰⎰.当2C C =时, 则有1(,)(,)(,)()(,)C A O CCQ k g x y ds M g x y ds k M g x y ds =-=-⎰⎰⎰;由于0k M -<,(,)0Cg x y ds >⎰,于是有1(,)(,)(,)()(,)0C A O CCQ k g x y ds M g x y ds k M g x y ds =-=-<⎰⎰⎰,即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =--<⎰⎰⎰.(3)当(,)0Cg x y ds <⎰,类似可讨论.综上由零点存在定理,则至少有一点O C ∈,使得0Q =,即12(,)(,)(,)(,)(,)0C A O C O B CQ k g x y ds m g x y ds M g x y ds =--=⎰⎰⎰即12(,)(,)(,)(,)(,)(,)CC A O C O B f x y g x y ds m g x y ds M g x y ds =+⎰⎰⎰从而命题得证.以上给出了二元函数的第一型曲线积分中值定理的三种形式及证明,而我们仅仅讨论了曲线C 形如(),(),[,]x x t y y t t αβ==∈的情形,对于直角坐标的情形,是否也能得到类似的三个定理,类似可讨论.2.1.2(第二型曲线积分中值定理)第二型曲线积分中值定理定理是否成立,接下来我们对其进行探讨. 如果成立,则有如下命题.函数(,)f x y 在光滑有向曲线C 上连续,其中I 为光滑有向曲线C 在x 轴正向上的投影,其中符号“±”是由曲线C 的方向确定的,则在曲线C 上至少存在一点(,)ξη,使得(,)(,)Cf x y dx f I ξη=±⎰(1)成立.但有如下例子,设(,)f x y y =,曲线C 为圆,方程为222x y y +=.如图1图1 由积分的对称性知0C I dx -==⎰,可得(,)0f I ξη±=,而0Cy d x π=-≠⎰,故不可能存在点(,)C ξη∈使(1)成立.于是第二型曲线积分中值定理在此不成立.由此可见第二型曲线积分中值定理一般不成立,下面我们探讨特殊形式的第二型曲线积分中值定理. 定理10]1[设(,)P x y ,(,)Q x y 在定向光滑曲线L 上连续,曲线L 上任意一点(,)x y 处与L 方向一致的切线方向与x 轴余弦为cos α,且(,)Q x y 在曲线L 上不变号,则在L 至少存在一点(,)ξη,O X Y 1使得(,)(,)(,)(,)LLP x y Q x y dx P Q x y dx ξη=⎰⎰证明 因为(,)(,)(,)(,)cos LLP x y Q x y dx P x y Q x y ds α=⎰⎰且(,)P x y ,(,)Q x y 在L 上连续,(,)cos Q x y α在曲线L 上不变号,由于曲线L 光滑,从而cos α在线L 上连续,由定理8知,存在(,)L ξη∈,使得(,)(,)cos (,)(,)cos (,)(,)LLLP x y Q x y ds P Q x y ds P Q x y dx αξηαξη==⎰⎰⎰即(,)(,)(,)(,)LLP x y Q x y dx P Q x y dx ξη=⎰⎰从而命题得证. 定理11[6]设曲线L 关于坐标x 是无反向的,(,)f x y ,(,)g x y 为定义在L 上的二元函数,满足(,)f x y ,(,)g x y 沿曲线L 从A 到B 关于坐标x 第二型可积,(,)f x y 在L 上是可介值的,(,)g x y 在L 上不变号.则至少存在一点(,)P L ξη∈,,P A B ≠,使得(,)(,)(,)(,)LLf x yg x y dx f g x y dx ξη=⎰⎰成立.证明过程参考文献[6].推论1设曲线L 关于坐标x 是无反向的,(,)f x y 为定义在L 上的二元函数, (,)f x y 在L 上是可介值的.则至少存在一点(,)P L ξη∈,,P A B ≠,使得(,)(,)LLf x y dx f dx ξη=⎰⎰成立.即(,)(,)Cf x y dx f I ξη=±⎰I 为光滑有向曲线C 在x 轴正向上的投影.类似的,可以推广到对坐标y 的曲线积分以及空间曲线积分上的情形.2.2二重积分中值定理的探究及推广下面给出二重积分中值定理的三种形式.定理12假设函数(,)f x y 在有界是D 的面积,则在D 上至少存在一点(,)ξη使得(,)(,)DDf x y ds f ds ξη=⎰⎰⎰⎰成立.证明 由于函数(,)f x y 在闭区域D 上连续,假设(,)f x y 在闭区域D 上的最大值和最小值分别为,M m ,即(,)m f x y M ≤≤.对不等式在区域D 上进行二重积分可得,(,)DDDmds f x y ds Mds ≤≤⎰⎰⎰⎰⎰⎰即(,)DDDm ds f x y ds M ds ≤≤⎰⎰⎰⎰⎰⎰其中Dds ⎰⎰为闭区域D 的面积,我们不妨记Dds σ=⎰⎰.