(完整word版)高等数学复习第一至第四章公式默写资料

合集下载

(完整版)高等数学完全归纳笔记(全)

(完整版)高等数学完全归纳笔记(全)

一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

高数复习公式word版

高数复习公式word版

高等数学知识点总结(公式)第一章 极限 1.常用极限:1||1||0)80)7sin )6)1(,)1()52arctan ,2arctan )4ln ,ln )31(,,0),1(,0,)2;0,1,1,1)1lim lim lim lim lim lim lim lim lim lim lim lim lim 1lim lim lim lim 01010100000>∞<=>∞<==++++++==+=+-==-∞=+∞=<+∞==>=+∞==-∞=+∞=∞=∞→∞→→→∞→-∞→+∞→→+∞→-∞→+∞→-∞→+∞→∞→→→→+-+q q q nm nm n m b a b x b x b a x a x a k x kxe ax e x ax x x x a a a a a a x xx nn nm nnm m x x axx a x x x x x x x x x x x x x x x x x x xππ9)下列极限不存在也不为无穷:xx x x x x a x x x x 1000lim lim lim lim lim ;1cos ;1sin ;cos ;sin →→→∞→∞→2.常用的等价无穷小(当0→x 时)sinx~x tanx~x 1-cosx~22x arcsinx~x arctanx~xln(1+x)~x 1-x a ~xlnx 第二章 导数 1.导数基本公式2.双曲函数:3.求导法则:2''''''''''')()()())(()(v uv v u v u uv v u uv v u v u Cu Cu -=+=-+=-+=y=f(x)的反函数为x=g(y)则)(1)('y g x f =)0)(('≠y g 复合函数求导 4.高阶导数2''1''2211)(arcsin cos )(sin )0()(0)(ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan x x x x x uxx C ax x aa a x x x x x x x x x x u u a x x -==>==='='⋅-='⋅='-='='-2'2'''222211)cot (11)(arccos 1)(ln )(11)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x xx e e x x arc x x x x x x x x +-=--===+-='+='--='-='xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦xn n x ax n n ax n n n n n n nn n n n n n n a a y a y ab n x e b a y bx e y n x y x y n x y x y a n y x a x a x a a y x n y x y xn y x y nn x n y x y )(ln ,).8arctan ),sin()(,sin ).7)2cos(,cos ).6)2sin(,sin ).5!,).4)1()!1()1(),1ln().3!)1(,1).20)1()1(,).1)(22)()()()(22101)(1)()(===++==+==+===++++=+--=+=-==<≥+--==-+-φφππααααααα5.莱布尼茨公式)()(0)()(k k n nk kn n v u uv C -=∑=三角公式6.基本初等函数的微分公式2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=±dxx x arc d dx xx d dxxx d dxxx d dx xx d dx ax x d e e d adx a a d xdx x x d xdx x x d x x d xdx x d xdx x d xdx x d dx ux x d C d a x x x x u u 222222111)cot ()1611)(arctan )1511)(arccos )1411)(arcsin )131)(ln )12ln 1)(log )11)()10ln )()9cot csc )(csc )8tan sec )(sec )7csc )(cot )6sec )(tan )5sin )(cos )4cos )(sin )3)()20)()1+-=+=--=-=====-==-==-====- 第三章 中值定理和导数应用1.费马引理;罗尔定理;拉格朗日中值定理;柯西中值定理;洛必达法则。

