同济第六版《高等数学》教案WORD版-第01章 函数与极限
高等数学(同济大学版)课程讲解第一章习题课1讲课教案

九、授课效果分析 :
第一章 函数与极限习题课
一、 主要内容
1. 函数
函数的概念与特性,反函数,复合函数,基本初等函数,初等函数
.
2. 极限
极限定义、运算、性质,两个重要极限,无穷小比较,极限存在准则
.
3. 连续
函数连续的概念,间断点的类型,初等函数的连续性,闭区间上连续函数的性质,分段 函数的连续性 .
3. 求 0 或 型未定式的极限 0
例4
(x lim
h)3
x3
h0
h
解
3
3
lim ( x h) x
( x h) lim
x (x h)2
(x h)x x2
h0
h
h0
h
lim ( x h) 2 ( x h) x x2 3x2 .
h0
例 5 lim 2x 3 3 x3 x 1 2
解
lim
2x 3 3
(2 x 3) 9 ( x 1 2) lim
lim
a,
bx0
x0 x
x0 x
当 lim f ( x) lim f (x) f (0) 2 ,即 b 1.5, a 2 时, f (x) 在 x 0 处连续 .
x0
x0
12. 闭区间上连续函数性质的应用
例 22 证明方程 ln(1 ex ) 2 x 0 至少有一个小于 1 的正根 .
证 令 f (x) ln(1 ex ) 2x ,则 f ( x) 在 ( , ) 上连续 ,因而在 [0,1] 上连续 , 且
(e x 2 1) ~
1)2
,
2
2
(ex2 1)2 ( x2 )2 x4
高等数学同济大学第六版1-04-极限的运算-文档资料

推论2 如果lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
求极限方法举例
例1
求
lim
x2
x
2
x3 1 3x
5
.
解
lim( x2 3x 5) lim x2 lim 3x lim 5
x2
x2
x2
x2
(lim x)2 3lim x lim 5 22 3 2 5 3 0,
(2)零是可以作为无穷小的唯一的数。
2.无穷小与函数极限的关系: 定理 : lim f ( x) A f (x) A (x),
其中( x)是自变量变化时的无穷小.
意义: 将一般极限问题转化为特殊极 限 — 无穷小 —的问题。
3.无穷小的运算性质:
定理. 在同一自变量的变化过程中,有限个无 穷小的代数和仍是无穷小.
n n
n
lim sin x 0, 函数sin x是当x 0时的无穷小. x0
又如,
函数 x2 1当 x2 1
x 时的极限为 1 ,
而当x 1 时的极限为 0 ,
函数 x2 1本身不是无穷小量, x2 1
而当x
1
时函数
x2 x2
1 才是无穷小量。 1
注意 (1)无穷小是变量,不是有穷小量,不能与很 小的数混淆;
x 1
x2
2x
3
lim
x 1
(x
3)( x
1)
x 1
x1 1
lim
x1 x1 x 3 2
消去零因子
例4
求
lim
x
2x3 7x3
3x2 4x2
高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
同济六版高等数学第一章第七节课件

无穷大量的定义
如果当x趋于某值时,函数f(x)趋于无穷大,则称f(x) 为无穷大量。
无穷小量与无穷大量的关 系
两者之间存在密切的联系,无穷小量是无穷 大量的极限状态,而无穷大量则是无穷小量 的极限状态。
03
导数的概念与性质
导数的定义与几何意义
导数的定义
导数描述了函数在某一点处的切线斜 率,即函数在该点的变化率。
分部积分法
通过将两个函数的乘积进行不定积分, 将其中一个函数作为u,另一个函数
作为v',然后进行不定积分。
换元积分法
通过引入新的变量替换原函数中的自 变量,将不定积分转化为容易计算的
形式。
积分的应用
求面积