有 (,)Dm f x y ds M σσ≤≤⎰⎰由于0σ≠,将不等式除以σ可得1(,)Dm f x y ds M σ≤≤⎰⎰ 由于函数(,)f x y 在闭区域D 上连续,由二元函数的介值性定理知,则在D 上至少存在一点(,)ξη使得1(,)(,)Df x y ds f ξησ=⎰⎰ 成立.将上式两边同乘以σ即可得到(,)(,)DDf x y ds f ds ξη=⎰⎰⎰⎰从而命题得证.定理13假设函数(,)f x y 在闭区域D 上连续,(,)g x y 在D 上可积且不变号,其中σ是D 的面积,则在D 上至少存在一点(,)ξη使得(,)(,)(,)(,)DDf x yg x y ds f g x y d ξησ=⎰⎰⎰⎰成立.证明 不妨设(,)0((,))g x y x y D ≥∈由于函数(,)f x y 在闭区域D 上连续,(,)f x y 在闭区域D 上的最大值和最小值分别为,M m ,即(,)m f x y M ≤≤,从而(,)(,)(,)(,)DDDm g x y dxdy f x y g x y dxdy M g x y dxdy ≤≤⎰⎰⎰⎰⎰⎰若 (,)0Dg x y dxdy =⎰⎰则(,)(,)0Df x yg x y dxdy =⎰⎰成立.即对任意(,)D ξη∈,等式成立; 若(,)0Dg x y dxdy >⎰⎰(,)(,)(,)DDf x yg x y dxdym M g x y dxdy≤≤⎰⎰⎰⎰由二元函数的介值性定理,存在(,)D ξη∈. 使得(,)(,)(,)(,)DDf x yg x y dxdyf g x y dxdyξη=⎰⎰⎰⎰即(,)(,)(,)(,)DDf x yg x y ds f g x y d ξησ=⎰⎰⎰⎰从而命题得证.定理14假设函数(,)f x y 在闭区域D 上连续,(,)g x y 在D 上可积且不变号,其中σ是D 的面积,存在两个区域满足12D D D ⋃=,12D D ⋂=∅,(,)f x y 在1D ,2D 上都可积,记min (,)m f x y =,max (,)M f x y =,其中(,x y D ∈).则有12(,)(,)(,)(,)DD D f x y g x y ds m g x y d M g x y d σσ=+⎰⎰⎰⎰⎰⎰成立.证明参照定理9的方法及思想即可以得到.2.3曲面积分中值定理的探究及推广下面分别给出第一型曲面积分与第二型曲面积分中值定理的几种形式. 2.3.1(第一型曲面积分中值定理)定理15设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,(,,)g x y z 在S 上连续,(,,)g x y z 在S 上不变号,则在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)(,,)(,,)SSf x y zg x y z dS f g x y z ds ξηδ=⎰⎰⎰⎰成立,其中A 是曲面S 的面积.证明 因为22(,,)(,,)(,,(,))(,,(,))1x y SDf x y zg x y z dS f x y z x y g x y z x y z z d σ''=++⎰⎰⎰⎰因为(,,)f x y z ,(,,)g x y z 在曲面S 上连续,可得22(,,(,))(,,(,))1x y f x y z x y g x y z x y z z ''++在D 上也连续,由于(,,)g x y z 在S 上不变号,所以22(,,(,))1x y g x y z x y z z ''++在D 上不变号.由二重积分的中值定理(定理13),可知存在(,)D ξη∈,使得(,)z δξη=,且2222(,,(,))(,,(,))1(,,(,))(,,(,))1x y x y DDf x y z x yg x y z x y z z d f z g x y z x y z z d σξηξησ''''++=++⎰⎰⎰⎰(,,(,)(,,)(,,)(,,)SSf zg x y z ds f g x y z ds ξηξηξηδ==⎰⎰⎰⎰从而命题得证.推论2 设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,在S 上连续,在S 上不变号,则在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)Sf x y z dS f A ξηδ=⎰⎰成立,其中A 是曲面S 的面积.定理16设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z ,(,,)g x y z 在S 上连续,(,,)g x y z 在S 上不变号,存在两个光滑曲面满足12S S S ⋃=,12S S ⋂=∅,(,,)f x y z 在1S ,2S 上都可积,记m i n (,,m f x y z =,max (,,)M f x y z =.