高数函数与极限习题06574
高等数学函数极限与连续习题及答案

1、函数()12++=x xx f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大.错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()n n a 1-=,1)1(lim =-∞→n n ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小).正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim =αβ,是∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<x e (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sin lim ∞→=( x ).∵x x nx n xn n x n x n n n n =⋅==∞→∞→∞→sinlim 1sinlimsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x b ax x x b ax x x x +++-+++---+-=+∞→111lim 222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()xx f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim ( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→x x x 101lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( k e ). ∵0sin 1lim sin lim =⋅=∞→∞→x x xx x x 111sinlim1sin lim ==∞→∞→xx x x x x 14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列 2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa3、当0→x 时,1-x e 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x根据极限存在定理知:()x f x 0lim →不存在。
高数函数极限练习题

函数与极限练习题直禅IS□ >肖时"用减JE)在冠ttK恵Ifr的盘守呦.削下刮式于中楠课的业€5C ■ •^r,)+oU* )=€<■*)D: d(x) + XJt:)=^)I 二 e =](2> ^#/(>)=—的可去间斷底的牛妆为f;r(x 十1)L1 蓋IB) 1Q> n-aaftbm^"31?3111=F・扁冲乱r 舸擒巒・B.c *=», m <B> 2.^«—'4 I I '.2、H T J「忘廿jl*:= 5T1[1Y-llIl沁'•才r/苇八七目小・眄“让=7■3 af€>- □-町可E THf J;旳个枝为曲充HC7> =^i /(JI)- j-suiflrl3jti)=i1尤曲也Nl(B)昶* = 1 - t=—6:CI ff = -1.B •- 1C .■ ijl+^Jx — LtD、1—COS-^I= e=1 »AW*W«X «*®a,b 为 __Ixdsinfx —21请数门工)=_-—— 在尸列券个区阖内有界一z(x-l)(x-2J(A> (-1,0) (B> (OJ) CO (12) (D> (23)(19)下列riNffliE 踊的是(A)若1诃/X®工1曲> S 当Q q 窗―旺K 占时fW 土 g(r)星 T J^Jt —►齐CB)®3(f >O h ttO<r-^忙方时且伽才⑴二心!!™呂⑴二心均日■则忌》氏*(C> #35>O 3ttO<|x-i o K^0f/(<)>£(x}=>lim/(jr)>]im£(r). gXt g 如 (D)若 lira /(r) > Um g(R =耳必 > Q 当0 q 龙-无 |< 占时冇 /■何 >g(r)if宀片C1L )设Fh)展连慈聃《tf (幻的一牛原曲載,哪必有(A) FWJtlSS»«f{B )是奇««.CB> FG)足奇函敦O £3足偶画蠡.(€) FW 是舄期由数O 虫<!)是罔期函軌(D) P(x)盘单iH 函鑒O 舟3建单谒函数十 X 3 +3^+1 ..、lim;—(EinJC4- cog 耳}=十 r+Jt 3C13) limf^-f-j^—+- + ^—)n 2+2 n 2+n=1-则/(0)=1(15)着Hf 0时,(1-™3)*-!与工曲工是辱儘无男4 则沖 ________________________X 2 +匕网<c2 , , )内连渎,■<: =41空割(16)⑶川Im ®"祝叭L 求応曲⑴2<33)或FO) ■ ®十卩E"在匿间卜f 町上的何断点.井指明类型。