不定积分可以用来计算平面曲线下方的面积。
求长度
不定积分可以用来计算曲线在某个区间上的 长度。
物理应用
于这个值时的极限为A。
极限的性质
包括唯一性、有界性、局部 保号性等。这些性质对于理
解和应用极限非常重要。
极限的计算
包括直接代入法、因式分解 法、等价无穷小替换法等, 这些方法可以帮助我们计算 函数的极限。
无穷小量与无穷大量
无穷小量的定义
如果当x趋于某值时,函数f(x)趋于0,则称f(x) 为无穷小量。
同济六版高等数学第 一章第七节课件
目录
CONTENTS
• 引言 • 函数与极限 • 导数的概念与性质 • 导数的应用 • 不定积分 • 定积分 • 总结与回顾
01
引言
本章概述
01
本章主要介绍极限的概念、性质及其在数学分析中的基础地位。
02
通过本章学习,学生将了解极限在研究函数、导数、积分等数
学概念中的作用。
《高等数学》电子课件(同济第六版)01第一章第1节函数

复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
《高等数学》电子课件(同济第六版)01第一章 第1节 函数

一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性质}
有限集 如 M {0,1,2, ,9}
无限集 如 M2 {( x, y) x2 y2 1}
2、集合间的关系:
(1) 子 集 ;(2) 集 合 相 等 ;(3) 空 集 ;
2
故定义域为
D
[
0
,
1 2
)
12
3、几个特殊的函数举例
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
定义域 D (, ), 值域 W {1,0,1}
图形:
y
1
o
x
-1
x sgn x x 13
(2) 取整函数: y=[x] [x]表示不超过 x 的最大整数
如 [3] 0, [ 3] 1, [8] 8, [3.8] 4.
x, x 1
f
(x)
min{ x , x2}
x
2
,
1 x 1
三、映射(自学)x, x 1
19
四、函数的特性
1.函数的有界性:
若X D,M 0,x X,有 f (x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
如 y cos x 在( , )上有界, 2 x2
y
1 x2
作业
习题11 P21
4(1)(3)(5)(7)(9),5(2)(3),6,7(1),10,11, 12(1)(3)(5),14(1)(3)(5),16,17,18
《高等数学》电子课件(同济第六版)01第一章 第1节 函数

2.函数的单调性:
x1,x2I, 当 x1 x2时,
若 f(x1)f(x2),称f (x)为I上的单调增加函数; 若 f(x1)f(x2),称f (x)为I上的单调减少函数;
如 yx,yx3 单增
yx2?
精选课件ppt
21
3.函数的奇偶性:
设 D关于原, 对 点 于 对 xD 称 , 有
f(x)f(x)
o
x
精选课件ppt
27
(2)单值函数的反 一函 定数 是不 单值函数
如y : x2
反函数x: y. (3)若y f(x)单调增(减),
其反函数也单调增(减 )。
精选课件ppt
28
六、基本初等函数
1.幂函数
yx (是常)数
y
y x2
yx
1
y x (1,1)
o1
x
y 1 x
精选课件ppt
29
2.指数函数 yax (a0,a1) y e x
(1)子集; ( 2)集合相等; (3)空集;
精选课件ppt
2
( 4)集合运算: 如A B {xx A 且 x B }
AB{xxA 或x者 B }
3、常用数的集合:
N----自然数集
Z----整数集
Q----有理数集
数集间的关系:
R----实数集
N Z ,Z Q ,Q R .