其中(,,)x y z S ∈则有12(,,)(,,)(,,)(,,)SS S f x y z g x y z dS m g x y z ds M g x y z ds =+⎰⎰⎰⎰⎰⎰成立.证明方法参照定理9.在这里我们证明了第一型曲面积分的积分中值定理的几种类型,并进行了推广探究,得到了相关的定理.2.3.2(第二型曲面积分中值定理)接下来我们对第二型曲面积分的积分中值定理是否成立?以及有几种类型进行探讨. 若成立,则有如下面命题.若有光滑曲面:(,),(,)yz S z x y x y D ∈,其中yz D 是有界闭区域,函数(,,)f x y z 在S 上连续,A 是S 的投影yz D 的面积,由此在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)S f x y z dydz f A ξηζ=±⎰(2)成立.但有如下例子, 设S 是2221x y z ++=在0z ≥的部分,并取球面外侧为正,把曲面表示为参量方程sin cos x ϕθ=,sin sin y ϕθ=,cos z ϕ= ,02)2πϕθπ≤≤≤≤(0可得 2(,)sin cos (,)yy y z A zz ϕθϕθϕθϕθ∂∂∂∂∂===∂∂∂∂∂ 他们在yz 平面上的投影区域如图2,图2可知222200(,)sin cos sin cos 0(,)S D D y z A dydz d d d d d d ϕθϕθππϕθϕθϕθϕϕθθϕθ-∂=====∂⎰⎰⎰⎰⎰⎰⎰⎰,从而(,,)0f A ξηζ±=,取3(,,)f x y z x =,则有254542002(,,)sin cos sin cos 05S D f x y z dydz d d d d ϕθππϕθϕθϕϕθθπ===≠⎰⎰⎰⎰⎰⎰. 故曲面S 上不存在一点(,,)ξηζ,使(2)成立. 于是第二型曲面积分中值定理在此不成立.由此可见第二型曲面积分中值定理一般不成立,下面我们探讨特殊形式的第二型曲面积分中值定理.定理17[1]设(,,)F x y z ,(,,)Q x y z 在定侧光滑曲面S :(,)z z x y =,(,)x y D ∈上连续,(,,)Q x y z 在S 上不变号,则在S 上至少存在一点(,,)ξηζ,使得(,,)(,,)(,,)(,,)S SF x y z Q x y z dxdy F Q x y z dxdy ξης=⎰⎰⎰⎰ 证明 不妨设曲面S :(,)z z x y =,(,)x y D ∈取上侧,曲面S 上点(,,(,))x y z x y 处外法向量的方向角为α,β,γ,则221cos 1x y z z γ=''++,(,,)(,,)(,,)(,,)cos S SF x y z Q x y z dxdy F x y z Q x y z dS λ=⎰⎰⎰⎰ 由于(,,)F x y z ,(,,)Q x y z 在定侧光滑曲面S 上连续,(,,)Q x y z 在S 上不变号,曲面S 光滑,从而(,,)cos Q x y z γ在曲面S 上连续不变号,由定理15知,在曲面S 上至少存在一点(,,)ξηζ,使得(,,)(,,)cos (,,)(,,)cos S SF x y z Q x y z dS F Q x y z dS γξηςγ=⎰⎰⎰⎰ 又由于 (,,)(,,)cos (,,)(,,)S S F Q x y z dS F Q x y z dxdy ξηςγξης=⎰⎰⎰⎰即(,,)(,,)(,,)(,,)S SF x y z Q x y z dxdy F Q x y z dxdy ξης=⎰⎰⎰⎰ 从而命题得证. 结论本论文主要介绍了二元函数的曲线、曲面以及重积分的各类积分中值定理.另外,曲线积分中值定理的坐标形式,三元及三元以上函数的积分中值定理在此论文中未进行探究,望大家继续研究这些问题,进一步完善积分中值定理.参考文献[1]杜红霞.曲线积分与曲面积分中值定理[J].赣南师范学院报,2006,6:1-2.[2]冯美强.关于积分中值定理的改进[J].北京机械工业学院学报,2007,22(4):1-4.[3]皱成.二重积分中值定理的改进[J].石河子大学学报,2006,24(5):1-4.[4]王旭光.二重积分中值定理的推广[J].徐州师范大学,2007,23(4):1-6.[5]华东师范大学数学系.数学分析下册[M].高等教育出版社,2001:197-288.[6]唐国吉.第二型曲线积分中值定理[J].广西民族大学,2008,23:1-6.致谢本论文是在我的导师李云霞教授的亲切关怀和悉心指导下完成的,她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我 .在论文即将完成之际,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!。
本科毕业论文

本科毕业论文本科毕业论文范文毕业论文,泛指专科毕业论文、本科毕业论文(学士学位毕业论文)、硕士研究生毕业论文(硕士学位论文)、博士研究生毕业论文(博士学位论文)等,即需要在学业完成前写作并提交的论文,是教学或科研活动的重要组成部分之一。