关于高等数学函数的极限与连续习题精选及答案

关于高等数学函数的极限与连续习题精选及答案Company number:【0089WT-8898YT-W8CCB-BUUT-202108】1、函数()12++=x xx f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大.错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→n n ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小).正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误=-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x∴点0=x 是函数xx y =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值. 错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值二、填空题:1、设()x f y =的定义域是()1,0,则(1)()x e f 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭ );(3)()x f lg 的定义域是( (1,10) ).答案:(1)∵10<<x e (2)∵1sin 102<-<x(3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2-).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sin lim ∞→=( x ).∵x x nx n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ).∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()bax x x x --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim222欲使上式成立,令012=-a ,∴1a =±, 上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()xx f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→xxax x ,则=a ( 2 ).()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim ( 0 ),=∞→xx x 1sin lim ( 1 ),()=-→xx x 101lim ( 1-e ),=⎪⎭⎫⎝⎛+∞→kxx x 11lim ( k e ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sinlim 1sin lim ==∞→∞→xx x x x x 14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa3、当0→x 时,1-x e 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+.a .1→xb .01+→xc .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在∵1sin lim sin lim sin lim000000-=-=-=-→-→-→xxx x x x x x x 根据极限存在定理知:()x f x 0lim →不存在。
高等数学函数极限练习题

:(x)2X X1 X设 f (X)对一切实数 X 1, X 2 成立 f(x 1 X 2) = f (X 1) f (X 2),且 f(0) =0, f(1) =a,求f (0)及f(n).(n 为正整数)定义函数I (X)表示不超过X 的最大整数叫做X 的取整函数,若f (X)表示将X 之值保留二 位小数,小数第3位起以后所有数全部舍去,试用I (x)表示f(X) o定义函数I (X )表示不超过X 的最大整数叫做X 的取整函数,若g (X )表示将X 依4舍5入 法则保留2位小数,试用I (X)表示g(x) o在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售 出不能退给报社,只好亏本。
若每天进报纸t 份,而销售量为X 份,试将报摊的利润y 表示为 X 的函数。
定义函数I (X)表示不超过 X 的最大整数叫做 X 的取整函数,试判定L(X) = X _ I (X)的周期性。
判定函数 f(x) =(e x ^∣ _i) J∏(i + X _x)的奇偶性。