精选课件ppt
第一节 映射与函数
一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
精选课件ppt
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性}质
【同济第六版高数】第01章函数与极限教案与习题讲解(2)

第一章 函数与极限§1. 2 数列的极限一个实际问题:如可用渐近的方程法求圆的面积?设有一圆, 首先作内接正四边形, 它的面积记为A 1;再作内接正八边形, 它的面积记为A 2;再作内接正十六边形, 它的面积记为A 3;如此下去, 每次边数加倍, 一般把内接正8×2n -1边形的面积记为A n . 这样就得到一系列内接正多边形的面积:A 1, A 2, A 3, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , A n , ⋅ ⋅ ⋅设想n 无限增大(记为n →∞, 读作n 趋于穷大), 即内接正多边形的边数无限增加, 在这个过程中, 内接正多边形无限接近于圆, 同时A n 也无限接近于某一确定的数值, 这个确定的数值就理解为圆的面积. 这个确定的数值在数学上称为上面有次序的数(数列) A 1, A 2, A 3, ⋅ ⋅ ⋅ , A n , ⋅ ⋅ ⋅当n →∞时的极限.数列的概念:如果按照某一法则, 使得对任何一个正整数n 有一个确定的数x n , 则得到一列有次序的数x 1, x 2, x 3, ⋅ ⋅ ⋅ , x n , ⋅ ⋅ ⋅这一列有次序的数就叫做数列, 记为{x n }, 其中第n 项x n 叫做数列的一般项. 数列的例子:{1+n n }: 21, 32, 43, ⋅ ⋅ ⋅ , 1+n n ⋅ ⋅ ⋅; {2n }: 2, 4, 8, ⋅ ⋅ ⋅ , 2n , ⋅ ⋅ ⋅;{n 21}: 21, 41, 81, ⋅ ⋅ ⋅ , n 21, ⋅ ⋅ ⋅ ; {(-1)n +1}: 1, -1, 1, ⋅ ⋅ ⋅ , (-1)n +1, ⋅ ⋅ ⋅ ;{n n n 1)1(--+}: 2, 21, 34, ⋅ ⋅ ⋅ , n n n 1)1(--+, ⋅ ⋅ ⋅ . 它们的一般项依次为1+n n , 2n , n 21, (-1)n +1, n n n 1)1(--+. 数列的几何意义:数列{x n }可以看作数轴上的一个动点, 它依次取数轴上的点x 1, x 2, x 3, ⋅ ⋅ ⋅ , x n , ⋅ ⋅ ⋅.数列与函数:数列{x n }可以看作自变量为正整数n 的函数:x n =f (n ),它的定义域是全体正整数.数列的极限:数列的极限的通俗定义:对于数列{x n }, 如果当n 无限增大时, 数列的一般项x n 无限地接近于某一确定的数值a , 则称常数a 是数列{x n }的极限, 或称数列{x n }收敛a . 记为a x n n =∞→lim . 如果数列没有极限, 就说数列是发散的.例如11lim =+∞→n n n ,021lim =∞→n n , 1)1(lim 1=-+-∞→nn n n ; 而{2n}, { (-1)n +1}, 是发散的.对无限接近的刻划:x n 无限接近于a 等价于|x n -a |无限接近于0,极限的精确定义:定义 如果数列{x n }与常a 有下列关系:对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切x n , 不等式|x n -a |<ε都成立, 则称常数a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为a x n n =∞→lim 或x n →a (n →∞). 如果数列没有极限, 就说数列是发散的.数列极限的几何解释: 例题:例1. 证明1)1(lim 1=-+-∞→nn n n . 分析: |x n -1|=nn n n 1|1)1(|1=--+-. 对于∀ε >0, 要使|x n -1|<ε , 只要ε<n 1, 即ε1>n . 证明: 因为∀ε >0, ∃]1[ε=N ∈N +, 当n >N 时, 有 |x n -1|=ε<=--+-n n n n 1|1)1(|1, 所以1)1(lim 1=-+-∞→nn n n . 例2. 证明0)1()1(lim2=+-∞→n n n . 分析: |x n -0||0)1()1(|2-+-=n n 11)1(12+<+=n n . 对于∀ε >0, 要使|x n -0|<ε , 只要ε<+11n , 即11->εn . 