本科毕业论文范文一:[摘要]曲线与曲面积分一直是数学分析教学中的难点。
本文从学习理论的视角,结合记忆规律,来分析造成学生学习曲线与曲面积分的困难原因,并由此提出一些教学建议,从而促进教学。
[关键词]记忆规律;曲面积分;曲线积分一、引言曲线与曲面积分是多元微积分学中的重要组成部分,也对后续课程,如常微分方程、偏微分方程、微分几何有着重要的应用。
历来是数学分析教学中的重点内容。
但是这部分内容也由于背景复杂,公式抽象、计算量大等原因,一直也是学生学习的难点。
造成这部分内容学习困难的原因有很多,本文主要结合学习理论中的记忆规律进行分析,并给出一些具体的教学建议。
二、记忆与数学记忆记忆是在头脑中积累、保存和提取个体经验的心理过程。
数学记忆是学生学习过的数学知识、技能、经验、思想观念在头脑中的反映,是学生通过数学学习积累知识、技能、经验、思想观念的功能表现。
〔1〕记忆在数学学习中起着重要的作用,如果没有记忆,知识就无法储存在学生的头脑之中,更无法用所学知识来解决问题。
依据记忆形式可以把数学记忆分为:机械记忆、理解记忆、概括记忆。
机械记忆是是指学生只能按照数学事实、数据、定理、概念、法则等所表现的形式进行记忆。
比如很多学生只是在形式上记住了牛顿-莱布尼兹公式,会用这个公式进行计算,但是并不一定理解这个公式所具有的来龙去脉以及几何背景。
理解记忆是指根据学生对数学学习材料的理解,运用有关的知识、经验进行记忆。
其特征之一是能够用自己的语言、事例说明对有关数学事实的含义或关系。
比如学生在学习完施密特正交化法之后,能够结合具体的三维向量,利用几何直观来解释这个定理。
概括记忆是指学生能够在理解的基础上,把所学习的材料进行概括,对其一般模式的概括进行记忆。
数学与应用数学毕业论文-第二类曲线积分的计算

数学与应用数学毕业论文-第二类曲线积分的计算第二类曲线积分的计算作者:指导老师:摘要:本文结合第二类曲线积分的背景和平面和空间图形第二类曲线积分的定义介绍第二类曲线积分的,重点是利用对称性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。
关键词:第二类曲线积分第一类曲线积分二重积分参数方程对称性原理斯托克斯公式1 引言本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。
1.1 第二类曲线积分的概念介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。
1.2第二类曲线积分的计算方法介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。
2第二类曲线积分的定义2.1第二类曲线积分的物理学背景力场沿平面曲线从点A到点B所作的功一质点受变力的作用沿平面曲线运动,当质点从之一端点移动到另一端时,求力所做功。
大家知道,如果质点受常力的作用从沿直线运动到,那末这个常力所做功为 . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢?为此,我们对有向曲线作分割,即在内插入个分点与一起把曲线分成个有向小曲线段 ,记小曲线段的弧长为.则分割的细度为.设力在轴和轴方向上的投影分别为与,那么由于则有向小曲线段在轴和轴方向上的投影分别为.记从而力在小曲线段上所作的功 +其中为小曲线段上任一点,于是力沿所作的功可近似等于当时,右端积分和式的极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分。
2.2 第二型曲线积分的定义设,为定义在光滑或分段光滑平面有向曲线上的函数,对任一分割,它把分成个小弧段;其中 .记各个小弧段弧长为,分割的细度为,又设的分点的坐标为,并记 , . 在每个小弧段上任取一点,若极限。
存在且与分割与点的取法无关,则称此极限为函数,在有向线段上的第二类曲线积分,记为或也可记作或注: 1 若记 ,则上述记号可写成向量形式。
无穷曲线上的第二类曲线积分

无穷曲线上的第二类曲线积分
黄 华
=;!@<A) (重庆文理学院数学与计算机科学系,重庆永川
[摘
要] 在有限长曲线段上的 第 二 类 曲 线 积 分 定 义 的 基 础 上, 对 第 二 类 曲 线 积 分 做 了 进 一 步 推 广,
给出了曲线长度为无穷长情形的第二类曲线积分定义与相关性质及其收敛性判定法,最后举例对无 穷 曲线上的第二类曲线积分进行了计算。 [关键词] 无穷曲线;曲线积分;性质;收敛 [中图分类号] B@CC & ! [文献标识码] > [文章编号] @;;A D @CAE (!;;<) ;! D ;;;CF;G
" "
要条件是对于任意给定的 " 4 ) ,总存在 - 4 ) ,对于 ! 上任何两点 * & , * ! %!,当 ( , ( # $* & ) # $* ! )4 - 时,
"
有
* !
&
*!