设f (X) = e x Sin x ,问在IO,亠「上f (x)是否有界?函数y =f(χ)的图形是图中所示的折线OBA ,写岀y =f(x)的表达式5X , 0 兰 X £ 2;平 Y X ,≤ X £ 4; 亠丘 T V Γ I设 f (X)=丿<P (x)=」 求 f [ζP (x)及申 Lf (x) 1X +2,2 兰 X 兰4. x-2,4 兰 X 兰6.「(X) = 2x -1,求 f L(X)]及“丨 f (X)].(X)(X)设 f (X)(X) 1—(x + X ), S0;(X)■ 0.2,‘0,:::0;(X)-0. 0, X 込 0;I . I求f (x)的反函数 g (x)及f ISP(X) J.X - 0.If (X) 1.求 f L(X)].■ 1, X 1; 求 f (x) + CP (X).X - 1.2x ,求f (X)的定义域及值域设 f(x)=Xe ,设 f (X )= * √7 +ι, x — 1 , -:::::X .:: 0 ;0 < X <4 ; 求f (X)的反函数:(x) • 4 ::: X ::: ■::X , 一 OQ £ X £ 1 ; 设 f (X) = X 2, ^X <4 ; 求 f (X)的反函数(X) • I X2 , 4 :: X :: 设 f (X)I- 2 1 -X , X ::: 0; 求:X _ 0∙ (1) f (X)的定义域; (2) f (2)及 f (a 2)∙(a 为常数)。
高数极限62道经典例题

高数极限62道经典例题高数极限是数学中的重要概念之一,也是学习数学的学生需要掌握的基本技能之一。
在高数极限的学习过程中,经典例题是帮助学生深入理解和掌握极限概念的重要辅助工具。
以下是62道经典的高数极限例题,通过这些例题的学习和解答,学生可以提高自己的极限运算能力。
1. 求极限lim(x→0)(sinx/x)2. 求极限lim(x→∞)(1/x)3. 求极限lim(x→∞)(x^2/(1+x^2))4. 求极限lim(x→0)(x^3/(1+2x)^2)5. 求极限lim(x→0)(1-cosx/x)6. 求极限lim(x→0)(sqrt(1+x)-1)/x7. 求极限lim(x→0)(e^x-1)/x8. 求极限lim(x→0)(ln(1+x)/x)9. 求极限lim(x→∞)(ln(x+1)/ln(x))10. 求极限lim(x→0)(1-cosx)/(x^2)11. 求极限lim(x→0)(sin2x/2x)12. 求极限lim(x→0)(sin(ax)/bx),其中a和b为常数13. 求极限lim(x→0)(e^x-x-1)/x^214. 求极限lim(x→∞)(e^x/x)15. 求极限lim(x→0)(ln(1+x)/(x+a))16. 求极限lim(x→0)(e^x-ax-1)/x^2,其中a为常数17. 求极限lim(x→∞)(1+1/x)^x18. 求极限lim(x→∞)(1+1/x)^(kx),其中k为常数19. 求极限lim(x→0)(sinx+cosx)/x20. 求极限lim(x→0)(sinx-cosx)/x21. 求极限lim(x→0)(e^x+e^-x-2)/x22. 求极限lim(x→∞)(x^a)/(e^x),其中a为常数23. 求极限lim(x→0)(a^x-1)/x,其中a为常数24. 求极限lim(x→0)(ln(1+x)/(1+sinx))25. 求极限lim(x→∞)(x^a)/(lnx),其中a为常数26. 求极限lim(n→∞)(1+1/n)^n27. 求极限lim(n→∞)(1+1/n)^n^228. 求极限lim(n→∞)(1+1/n^n)29. 求极限lim(n→∞)(1+1/n^n^2)30. 求极限lim(n→∞)(1+1/n!)^n31. 求极限lim(n→∞)(n^a)/(a^n),其中a为常数32. 求极限lim(x→0)(sin(ax^2)/tanx^2),其中a为常数33. 求极限lim(x→0)(tan(ax^2)/sinx^2),其中a为常数34. 求极限lim(x→∞)(1+1/x)^x^a,其中a为常数35. 求极限lim(x→∞)(1+1/x)^x^(1/x)36. 求极限lim(x→∞)(1+1/x)^x^(1/x)^237. 求极限lim(x→0)(sin(ax)/bx),其中a和b为常数38. 求极限lim(t→0)(sin(at)/bt),其中a和b为常数39. 求极限lim(x→0)(a^x-b^x)/(x-c),其中a、b和c为常数40. 求极限lim(x→0)(sin(ax)-sin(bx))/(x-c),其中a、b和c为常数41. 求极限lim(x→0)(ln(ax)-ln(bx))/(x-c),其中a、b和c为常数42. 求极限lim(x→∞)(x^a)/(e^bx),其中a和b为常数43. 求极限lim(x→∞)(e^ax)/(x^b),其中a和b为常数44. 求极限lim(x→0)(sinx/x^a),其中a为常数45. 求极限lim(x→0)(cosx/x^a),其中a为常数46. 