证明: 因为∀ε >0, ∃]11[-=εN ∈N +, 当n >N 时, 有 |x n -0|=ε<+<+=-+-11)1(1|0)1()1(|22n n n n , 所以0)1()1(lim 2=+-∞→n n n . 例3. 设|q |<1, 证明等比数列1, q , q 2, ⋅ ⋅ ⋅ , q n -1, ⋅ ⋅ ⋅的极限是0.分析: 对于任意给定的ε >0, 要使|x n -0|=| q n -1-0|=|q | n -1<ε ,只要n >log |q |ε +1就可以了, 故可取N =[log |q |ε +1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2、了解函数的奇偶性、单调性、周期性和有界性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形。
5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质。
教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;5、闭区间上连续函数性质的应用。
§1. 1 映射与函数一、集合1. 集合概念集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示.元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M.集合的表示:列举法: 把集合的全体元素一一列举出来.例如A?{a, b, c, d, e, f, g}.描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为A?{a1, a2, ???, a n},M?{x | x具有性质P }.例如M?{(x, y)| x, y为实数, x2?y2?1}.几个数集:N表示所有自然数构成的集合, 称为自然数集.N?{0, 1, 2, ?????, n, ?????}. N??{1, 2, ?????, n, ?????}.R表示所有实数构成的集合, 称为实数集.Z表示所有整数构成的集合, 称为整数集.Z?{?????, ?n, ?????, ?2, ?1, 0, 1, 2, ?????, n, ?????}.Q表示所有有理数构成的集合, 称为有理数集.子集: 若x?A, 则必有x?B, 则称A是B的子集, 记为A?B(读作A包含于B)或B?A .如果集合A与集合B互为子集, A?B且B?A, 则称集合A与集合B相等, 记作A?B.若A?B且A?B, 则称A是B的真子集, 记作A≠⊂B . 例如, N≠⊂Z≠⊂Q≠⊂R.不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集.2. 集合的运算设A、B是两个集合, 由所有属于A或者属于B的元素组成的集合称为A与B的并集(简称并), 记作A?B, 即A?B?{x|x?A或x?B}.设A、B是两个集合, 由所有既属于A又属于B的元素组成的集合称为A与B的交集(简称交), 记作A?B, 即A?B?{x|x?A且x?B}.设A、B是两个集合, 由所有属于A而不属于B的元素组成的集合称为A与B的差集(简称差), 记作A\B, 即A\B?{x|x?A且x?B}.如果我们研究某个问题限定在一个大的集合I中进行, 所研究的其他集合A都是I的子集. 此时, 我们称集合I为全集或基本集. 称I\A为A的余集或补集, 记作A C.集合运算的法则:设A、B、C为任意三个集合, 则(1)交换律A?B?B?A, A?B?B?A;(2)结合律(A?B)?C?A?(B?C), (A?B)?C?A?(B?C);(3)分配律(A?B)?C?(A?C)?(B?C), (A?B)?C?(A?C)?(B?C);(4)对偶律(A?B)C?A C?B C, (A?B)C?A C?B C.(A?B)C?A C?B C的证明:x?(A?B)C?x?A?B?x?A且x?B?x?A C且x?B C?x?A C?B C, 所以(A?B)C?A C?B C.直积(笛卡儿乘积):设A、B是任意两个集合, 在集合A中任意取一个元素x, 在集合B中任意取一个元素y, 组成一个有序对(x, y), 把这样的有序对作为新元素, 它们全体组成的集合称为集合A与集合B的直积, 记为A?B, 即A?B?{(x, y)|x?A且y?B}.例如, R?R?{(x, y)| x?R且y?R }即为xOy面上全体点的集合, R?R常记作R2.3. 