!・"#
"
*" 恒成立。
" " " " &
证明:设 % 为! 上的任意一点, # " ( ,因 ! # $% ) !・ "# 收敛,即 567 ! !・"# 存 在 的 充 分 必 要 条 件 为 $% ! # % + 任意给定 " 4 ) ,总存在 - 4 ) ,对于 ! 上任何两点 * & , * ! %!,当 ( , ( # $* & ) # $* ! ) 4 - 时,恒有
"
; ,总存在曲线上两点 ! 、 " 使得 # ( !" ) K $ 恒成立,则称 ! 为无穷曲线。 定义 ! 设% J (& ( ’, , ( ’, , ( ’, ) 为定义在光滑或分段光滑的空间无穷曲线 ! 上的有 (, )) * (, )) + (, ))
第二型曲线积分论文

目录1 引言 (1)2 文献综述 (1)2.1国内外研究现状 (1)2.2国内外研究现状评价 (1)2.3提出问题 (2)3预备知识 (2)3.1第二型曲线积分的定义 (2)3.2第二型曲线积分的性质 (3)4第二型曲线积分的计算 (4)4.1直接计算 (4)4.2利用格林公式计算 (12)4.3利用曲线与路径无关计算 (14)4.4利用奇偶对称性计算 (16)4.5利用数学软件Mathmatic进行计算 (16)5结论 (19)5.1主要观点 (19)5.2启示 (19)5.3局限性 (19)5.4努力方向 (19)参考文献 (20)1 引言第二型曲线积分与第一型曲线积分相比有明显不同的几何意义和物理意义,第一型曲线积分可以看成是定积分的计算,其意义较容易理解,计算也相对简单.而第二型曲线积分又称为对坐标的积分,具有第一型曲线积分不具有的方向性,计算较为复杂,物理意义十分明显,变力分别在x轴,y轴沿曲线做功,这在物理学上有着重要的应用. 对于不同类型的被积函数,对应的计算方法也不同.为了使计算更为简单,本文阐述了第二类曲线积分的计算方法,不仅可以通过参数方程转化为定积分来计算,而且对于平面曲线还可以通过格林公式转化为对二重积分的计算,第二类曲线积分还可以通过对称性分奇偶两种情况简化计算或利用了数学软件Mathmatic进行计算.2 文献综述2.1 国内外研究现状查阅相关文献,众多数学教育者从不同角度和侧面探讨了第二型曲线积分的计算.刘玉琏在文献[1]中论述了第二形曲线积分的概念及其性质;富景龙在文献[2]中概括了第二型曲线积分被积函数的类型;薛嘉庆在文献[3]中讲了被积函数的类型不同有不同的计算方法,并给出了相应的例子;刘国均等在文献[4-5]中探究了第二型曲线积分可以化为定积分来计算,并给出公式及相应的证明;刘莲芬等在文献[6-7]介绍了在第二型曲线积分的计算中将路径的参数方程表示出来;王景克在文献[8-9]简述了做题常用的技巧;陈先开在文献[11-12]研究了曲线积分与路径无关问题与如何判断曲线积分与路径无关;陈文灯,黄先开在文献[13]中介绍了格林公式,并提供了一定的实例,并通过实例总结了计算第二型曲线积分的一般步骤;武艳等在文献[14]给出利用对称性计算第二型曲线积分,使得计算简单;阳明盛及林建华在文献[15]中提出了用数学软件Mathemactica解题的调用格式,使得复杂的计算简单化.2.2国内外现状评价从上面相关的研究中可以看出,许多对第二型曲线积分计算的研究者从不同的方面进行了相应的研究,但都只是从某一个方面进行讨论,大部分文献都没有结合数学软件Mathmatic进行空间画图及计算.2.3提出问题对于第二型曲线积分的计算方法有多种,那么它的计算方法具体有哪些呢?本文在参考相关文献的基础上对这一问题进行了综述,把数学软件Mathmatic 也应用在其中,并例举了一些具有针对性、典范性的例题.3预备知识为了更好的讲述第二型曲线积分的计算,我们下面来介绍第二型曲线积分的定义及其相关性质.3.1第二型曲线积分的定义设平面上有光滑有向曲线),(B A C 二元函数),(y x f 在曲线C 上有定义.用任意分法T ,将曲线C 依次分成n 个有向小弧:⌒10A A ,⌒21A A ,…,⌒n n A A 1-,其中B A A A n ==,0.设第k 个小弧⌒k k A A 1-的弦−→−-k k A A 1在x 轴与y 轴上投影区间的长分别是k x ∆与k y ∆.在第k 个小弧⌒k k A A 1-上任取一点),(k k k E ηε−→−.作和⋅∑=),(k k n k k F ηξ1k x ∆ , ⋅∑=),(k k nk k F ηξ1k y ∆ , (1)分别称为二元函数),(y x f 在曲线),(B A C 关于x 与y 的积分和.