求极限lim(x→0)(tanx/x^a),其中a为常数47. 求极限lim(x→0)(cotx/x^a),其中a为常数48. 求极限lim(x→0)(secx/x^a),其中a为常数49. 求极限lim(x→0)(cscx/x^a),其中a为常数50. 求极限lim(x→0)(ln(1+ax))/(x^b),其中a和b为常数51. 求极限lim(x→0)(1-(1-ax)^x)/(x^2),其中a为常数52. 求极限lim(x→0)(1-(1+ax)^x)/(x^2),其中a为常数53. 求极限lim(x→0)(1-(1+ax)^x)/(x^3),其中a为常数54. 求极限lim(x→0)(1-(1+ax)^x)/(x^4),其中a为常数55. 求极限lim(x→0)(1-(1+ax)^x)/(x^5),其中a为常数56. 求极限lim(x→0)(1-(1+ax)^x)/(x^6),其中a为常数57. 求极限lim(x→0)(1-(1+ax)^x)/(x^7),其中a为常数58. 求极限lim(x→0)(1-(1+ax)^x)/(x^8),其中a为常数59. 求极限lim(x→0)(1-(1+ax)^x)/(x^9),其中a为常数60. 求极限lim(x→0)(1-(1+ax)^x)/(x^10),其中a为常数61. 求极限lim(x→0)(1-(1-ax)^x)/(x^3),其中a为常数62. 求极限lim(x→0)(1-(1-ax)^x)/(x^4),其中a为常数以上是62道经典的高数极限例题,每道题目都能帮助学生巩固和拓展自己的极限运算能力。
函数与极限试题

函数与极限试题1. 题目描述:求以下函数的极限:a) 当x趋近于0时,求函数f(x) = (sinx)/x的极限值;b) 当x趋近于无穷大时,求函数g(x) = x/(x+1)的极限值;c) 当x趋近于2时,求函数h(x) = (x^2 - 4)/(x - 2)的极限值。
2. 解答:a) 函数f(x) = (sinx)/x的极限:考虑极限lim(x→0) (sinx)/x,我们可以利用泰勒级数展开对sinx进行近似计算。
根据泰勒级数展开,我们有:sinx = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...因此,lim(x→0) (sinx)/x = lim(x→0) [1 - (x^2)/3! + (x^4)/5! - (x^6)/7! + ...]由于幂次越高的项对于x趋于0时的极限值的贡献越小,我们只需要考虑最高次项。
因此,当x趋近于0时,(x^4)/5!及更高次项可以忽略不计。
因此,lim(x→0) (sinx)/x ≈ lim(x→0) [1 - (x^2)/3!]= 1所以,函数f(x) = (sinx)/x在x趋近于0时的极限值为1。
b) 函数g(x) = x/(x+1)的极限:考虑极限lim(x→∞) x/(x+1),我们可以进行有理化处理,得到:lim(x→∞) x/(x+1) = lim(x→∞) (1 - 1/(x+1))当x趋近于无穷大时,1/(x+1)趋近于0,因此极限值为:lim(x→∞) x/(x+1) = 1 - 0 = 1所以,函数g(x) = x/(x+1)在x趋近于无穷大时的极限值为1。
c) 函数h(x) = (x^2 - 4)/(x - 2)的极限:考虑极限lim(x→2) (x^2 - 4)/(x - 2),我们可以进行因式分解,得到:lim(x→2) (x^2 - 4)/(x - 2) = lim(x→2) [(x - 2)(x + 2)]/(x - 2)由于在x = 2处分母为0,我们需要对被除数进行化简,得到:lim(x→2) (x^2 - 4)/(x - 2) = lim(x→2) (x + 2) = 4所以,函数h(x) = (x^2 - 4)/(x - 2)在x趋近于2时的极限值为4。
(完整版)高等数学函数的极限与连续习题精选及答案

1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→xxax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
高数函数与极限练习题

高数函数与极限练习题一、函数的基本概念1. 判断下列函数的单调性:(1) f(x) = 3x + 4(2) g(x) = 2x^2 + 5x + 1(3) h(x) = e^x x2. 求下列函数的定义域:(4) f(x) = √(x^2 9)(5) g(x) = 1 / (x 2)(6) h(x) = ln(x^2 4)3. 判断下列函数的奇偶性:(7) f(x) = x^3 3x(8) g(x) = sin(x) + cos(x)(9) h(x) = e^x e^(x)二、极限的计算4. 计算下列极限:(10) lim(x→0) (sin(x) / x)(11) lim(x→1) (x^2 1) / (x 1)(12) lim(x→+∞) (1 / x^2 1 / x)5. 