区间和邻域有限区间:设a<b, 称数集{x|a<x<b}为开区间, 记为(a, b), 即(a, b)?{x|a<x<b}.类似地有[a, b] ? {x | a ?x?b }称为闭区间,[a, b) ? {x | a?x<b }、(a, b] ? {x | a<x?b }称为半开区间.其中a和b称为区间(a, b)、[a, b]、[a, b)、(a, b]的端点, b?a称为区间的长度.无限区间:[a, ??) ? {x | a?x }, (??, b] ? {x | x < b } , (??, ??)?{x | | x | < ??}.区间在数轴上的表示:邻域: 以点a为中心的任何开区间称为点a的邻域, 记作U(a).设?是一正数, 则称开区间(a??, a??)为点a的?邻域, 记作U(a, ?), 即U(a, ?)?{x | a??< x < a??}?{x | | x?a|<?}.其中点a称为邻域的中心, ?称为邻域的半径.去心邻域οU(a, ?):οU(a, ?)?{x |0<| x?a |<?}二、映射1. 映射的概念定义设X、Y是两个非空集合, 如果存在一个法则f, 使得对X中每个元素x, 按法则f, 在Y中有唯一确定的元素y与之对应, 则称f为从X到Y的映射, 记作f : X?Y ,其中y称为元素x(在映射f下)的像, 并记作f(x), 即y?f(x),而元素x称为元素y(在映射f下)的一个原像; 集合X称为映射f的定义域, 记作D f, 即D f?X ;X中所有元素的像所组成的集合称为映射f的值域, 记为R f, 或f(X), 即R f?f(X)?{f(x)|x?X}.需要注意的问题:(1)构成一个映射必须具备以下三个要素: 集合X, 即定义域D f?X; 集合Y, 即值域的范围: R f?Y; 对应法则f, 使对每个x?X, 有唯一确定的y?f(x)与之对应.(2)对每个x?X, 元素x的像y是唯一的; 而对每个y?R f, 元素y的原像不一定是唯一的; 映射f的值域R f是Y的一个子集, 即R f?Y, 不一定R f?Y .例1设f : R?R, 对每个x?R, f(x)?x2.显然, f 是一个映射, f 的定义域D f ?R , 值域R f ?{y |y ?0}, 它是R 的一个真子集. 对于R f 中的元素y , 除y ?0外, 它的原像不是唯一的. 如y ?4的原像就有x ?2和x ??2两个.例2设X ?{(x , y )|x 2?y 2?1}, Y ?{(x , 0)||x |?1}, f : X ?Y , 对每个(x , y )?X , 有唯一确定的(x , 0)?Y 与之对应.显然f 是一个映射, f 的定义域D f ?X , 值域R f ?Y . 在几何上, 这个映射表示将平面上一个圆心在原点的单位圆周上的点投影到x 轴的区间[?1, 1]上. (3) f :]2 ,2[ππ-?[?1, 1], 对每个x ?]2,2[ππ-, f (x )?sin x .f 是一个映射, 定义域D f ?]2,2[ππ-, 值域R f ?[?1, 1].满射、单射和双射:设f 是从集合X 到集合Y 的映射, 若R f ?Y , 即Y 中任一元素y 都是X 中某元素的像, 则称f 为X 到Y 上的映射或满射; 若对X 中任意两个不同元素x 1?x 2, 它们的像f (x 1)?f (x 2), 则称f 为X 到Y 的单射; 若映射f 既是单射, 又是满射, 则称f 为一一映射(或双射). 上述三例各是什么映射? 2. 逆映射与复合映射设f 是X 到Y 的单射, 则由定义, 对每个y ?R f , 有唯一的x ?X , 适合f (x )?y , 于是, 我们可定义一个从R f 到X 的新映射g , 即g : R f ?X ,对每个y ?R f , 规定g (y )?x , 这x 满足f (x )?y . 这个映射g 称为f 的逆映射, 记作f ?1, 其定义域1-f D ?R f , 值域1-f R ?X .按上述定义, 只有单射才存在逆映射. 上述三例中哪个映射存在逆映射? 设有两个映射g : X ?Y 1, f : Y 2?Z ,其中Y 1?Y 2. 则由映射g 和f 可以定出一个从X 到Z 的对应法则, 它将每个x ?X 映射成f [g (x )]?Z . 显然, 这个对应法则确定了一个从X 到Z 的映射, 这个映射称为映射g 和f 构成的复合映射, 记作f o g , 即f og : X ?Z ,(f o g )(x )?f [g (x )], x ?X . 应注意的问题:映射g 和f 构成复合映射的条件是: g 的值域R g 必须包含在f 的定义域内, R g ?D f . 