令},...,,m ax {)(n s s s T ∆∆∆=21λ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 引言 (1)2 文献综述 (1)2.1国内外研究现状 (1)2.2国内外研究现状评价 (1)2.3提出问题 (2)3预备知识 (2)3.1第二型曲线积分的定义 (2)3.2第二型曲线积分的性质 (3)4第二型曲线积分的计算 (4)4.1直接计算 (4)4.2利用格林公式计算 (12)4.3利用曲线与路径无关计算 (14)4.4利用奇偶对称性计算 (16)4.5利用数学软件Mathmatic进行计算 (16)5结论 (19)5.1主要观点 (19)5.2启示 (19)5.3局限性 (19)5.4努力方向 (19)参考文献 (20)1 引言第二型曲线积分与第一型曲线积分相比有明显不同的几何意义和物理意义,第一型曲线积分可以看成是定积分的计算,其意义较容易理解,计算也相对简单.而第二型曲线积分又称为对坐标的积分,具有第一型曲线积分不具有的方向性,计算较为复杂,物理意义十分明显,变力分别在x轴,y轴沿曲线做功,这在物理学上有着重要的应用. 对于不同类型的被积函数,对应的计算方法也不同.为了使计算更为简单,本文阐述了第二类曲线积分的计算方法,不仅可以通过参数方程转化为定积分来计算,而且对于平面曲线还可以通过格林公式转化为对二重积分的计算,第二类曲线积分还可以通过对称性分奇偶两种情况简化计算或利用了数学软件Mathmatic进行计算.2 文献综述2.1 国内外研究现状查阅相关文献,众多数学教育者从不同角度和侧面探讨了第二型曲线积分的计算.刘玉琏在文献[1]中论述了第二形曲线积分的概念及其性质;富景龙在文献[2]中概括了第二型曲线积分被积函数的类型;薛嘉庆在文献[3]中讲了被积函数的类型不同有不同的计算方法,并给出了相应的例子;刘国均等在文献[4-5]中探究了第二型曲线积分可以化为定积分来计算,并给出公式及相应的证明;刘莲芬等在文献[6-7]介绍了在第二型曲线积分的计算中将路径的参数方程表示出来;王景克在文献[8-9]简述了做题常用的技巧;陈先开在文献[11-12]研究了曲线积分与路径无关问题与如何判断曲线积分与路径无关;陈文灯,黄先开在文献[13]中介绍了格林公式,并提供了一定的实例,并通过实例总结了计算第二型曲线积分的一般步骤;武艳等在文献[14]给出利用对称性计算第二型曲线积分,使得计算简单;阳明盛及林建华在文献[15]中提出了用数学软件Mathemactica解题的调用格式,使得复杂的计算简单化.2.2国内外现状评价从上面相关的研究中可以看出,许多对第二型曲线积分计算的研究者从不同的方面进行了相应的研究,但都只是从某一个方面进行讨论,大部分文献都没有结合数学软件Mathmatic进行空间画图及计算.2.3提出问题对于第二型曲线积分的计算方法有多种,那么它的计算方法具体有哪些呢?本文在参考相关文献的基础上对这一问题进行了综述,把数学软件Mathmatic 也应用在其中,并例举了一些具有针对性、典范性的例题.3预备知识为了更好的讲述第二型曲线积分的计算,我们下面来介绍第二型曲线积分的定义及其相关性质.3.1第二型曲线积分的定义设平面上有光滑有向曲线),(B A C 二元函数),(y x f 在曲线C 上有定义.用任意分法T ,将曲线C 依次分成n 个有向小弧:⌒10A A ,⌒21A A ,…,⌒n n A A 1-,其中B A A A n ==,0.设第k 个小弧⌒k k A A 1-的弦−→−-k k A A 1在x 轴与y 轴上投影区间的长分别是k x ∆与k y ∆.在第k 个小弧⌒k k A A 1-上任取一点),(k k k E ηε−→−.作和⋅∑=),(k k n k k F ηξ1k x ∆ , ⋅∑=),(k k nk k F ηξ1k y ∆ , (1)分别称为二元函数),(y x f 在曲线),(B A C 关于x 与y 的积分和.令},...,,m ax {)(n s s s T ∆∆∆=21λ。
(k s ∆是第k 个小弧⌒k k A A 1-的长)若当0→)(T λ时,二元函数),(y x f 在曲线),(B A C 关于x (或y )的积分和(1)存在极限x J (或y J ),即x k nk k kI J x f =∆∑=→1),(lim)(ηελ(或y k nk k kI J x f =∆∑=→1),(lim)(ηελ),称x J (或y J )是dx y x f ),((或(dy y x f ),()在曲线),(B A C 的第二型曲线积分,表为dx y x f B A C ⎰),(),( (或dy y x f B A C ⎰),(),().因此可得到,质点在平面力场)),(),,((y x Q y x P F =−→−的作用下,沿光滑的有向曲线C由点A 到点B ,力场F 所作的功W 是dx y x P ),(与dy y x Q ),(在曲线),(B A C 上的第二型曲线积分之和,即k k k T k nk k kI y Q x P W ∆+∆=→=→∑),(lim ),(lim)()(ηεηελλ01=dy y x Q dx y x P B A C B A C ⎰⎰+),(),(),(),(通常上式简写为dy y x Q dx y x P W B A C B A C ⎰⎰+=),(),(),(),(. (2)若L 为封闭有向曲线, 则记为⎰+LQdy Pdx 或⎰+ABQdy Pdx .由弧长微分知,dx 与dy 分别是弧长微分ds 在x 轴与y 轴上的投影。