讨论下列极限的存在性:(13) lim(x→0) (sin(1/x))(14) lim(x→0) (x^2 / sin(x))(15) lim(x→+∞) (x ln(x))6. 计算下列极限:(16) lim(x→0) (e^x 1) / x(17) lim(x→+∞) (x^2 + x + 1) / (2x^2 + 3x 1)(18) lim(x→∞) (x^3 + 3x^2 + 2x + 1) / (x^4 + 4x^3 + 3x^2)三、无穷小与无穷大7. 判断下列表达式的无穷小性质:(19) sin(x) x(20) 1 cos(x)(21) e^x 1 x8. 判断下列表达式的无穷大性质:(22) 1 / (x 1)(23) ln(1 / x)(24) x^2 e^x (x > 0)四、连续性与间断点9. 讨论下列函数的连续性:(25) f(x) = |x 1|(26) g(x) = { x^2, x < 0; 1, x ≥ 0 }(27) h(x) = { sin(x), x ≠ 0; 1, x = 0 }10. 求下列函数的间断点:(28) f(x) = 1 / (x^2 1)(29) g(x) = √(1 cos(x))(30) h(x) = ln|x^2 4|五、综合题11. 设函数f(x) = x^2 2x + 3,求lim(x→+∞) f(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p ( x ) x 3 2 x 2 a b x ~ x ( x 0 )
从而 b0 得 ,a1. 故 p (x ) x 3 2 x 2 x
x1, x1
例6
讨论 f(x)cos2x,
的连续 . 性 x1
解 将f(x)改写成
1 x, x 1 f (x) cos2x, 1 x 1
lifm (x )s2 ix n 0 x 0
从而由等价无穷小的代换性质得
2lx i0m 1fe (3 xx) s1i2n x1
1 f (x)sin2x
lim2
x0
3x
1limf(x)sin 2x
3x0
2x
由limsin2x1 x0 2x
lif m (x )存在 lif m ( , x )6且
得cln2
解二
lim x
x x
c c
x
1 lim x 1
c x x
c x
x
ec e c
e2c
例 证明 limn n1 n
证 首先 nn1 记 nn1hn
n ( 1 h n 2 )n 1 n n h n (n 2 !1 )h n 2 1n(n2! 1)hn2
0hn2
2 n
x
limf(x)limcos 0.
x1
x1
2
lif m (x )lif m (x )
x 1
x 1
limf(x)lim (x1)0. 故 f(x)在 x1连.续
x1
x1
f(x )在 (, 1 ) ( 1 ,)连 . 续
例 设 f(x)在闭 [0,1区 ]上间 连 ,且 f(0 续 )f(1),
解 由 lx i0m 1fe (3 x x ) s1 i2n x12 而 lim (e3x1)0
x 0
li(m 1 f(x )s2 ix n 1 ) x 0
lx i0m 1 fe (3 x x ) s1 i2 x n 1 (e 3 x 1 )
20 0
lim 1 f(x )s2 ix n 1 x 0
证明必 [0 有 ,1]使 一 f(得 点 1)f().
2
证明 令 F (x)f(x1)f(x),
2
则F(x)在[0,1]上连. 续 2
F(0)f(1)f(0), 2
F(1)f(1)f(1),
2
2
讨论: 若 F(0)0, 则0, f(01)f(0);
2
若F(1) 0, 则 1 , f(11)f(1);
x 1, x 1
显 f(x ) 然 在 (, 1 )( ,1 ,1 )(1 ,,) 内 .连续
当 x1时 ,
limf(x)lim (1x)2.
x1
x1
lif m (x )lif m (x )
x 1
x 1
limf(x)limcosx0. 故 f(x)在 x1间.断
x1
x1
2
当x1时,
x0
xl ixm 0 f(x)f(x0)
左右连续
连续的 充要条件
在区间[a,b] 上连续
连续函数的 运算性质
非初等函数 的连续性
初等函数 的连续性
间断点定义
第一类 可跳 去跃 间间 断断 点点
第二类 无振 穷荡 间间 断断 点点
连续函数 的性质
1、连续的定义
单侧连续 连续的充要条件 闭区间的连续性
又x=1为可去间断,故limf(x)存在 x1
1 b li(x m b ) li[f m (x )(x a )x ( 1 )]
x 1
x 1
lif( m x )li (x m a )x ( 1 )0 x 1 x 1
b1
例
已 l x 0 i知 1 m fe (3 x x ) s1 2 ix n 1 2 ,求 l x 0 ifm (x )
2
2
22 2
若 F(0)0,F(1)0,则 2
F(0)F(1) [f(1)f(0)]2 0.
2
2
由零点定理பைடு நூலகம்,
(0,1)使 , F()0.