否则, 不能构成复合映射. 由此可以知道, 映射g 和f 的复合是有顺序的, f o g 有意义并不表示g o f 也有意义. 即使f o g 与g o f 都有意义, 复映射f o g 与g o f 也未必相同. 例4 设有映射g : R ?[?1, 1], 对每个x ?R , g (x )?sin x , 映射f : [?1, 1]?[0, 1], 对每个u ?[?1, 1], 21)(u u f -=. 则映射g 和f 构成复映射f o g : R ?[0, 1], 对每个x ?R , 有|cos |sin 1)(sin )]([))((2x x x f x g f x g f =-===ο.三、函数 1. 函数概念定义 设数集D ?R , 则称映射f : D ?R 为定义在D 上的函数, 通常简记为y ?f (x ), x ?D ,其中x 称为自变量, y 称为因变量, D 称为定义域, 记作D f , 即D f ?D . 应注意的问题:记号f 和f (x )的含义是有区别的, 前者表示自变量x 和因变量y 之间的对应法则, 而后者表示与自变量x 对应的函数值. 但为了叙述方便, 习惯上常用记号“f (x ), x ?D ”或“y =f (x ), x ?D ”来表示定义在D 上的函数, 这时应理解为由它所确定的函数f .函数符号: 函数y ?f (x )中表示对应关系的记号f 也可改用其它字母, 例如“F ”, “?”等. 此时函数就记作y ?? (x ), y ?F (x ). 函数的两要素:函数是从实数集到实数集的映射, 其值域总在R 内, 因此构成函数的要素是定义域D f 及对应法则f . 如果两个函数的定义域相同, 对应法则也相同, 那么这两个函数就是相同的, 否则就是不同的. 函数的定义域:函数的定义域通常按以下两种情形来确定: 一种是对有实际背景的函数, 根据实际背景中变量的实际意义确定. 求定义域举例:求函数412--=x xy 的定义域.要使函数有意义, 必须x ?0, 且x 2 ??4?0. 解不等式得| x |?2.所以函数的定义域为D ?{x | | x |?2}, 或D ?(??, 2]?[2, ??]). 单值函数与多值函数: 在函数的定义中,对每个x ?D , 对应的函数值y 总是唯一的, 这样定义的函数称为单值函数. 如果给定一个对应法则, 按这个法则, 对每个x ?D , 总有确定的y 值与之对应, 但这个y 不总是唯一的, 我们称这种法则确定了一个多值函数. 例如, 设变量x 和y 之间的对应法则由方程x 2?y 2?r 2 给出. 显然, 对每个x ?[?r , r ],由方程x 2?y 2?r 2,可确定出对应的y 值, 当x ?r 或x ??r 时, 对应y ?0一个值; 当x 取(?r , r )内任一个值时, 对应的y 有两个值. 所以这方程确定了一个多值函数.对于多值函数, 往往只要附加一些条件, 就可以将它化为单值函数, 这样得到的单值函数称为多值函数的单值分支. 例如, 在由方程x 2?y 2?r 2给出的对应法则中, 附加“y ?0”的条件, 即以“x 2?y 2?r 2且y ?0”作为对应法则, 就可得到一个单值分支221)(x r x y y -==; 附加“y ?0”的条件, 即以“x 2?y 2?r 2且y ?0”作为对应法则, 就可得到另一个单值分支222)(x r x y y --==.表示函数的主要方法有三种: 表格法、图形法、解析法(公式法), 这在中学里大家已经熟悉. 其中, 用图形法表示函数是基于函数图形的概念, 即坐标平面上的点集 {P (x , y )|y ?f (x ), x ?D }称为函数y ?f (x ), x ?D 的图形. 图中的R f 表示函数y ?f (x )的值域. 函数的例子:例. 函数⎩⎨⎧<-≥==0 0||x x x x x y .称为绝对值函数. 其定义域为D ?(??, ??), 值域为R f ?[0, ??). 例. 函数⎪⎩⎪⎨⎧<-=>==01000 1sgn x x x x y .称为符号函数. 其定义域为D ?(??, ??), 值域为R f ?{?1, 0, 1}.例 设x 为任上实数. 不超过x 的最大整数称为x 的整数部分, 记作[ x ]. 函数y ? [ x ]称为取整函数. 其定义域为D ?(??, ??), 值域为R f ?Z .0]75[=, 1]2[=, [?]?3, [?1]??1, [?3. 5]??4.分段函数:在自变量的不同变化范围中, 对应法则用不同式子来表示的函数称为分段函数. 例。