弧长微分ds 的方向就是曲线),(B A C 的方向,则弧长向量微元),(dy dx ds =.于是,功W 可写成向量形式的积分ds y x F W B A C ⋅=⎰),(),(. (3)类似地,可以定义三元函数),,(),,,(),,,(z y x R z y x Q z y x P 沿空间曲线Γ对坐标的曲线积分,即∑⎰=→Γ=nk k kT k P dx z y x P 10),,(lim ),,()(ςηελx Vk,∑⎰=→Γ=nk k kT k Q dx z y x Q 10),,(lim ),,()(ςηελy V k,z R dx z y x R Vk nk k kT k ∑⎰=→Γ=1),,(lim ),,()(ςηελ,组合形式为:dz z y x R dy z y x Q dx z y x P ),,(),,(),,(++⎰Γ,其中Γ是光滑空间有向曲线,三元函数R Q P ,,在Γ上连续.3.2第二型曲线积分的性质1.(方向性)对同一曲线,当方向有A 到B 改为由B 到A 时,每一小曲线段的方向都改变.即dx y x f dx y x f A B C B A C ),(),(),(),(⎰⎰-=,dy y x f dy y x f A B C B A C ),(),(),(),(⎰⎰-=.因为k x ∆与k y ∆分别是第k 个第k 个有向的小弧⌒k k A A 1-的弦表为−→−=1k k A A 在x 轴与y轴上的投影,当改变曲线C 的方向时,k x ∆与k y ∆要改变符号,所以第二型曲线积分也要改变符号.2.(线性性)若(1,2,,)ii LPdx Q dy i k +=⎰存在,则11()()k ki i i i Li i c P dx c Q dy ==+∑∑⎰也存在,且111()()()kkki i i i i ii LLi i i c P dx c Q dy c Pdx Q dy ===+=+∑∑∑⎰⎰. 3.(积分弧长的可加性)若有向曲线L 是由有向曲线12,,,k L L L 首尾连接而成,且⎰+iL Qdy Pdx 存在,则(1,2,,)LPdx Qdy i k +=⎰也存在,且1ikLL i Pdx Qdy Pdx Qdy =+=+∑⎰⎰.4第二型曲线积分的计算下面将介绍曲线积分的五种计算方法:直接计算,格林公式,利用曲线与路径无关计算,利用奇偶对称性及数学软件Mathmatic 进行计算.4.1直接计算第二型曲线积分可以化为定积分来计算.定理1 设平面曲线L:()()[]b a t t y y t x x ,,∈⎭⎬⎫⎩⎨⎧== ,且()()][()[()]ββααy x B y x A ,,,,则()dx y x f ,与()dy y x f ,在()B A C ,的第二型曲线积分都存在,且()()[()]()dt t x t y t x f dx y x f B A c '=⎰⎰βα,,),(,()()[()]()dt t y t y t x f dy y x f B A c '=⎰⎰βα,,),(,其中()x x t =,()y y t =在[],a b 上具有一阶连续导函数,且点A 与B 的坐标分别为()()(),x a y a 与()()(),x b y b .又设(,)P x y 与为(,)Q x y 为L 上的连续函数,则沿L 从A 到B 的第二型曲线积分.()dy y x Q dx y x P L),(,+⎰dt t y t y t x Q t x t y t x P ba⎰'+'=)]())(),(()())((),(([,若点A 与B 的坐标分别为()()(),x b y b 与()()(),x a y a ,则满足上述条件的沿L 从A 到B 的第二型曲线积分()dy y x Q dx y x P L),(,+⎰dt t y t y t x Q t x t y t x P ba⎰'+'=)]())(),(()())((),(([.证明 设{}0cos ,cos ταβ=为曲线L 上在t 处的单位切线矢量 则有cos α=,cos β'=,由于 cos ,cos dx ds dy ds αβ==,(,)(,)cos LLP x y dx P x y ds α=⎰⎰,((),(b aP x t y t =⎰,=((),())()baP x t y t x t dt '⎰.