高数大一知识点总结前四章

高数大一知识点总结前四章

高数大一知识点总结前四章在大一的学习生活中,高等数学是一个非常重要的课程。

对于初学者来说,高数可能是一个挑战,因为它包含了许多新的概念和方法。

然而,只要我们掌握了一些基本的知识点,就能够更好地理解和应用高数。

下面,我将总结前四章的知识点,希望能够对大家的学习有所帮助。

第一章:数列与极限1. 数列的概念和表示方式:数列是按照一定规律排列的一组数,通常用通项公式表示。

2. 数列的分类:常数数列、等差数列、等比数列等。

常数数列的通项公式是恒等于一个常数;等差数列的通项公式是数列的第一个项加上公差与项数的乘积;等比数列的通项公式是数列的第一个项乘以公比的n-1次方。

3. 数列极限:当数列的项数逐渐增加时,数列可能会无限接近于某个数或取得无穷大的值。

这个无限接近的数被称为数列的极限。

第二章:函数与连续1. 函数的概念与性质:函数是一种描述两个变量之间关系的数学工具。

函数有定义域和值域两个重要的概念。

同时,函数有奇偶性、周期性等性质。

2. 基本初等函数:常见的基本初等函数包括常数函数、幂函数、指数函数、对数函数和三角函数等。

3. 函数的图像与性质:通过研究函数的图像,我们可以了解函数的性质,如单调性、极值点、零点、拐点等。

4. 连续性与间断点:函数在某一点处的极限等于函数在该点处的取值时,我们称该函数在该点处连续。

函数的间断点有可去间断、跳跃间断和无穷间断三种情况。

第三章:导数与微分1. 导数的概念与计算:导数描述了函数在某一点附近的变化率。

导数的计算可以使用极限的方法,也可以使用导数的基本性质进行计算。

2. 导数的性质与应用:导数有用于判断函数的增减性、求解极值和绘制函数图像的重要作用。

导数可以用于线性逼近、速度、密度和最优化等实际问题的求解。

3. 高阶导数与微分:高阶导数是导数的导数,它描述了函数在某一点处的曲率和变化率。

微分是函数值的增量与自变量的增量之间的关系。

第四章:不定积分1. 不定积分的概念与性质:不定积分是求解原函数的过程,常用的记号是∫f(x)dx。

(完整word版)高数部分知识点总结(word文档良心出品)

(完整word版)高数部分知识点总结(word文档良心出品)

1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x x x 、e x x x =+→10)1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。

1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。

所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aa dx x f )(型定积分,若f(x)是奇函数则有⎰-a a dx x f )(=0;若f(x)为偶函数则有⎰-a a dx x f )(=2⎰a dx x f 0)(;对于⎰20)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-a a 奇函数 、⎰⎰=-aa a 02偶函数偶函数。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

(完整word版)高中数学公式及知识点总结大全(精华版)

(完整word版)高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

(完整word版)成人高考高升专数学常用知识点及公式(打印版)

(完整word版)成人高考高升专数学常用知识点及公式(打印版)

成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

(完整版)高等数学笔记

(完整版)高等数学笔记

第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界. 2.函数的极限:⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x→时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim㈡无穷大量和无穷小量 1.无穷大量:+∞=)(limx f称在该变化过程中)(x f 为无穷大量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数公式:
平方关系:
倍角公式:
tan 2α=
半角公式:
==2
cos
2
sin
α
α
和差角公式:
和差化积公式:
积化和差公式:
=βcos sin a =βsin cos a
=βcos cos a
=βsin sin a
反三角函数性质:=+=+x arc x arc x x cot tan arccos arcsin
=±=±)cos()sin(βαβα=-=+=-=+βαβαβαβαcos cos cos cos sin sin sin sin =
=αα2cos 2sin =
=
αα3cos 3sin
等价无穷小:
两个重要极限:
几个常用的极限:
导数公式:
高阶导数公式
==
====(n)(n)(n)
m (n)(n)(n)x (uv)x)()(x kx)(kx)()(a 莱布尼茨公式:ln cos sin
='='='='='=')x ()(a )x ()x ()x ()x (a x log csc sec cot tan =
'='='=')x (arc )x ()x ()x (cot arctan arccos arcsin ~
tan ~tan ~arcsin ~sin x arc x x x ~
1~cos 1~1e ~1ln 1
n
x x x --x )()(++====>-∞→+∞→∞→∞→anx arc anx arc n )(ααx x n n n n t lim t lim lim 0lim =
===
=-∞
→+∞→→+∞→∞
→+x arc x arc x e e x x x x x x x -x cot lim cot lim lim lim lim 0
中值定理与导数应用: 时:当柯西中值定理:拉格朗日中值定理:
罗尔定理:
费马引理:
x x =)(F =
==
=)(0)(0x f x R x f n 时即为麦克劳林公式:余项:泰勒展开式:
=
+=
+===
m x x )(x )(x x e 11ln cos sin 式:常用的五个麦克劳林公
基本积分表:
⎰⎰⎰⎰⎰⎰
⎰⎰=-=-=-=+====222
22
222csc sec cot tan a x dx
x a dx
x a dx
x a dx
xdx xdx xdx xdx ⎰
⎰⎰⎰⎰⎰⎰⎰=
±=
===⋅=⋅=
=2
2
22cot csc tan sec sin cos a
x dx chxdx shxdx dx a xdx x dx x x x dx x dx x
曲率:
====∆∆==→∆K a K ds
d s K K s 的圆:半径为直线:点的曲率:平均曲率:弧微分公式:
.lim M 0α
α

⎰⎰=
-=-=+dx x a dx a x dx a x 222222。

相关文档
最新文档