2
即f(1)f()成.立
2
综上, 必有 一 [0,1] 点 [0,1],
2
使f(1)f()成.立
2
例 设 x 10 ,证 x n 明 11 2(x nx a n)有(极 a0 )限 证 显然 xn0
由夹逼定理知
ln im hn 0
lim nn1 n
例 确a定 ,b的值f, (x)使xb 有无 (xa)(x1)
间断 x点 0,,有可去 x1间断点
解 因f(x)在x=0处为无穷间断,即
limf(x)
x0
0lim 1li(m x a )x ( 1 ) x 0 f(x ) x 0 x b
limxa a0 ,b0 x0 xb
第一章 函数与极限习题课
一、主要内容
(一)函数的定义 (二)极限的概念 (三)连续的概念
(一)函数
基本初等函数
复合函数
函数 的定义
初等函数 反函数 隐函数
双曲函数与 反双曲函数
反函数与直接 函数之间关系
函数 的性质
奇偶性 单调性 有界性 周期性
1.函数的定义 函数的分类 2.函数的性质 有界、单调、奇偶、周期 3.反函数 4.隐函数 5.基本初等函数
lim
x
x0(1cosx)ln(1 x)
解一
sinxxcos1 原式lxim 0(1cxosx)ln1(xx)
x 10 1
21 2
例 求 lx i1m ( x1)(3 (xx 11 )n ) 1(nx1) 解 令 ux1 则 x1u
由 (1u)1~u得
I l u 0 i(m 1 u 1 )3 1 ( u u n 1 1 ) ( n 1 u 1 )
1 x
n
例 求lim (1tanx)x13. x0 1sinx
解 原式 li[m 1(1tax n1)x 1 ]3 x 0 1sixn
lim [1taxnsix n]x13
x 0
1six n
lx i0m ta 1 xn ssix n ix nx13lx i0m (s1ix n s(1i x n)ccoo xx)ssx13
积化和差 sinαsinβ = [cos(α+β)-cos(α-β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2
1u1u 1u
lim2 u0
3 un1
n
1 n!
例. 求极限
ln i c m o 2 x cs2 o x 2 s c2 o x ns ,(x 0 )
解
原式 lim co2 xsco2xs2co2xsn2sin 2xn
n
2sin 2xn
ln i m co2 xsco4 xs 22csoi2 n 2sxn xn12sin 2n x1
x
xn
lx i (m a0a x 1a x n n 1 1a x n n)
a0 0
故由函数极限的保号性质可知 X 0 0 ,使 |x | 当 X 0 时 fx(nx)与a0同号, 亦即 |x | X 0 时 , f(x ) 与 , 当 a 0 x n 同号
又 n 是奇数,所以 a0( 2X 0)n与 a0(2X 0)n异号
f ( 2 X 0 ) f ( 2 X 0 ) 0 而 f(x)在 [2X 0,2X 0]上连续
故由零点定理知 ( 2 X 0 ,2 X 0 ) , f() 使 0
即 a 0xna 1xn 1a n 1xa n0 至少有
和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
xn11 2(xnxan) a
xn1xn12(xanxn)
1 a xn2 0 2 xn
即xn单调减,有下界
故由单调有界原理得 ln imxn存在
设 ln i m xnA ,A 则 0
在xn1 12(xnxan)两边取极限得
A1(A a) 2A
解得 A a,A a(舍去)
例求
sinx x2 cos1
2、间断点的定义
间断点的分类 第一类、第二类
3、初等函数的连续性
连续性的运算性质 反函数、复合函数的连续性
4、闭区间上连续函数的性质
最值定理、有界性定理、介值定理、零点定理
二、例题
例 当 x1时 ,
求 li(m 1x)1 (x2)1 (x4)(1x2n). n
解 将分子、分母同乘以因子(1-x), 则
lx i0s m x ixn 1x c2o x(s 1s1 ixn )co xs12
1
原 式 e2 .
例 设p(x)是多项 ,且式 lx i mp(xx)2x3 2, limp(x)1,求p(x). x x0
解 lx i mp(xx)2x3 2, 可 p (x 设 )x32x2a x b (其 a ,b 中 为待 )
原 li 式 ( 1 m x )1 (x )1 (x 2 )1 (x 4 ) ( 1 x 2 n )
n
1 x
(1 x 2 )1 ( x 2 )1 ( x 4 ) (1 x 2 n)