同理有(,)((),(bLa Q x y dy Q x t y t '=⎰⎰,((),())()baQ x t y t y t dt '=⎰.特殊情形 当(),,:b x a x y L ≤≤=ϕ且起点对应a x =,终点对应b x =,则()()()()()[]dx x x x Q x x P Qdy Pdx Lba⎰⎰'+=+ϕϕϕ,,,当()y x L φ=:,d y c ≤≤,且起点对应c y =,终点对应d y =,则()[]()()()[]dy y y Q y y y P Qdy Pdx Ldc⎰⎰+'=+,,φφφ.由此,对于第二型曲线积分的直接计算方法,可采用三个步骤: 代:将L 的参数方程代入被积函数; 换:()dt t x dx '=,()dt t y dy '=; 定限:下限—起点参数值, 上限—终点参数值.下面我们通过几个例题来说明这种方法的应用.例1计算dx xy L⎰,其中L 为沿抛物线x y =2从点()11-,A 到()11,B 的一段.解 若取x 为参数,则L :⌒AO +⌒OB, ⌒AO :x y -=,01→:x , ⌒OB : xy =,10→:x ,∴dx xy dx xy xydx L⎰⎰⎰+=101+-=⎰x x x d )(01x x x d ⎰1542123==⎰x x d ,若取y 为参数,则112→-=:,:y y x L 所以y y y y x y x Ld )(d 2112'=⎰⎰-,542114==⎰-y y d .例2 计算⎰+Ldy x xydx 22,其中L 为⑴ 抛物线2x y =上从()00,O 到),(11B 的一段弧; ⑵ 抛物线2y x =上从()00,O 到),(11B 的一段弧; ⑶有向折线OAB ,这里B A O ,,依次是点()()()110100,,,,,.图1)0,1(A )1,1(B 解 ⑴若取x 为参数x x y L ,:2=从0变到1,⎰⋅+⋅=12222dx x x x x )(原式dx x x 31322+=⎰⎰=134dx x =dx x ⎰1341=.⑵若取y 为参数,,:102变到从y y x L =⎰⎰+⋅⋅=+1422222dy y y y ydy x xydx L)(⎰+=1444dx y y=⎰145y1=.⑶⎰⎰+++=ABOAdy x xydx dy x xydx 2222原式,上在OA ,,100变到从x y =⎰⎰⋅+⋅=+1220022dx x x dy x xydx OA)(.0=,上在AB ,,101变到从y x =⎰⎰+⋅=+121022dy y dy x xydx AB)(x 2y =),(01A ),(11B ),(01A ()11,B 图2图3图41=..,:但积分值相同虽然路径不同由此知例3 计算曲线积分⎰-Cydx xdy ,其中积分路径为如图5所示.(1)在椭圆12222=+b y a x 上, 从()0,a A 经第一﹑二﹑三象限到点()b B -,0;(2) 在直线b x aby -=上,从点()0,a A 到点()b B -,0解 (1)椭圆12222=+b y a x 的参数方程为:⎩⎨⎧==tb y ta x sin cos ,且起点0=→t A ,终点23π=→t B ,所以()[]dt t a t b t tb a ydx xdy L⎰⎰--=-230πsin sin cos cos⎰=320πabdt=ab 32π.图5图6(2)线段AB 的方程为:b x ab y -=,起点,a A →终点0=→x B ,dx abdy =,⎰⎰⎪⎭⎫ ⎝+-=-ABa dxb x ab ax ydx xdydx b a⎰=0ab -=.例4 计算⎰+Lxdy ydx (其中积分路径L 为x y x 222=+) ()0>y 由起点()000,到终点()02,B 的积分值.方法1分析 被积函数中的变量y x ,都与积分路径L 的方程有关,所以可以把x 或y 作为参数,L 的方程:(),0222>=+y x y x 选x 为参数,22x x y -=L x ≤≤0,dx xx x dy 221--=解 dx x x x x x x xdy ydx I L ⎰⎰⎪⎪⎭⎫⎝⎛--⋅+-=+=2022212 ()()dx x x x ⎰⎰⎪⎪⎭⎫⎝⎛-----=2022211112, 利用定积分第二类换元法作变量替换θsin =-1x ,则 θθd dx cos =,θθθθθθθππππd d I cos cos sin cos cos ⋅+-⋅=⎰⎰--222212图70=-=ππ.在方法1中,确定参数为x ,写出L 的参数方程()⎩⎨⎧==x f y xx ,找出参数的起点和终点。